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Maintenance of protein homeostasis is vitally important in post-mitotic cells,

particularly neurons. Neurodegenerative diseases such as polyglutamine

expansion disorders—like Huntington’s disease or spinocerebellar ataxia

(SCA), Alzheimer’s disease, fronto-temporal dementia (FTD), amyotrophic

lateral sclerosis (ALS) and Parkinson’s disease—are often characterized by

the presence of inclusions of aggregated protein. Neurons contain complex

protein networks dedicated to protein quality control and maintaining

protein homeostasis, or proteostasis. Molecular chaperones are a class of pro-

teins with prominent roles in maintaining proteostasis, which act to bind

and shield hydrophobic regions of nascent or misfolded proteins while

allowing correct folding, conformational changes and enabling quality con-

trol. There are many different families of molecular chaperones with

multiple functions in proteostasis. The DNAJ family of molecular chaper-

ones is the largest chaperone family and is defined by the J-domain,

which regulates the function of HSP70 chaperones. DNAJ proteins can

also have multiple other protein domains such as ubiquitin-interacting

motifs or clathrin-binding domains leading to diverse and specific roles in

the cell, including targeting client proteins for degradation via the protea-

some, chaperone-mediated autophagy and uncoating clathrin-coated

vesicles. DNAJ proteins can also contain ER-signal peptides or mitochon-

drial leader sequences, targeting them to specific organelles in the cell.

In this review, we discuss the multiple roles of DNAJ proteins and in par-

ticular focus on the role of DNAJ proteins in protecting against

neurodegenerative diseases caused by misfolded proteins. We also discuss

the role of DNAJ proteins as direct causes of inherited neurodegeneration

via mutations in DNAJ family genes.

This article is part of the theme issue ‘Heat shock proteins as modulators

and therapeutic targets of chronic disease: an integrated perspective’.
1. Introduction
Intracellular or extracellular proteinaceous inclusions in specific brain regions

are a pathological hallmark of many neurodegenerative diseases [1]. These

inclusions are generally composed of misfolded and aggregated forms of

specific disease-associated proteins. For example, Alzheimer’s disease (AD) is

characterized by the accumulation of extracellular amyloid-b plaques and intra-

cellular tangles of phosphorylated tau; Parkinson’s disease (PD) is associated

with intracellular deposits of a-synuclein known as Lewy bodies; and in

Huntington’s disease (HD) intracellular aggregates of polyglutamine-expanded

forms of the huntingtin protein are present. Protein aggregation in these neuro-

degenerative diseases can arise from genetic variations in the disease-related

proteins (either as directly causative mutations or polymorphisms that shift

the folding equilibrium of the disease-linked protein); genetic alterations

that lead to elevated levels of the protein expression; or can be triggered by

environmental stress and ageing [2].

It is not always clear whether protein aggregation into inclusions is a cause

or consequence of neurodegeneration; however, in inherited forms of
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neurodegeneration many of the causative mutations disrupt

the folding of the disease protein, leading to increased aggre-

gation and inclusion formation. The pathological inclusions

seen in all neurodegenerative disorders are thought to rep-

resent the endpoint of the protein aggregation process. Prior

to the formation of large aggregates, mutated or misfolded

proteins are believed to form small soluble oligomers, which

some studies have demonstrated to be the more toxic species

[3,4]. It has been suggested, therefore, that the proteinaceous

inclusions seen pathologically are not the primary cause of

neurotoxicity, and their formation is a protective defence

mechanism employed by the cell to sequester the potentially

more toxic soluble oligomers [2]. Nevertheless, it is likely

that these inclusions can also contribute to toxicity in neurons

by physically obstructing axonal transport, sequestering other

essential proteins and disrupting overall protein homeostasis

of the cell. Neurons are particularly vulnerable to this toxicity

as they rely heavily on axonal transport between the cell body

and synaptic terminals, and being a post-mitotic cell type,

they do not have an ability to disperse protein aggregates

via cell division, or be readily replaced [5].

Given their vulnerability to toxicity induced by aggre-

gated oligomers and proteinaceous inclusions, neurons

depend heavily on an intrinsic network of protein quality

control mechanisms designed to maintain proteostasis, a

state in which all proteins in the proteome are in the confor-

mation, concentration and location that are required for

correct functioning of the cell [6]. Cells have several mechan-

isms to regulate the biogenesis, folding, trafficking and

degradation of proteins to ensure that proteostasis is main-

tained, and disruptions to these processes, or an imbalance

in protein folding caused by mutations or stress, can lead

to disease. Cells respond to stress through compartment-

related signalling pathways. In the cytoplasm and nucleus,

the heat shock response (HSR) mediates a transcriptional

response to stress through heat shock factors (e.g. HSF1),

whereas the endoplasmic reticulum (ER) has the unfolded

protein response (UPR) to respond to stress [7,8]. Intrinsic

degradation mechanisms employed to maintain proteostasis

include clearance systems such as autophagy and the

ubiquitin-proteasome system (UPS), which involve the com-

partmentalization, degradation and recycling of misfolded

or unfolded proteins by lysosomes or proteasome, respect-

ively [5,9–11]. The HSR and UPR act to restore protein

homeostasis by reducing protein translation and activating

signalling pathways that increase production of protective

factors, such as molecular chaperones [8].

Molecular chaperones are heterogeneous and functionally

diverse families of proteins that are involved in many critical

cellular processes, including protein folding, trafficking, qual-

ity control and degradation. A common classification of

molecular chaperones (also known as heat shock proteins;

HSPs) is according to their molecular weight. The major

families are HSP90, HSP70, HSP40 (DNAJ), HSP60 and the

small HSPs. In this review, the focus will be on the DNAJ

family members and their relation to neuronal proteostasis

and neurodegeneration [12].
2. DNAJ proteins
DNAJ proteins (also known as J proteins or HSP40 proteins)

are a family of chaperones that regulate HSP70 chaperones
through stimulating ATP hydrolysis. The defining feature of

DNAJ proteins is the J-domain, an approximately 70 amino

acid highly conserved region containing 4 a-helices

(figure 1). The linker region between helices 2 and 3 is

especially well conserved and contains the histidine-proline-

aspartic acid (HPD) motif that is absolutely required for

stimulation of ATP hydrolysis in HSP70 [13]. There are

approximately 50 different members of the DNAJ protein

family in man, ranging in size from 10 to 520 kDa, suggesting

that the HSP40 designation might not be an accurate descrip-

tion of this family of proteins [14]. The variety in size reflects

the diversity in function of DNAJ proteins due to their

varying domain structure [15].

DNAJ protein family members can be divided into three

subtypes depending on their domain composition (class I,

II or III, also called A, B or C; [16]) (figure 1). Class I

(DNAJA) DNAJ proteins are the most similar to the epon-

ymous E. coli DnaJ protein and contain the canonical

domain structure of an N-terminal J-domain followed by a

glycine/phenylalanine (G/F)-rich region, a zinc-finger motif

and C-terminal client-binding domain (CBD). Class II

(DNAJB) DNAJ proteins contain an N-terminal J-domain

and G/F-rich region. Class III (DNAJC) DNAJ proteins

only have the J-domain with no other canonical domains,

and the J-domain may be located anywhere in the structure

of the protein. DNAJC proteins are the largest subtype of

DNAJ proteins and have the greatest diversity in their size,

structure and domain architecture, reflecting highly special-

ized functions. Among the wide variety of protein domains

found in DNAJ proteins are ubiquitin-interacting motifs

(UIMs), cysteine-rich regions, GTP-binding domains, tetratri-

copepetide repeats (TPRs) and clathrin-binding domains [17].
3. Mutations in DNAJ proteins as a cause of
disease

Mutations in DNAJ proteins can cause disease, as part of a

larger collection of genetically inherited disorders caused

by mutations in molecular chaperones known as chaperono-

pathies [18]. Furthermore, the majority of chaperonopathies

result in neurodegenerative-like phenotypes, emphasizing

the important role of molecular chaperones in neuronal

proteostasis, in particular motor neurons [19]. Currently

mutations are known to occur in fourteen DNAJ proteins

(table 1, figure 2), leading to diseases such as cerebellar

ataxia, distal hereditary motor neuropathy, Charcot Marie

Tooth disease and Parkinson’s disease [60]. However,

mutations in some DNAJ proteins cause non-neurodegenera-

tive disorders; for example, mutations in DNAJB13 cause

primary ciliary dyskinesia [35], mutations in DNAJC12
cause hyperphenylalanemia [45] and mutations in DNAJC21
cause bone marrow failure syndrome [53]. In this section,

we will focus on the role of DNAJ mutations in contributing

to neurodegeneration and the consequences for neuronal

proteostasis.

(a) DNAJB2 (HSJ1)
DNAJB2 is an alternatively spliced neuronal protein forming

two isoforms: a 36 kDa cytosolic/nuclear form (DNAJB2a;

HSJ1a) and a larger 42 kDa isoprenylated membrane associ-

ated form (DNAJB2b; HSJ1b) [61]. As a type II DNAJ
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Figure 1. The J domain and DNAJ subfamilies. (a) The amino acid sequence of the DNAJB2 J domain with a-helixes (green), b-sheet (blue) and histidine –
proline – aspartic acid (HPD) motif (boxed) highlighted. (b – d ) Phylograms of DNAJ subfamilies and schematic illustrations of their conserved domains. Protein
sequence alignments were performed using a Blosum scoring matrix in ClustalX. Bootstrap value is presented at right corner in (c). Numbers represent the
degree of homology (0 – 1000). (e) The tertiary structure of J domain of DNAJB2 (PDB 2LGW) from N-terminus (dark blue) to C-terminus (yellow) is shown
with the 4 a-helixes and HPD motif highlighted. ( f ) Illustration of how the J-domain (green) can facilitate substrate (dark blue) loading onto Hsp70 (grey).
When the ATP is bound, the C-terminal substrate-binding domain (SBD) is docked onto the N-terminal nucleotide-binding domain (NBD). DNAJ proteins simulate
Hsp70 ATPase hydrolysis, as well as recruiting substrates. When the ADP is bound, the lid closes and stabilizes the cleft-substrate binding. Nucleotide exchange
factors (NEF) (brown) complete the cycle by stimulating the exchange of ADP for ATP and substrate release. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20160534

3



Table 1. Mutations in DNAJ proteins cause a range of diseases.

DNAJ gene
(AKA) mutation/result disease inheritance references

DNAJB1

(HDJ1/

HSP40)

400 kb deletion on chromosome 19 resulting in

N-terminal DNAJB1 chimeric in-frame fusion

with PKA catalytic domain

fibrolamellar hepatocellular carcinoma somatic [20]

DNAJB2

(HSJ1)

c.352þ1G.A resulting in intron 5 retention distal hereditary motor neuropathy recessive [21 – 25]

c.229þ1G.A resulting in intron 4 retention

c.14A.G, p.Y5C (J-domain mutation) Charcot Marie Tooth disease type 2

c.619-1G.A resulting in splice site deletion

c.309delC, p.F103fsX

3.8 kb deletion resulting in J-domain deletion spinal muscular atrophy/juvenile

Parkinsonism

DNAJB5

(HSC40)

c.43C.T, p.P15S (J-domain mutation) hereditary myoclonus and progressive

distal muscular atrophy

recessive [25]

DNAJB6

(MRJ)

c.265T.A, p.F89I limb-girdle muscular dystrophy dominant [26,27 – 34]

c.271T.A, p.F91I

c.271T.C, p.F91L

c.273C.G, p.F93I

c.277T.A, c.277T.C, c.279C.A,

c.279C.G, p.F93L

c.287C.G, p.P96R

c.287TC.T, p.P96L

c.298T.G, p.F100V

c.346þ5G.A

DNAJB13 c.833T.G, p.M278R primary ciliary dyskinesia type 34 recessive [35]

c.68þ1G.C, p.Y24X

DNAJC3

( p58)

c.508C.T, p.R194X combined cerebellar and peripheral

ataxia with hearing loss and

diabetes mellitus

recessive [36]

72 kb deletion resulting in loss of

exons 6 – 12

DNAJC5

(CSPa)

c.346_348delCTC, p.L116D adult-onset neuronal ceroid

lipofuscinosis

dominant [37,38]

c.344T.G, p.L115R

DNAJC6

(auxilin)

c.801-2A.G autosomal recessive juvenile

Parkinsonism

recessive [39 – 42,43]

c.2371C.T, p.G791X

c.397A.T, p.M133L early-onset Parkinson’s disease

c.626T.C, p.L209P

c.1468þ83del

c.1855C.T, p.R619C

c.2038þ3A.G resulting in loss of

splice donor site

c.2200C.T, p.G734X

c.2365C.T, p.G789X

c.2223A.T, p.T741X

c.2517del, p.F389LfsX22

c.2779A.G, p.R927G (J-domain mutation)

80 kb deletion of exons 5 – 19 early-onset obesity, mental retardation

and epilepsy

(Continued.)
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Table 1. (Continued.)

DNAJ gene
(AKA) mutation/result disease inheritance references

Dnajc11 c.1524þ56T.A (mice only) resulting in cryptic

splicing, p.K508fsX43

spasticity, MN pathology recessive [44]

DNAJC12

(JDP1)

c.298-968_503-2603del resulting in exon 4

deletion

hyperphenylalaninemia, mild,

non-BH4 deficient

recessive [45]

c.215G.C, p.R72P

c.158-2A.T resulting in intron 3 splice site

mutation

DNAJC13

(RME-8)

c.2564A.G, p.N855R autosomal dominant Parkinson’s

disease

dominant [46]

DNAJC17 c.681G.A (r.601_681del), p.Y201_A227del retinitis pigmentosa and

hypogammaglobulinemia

recessive [47]

DNAJC19

(TIM14)

IVS3-1G.C resulting in skip exon 4 and

frameshift truncation

dilated cardiomyopathy and ataxia recessive [48 – 52]

c.300delA, p.A100fsX11

c.63delC, p.Y21X

c.280þ1_280þ5delGTAAG resulting in splice site

deletion

DNAJC21 c.517C.T, p.R173X bone marrow failure syndrome type 3 recessive [53]

c.983þ1G.T, p.G299AfsX2

c.94C.G, p.P32A

c.793G.T, p.Q265X

DNAJC29

(sacsin)

c.7504C.T, p.R2502X autosomal recessive spastic ataxia of

Charlevoix-Saguenay

recessive [54 – 59]

c.8844delT, p.P2948fsX3

c.12992G.A, p.R4331Q (J-domain mutation)

c.12991C.T, p.R4331W (J-domain mutation)

c.13027G.A, p.E4343K (J-domain mutation)

more than 150 other mutations
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protein, it contains an N-terminal J-domain and G/F-rich

region, but also a CBD (that is not conserved with DNAJ)

and two UIMs, which can bind ubiquitylated client proteins

and target them to the proteasome for degradation [62].

There are several biallelic mutations known in DNAJB2 that

are associated with a range of neurodegenerative diseases.

Charcot Marie Tooth (CMT) disease results in progressive

degeneration of spinal cord motor neurons, leading to weak-

ness and muscle atrophy in the lower limbs [63]. Patients also

show distal sensory loss. A homozygous missense mutation

c.14A.G in DNAJB2 resulting in a substitution of tyrosine

for cysteine at residue five (Y5C) in the DNAJB2 J-domain

causes CMT type 2 [64,21]. There are also reports of splicing

mutations in DNAJB2 resulting in distal hereditary motor

neuropathies (dHMN), which are a genetically and clinically

heterogeneous group of disorders similar to CMT, but

without the sensory abnormalities [65,66]. A homozygous

splice site mutation (c.352þ1G.A) was identified in

DNAJB2 leading to either partial or total retention of intron

5, resulting in reduced DNAJB2 protein expression [22].

There have been additional reports of patients with this

mutation recently [67]. This mutation has been suggested to
be a potential founder mutation, because in another study

of CMT/dHMN the five affected individuals with this

mutation shared a common haplotype [23]. Similarly, Gess

et al. reported a dHMN patient with a homozygous

c.229þ1G.A DNAJB2 splice site mutation, leading to the

retention of intron 4 and subsequent loss of DNAJB2 protein

expression [21]. A recent study identified a large-scale del-

etion incorporating the first four exons of DNAJB2
(including the entire J-domain) as causing spinal muscular

atrophy (SMA) and atypical juvenile parkinsonism (AJP)

[24]. A recent exome analysis of peripheral neuropathy

patients identified two new mutations in DNAJB2; a

frameshift truncation (F103fsX) and a splice site mutation

(c.619-1G.A; [25]).
(b) DNAJB5 (HSC40)
DNAJB5 was originally identified as being similar to

DNAJB1 [68] and has since been shown to interact with

HSP70 [69]. A whole-exome sequencing analysis of CMT-

like patients identified a mutation in the J-domain of

DNAJB5 (P15S) as a novel cause of neuropathy [25].
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Morpholino-mediated knockdown of DNAJB5 in zebrafish

revealed abnormalities in peripheral nerve axon structure,

but no effect on muscle architecture [25]
(c) DNAJB6 (MRJ)
DNAJB6 is a ubiquitous protein with high expression levels

in the brain and detectable protein in muscle [70]. Alterna-

tive splicing of the DNAJB6 gene produces two isoforms: a

36 kDa nuclear isoform and a 26 kDa cell stress-responsive

cytosolic form [71]. Mutations in DNAJB6 cause limb-girdle

muscular dystrophy type 1 (LGMD1). LGMD1 is an autoso-

mal dominant disease characterized by progressive distal

and occasionally proximal muscle atrophy caused by myofi-

brillar myopathy. There is also a report of a DNAJB6 patient

with frontotemporal dementia alongside LGMD1 [72]. There

are currently twelve mutations known in DNAJB6 (table 1);

interestingly, all of the mutations are found in exon 5,

which codes for the G/F-rich region of the protein. Ruggieri

and colleagues have suggested that there might be a geno-

type–phenotype correlation between both the severity of

the disease and the location (proximal-distal) and the

mutated residue involved, with C-terminal mutations lead-

ing to a distal phenotype [73]. Patients with DNAJB6
mutations have myofibrillar aggregates containing ubiquitin,

TDP-43 and p62, suggesting defective protein clearance

[26,74], which are also observed in Dnajb6 F93L transgenic

mice [75]. Drosophila mutants recapitulating patient

mutations result in loss of DNAJB6-dependent anti-aggrega-

tion activity [76].
(d) DNAJC3 ( p58)
DNAJC3 is a 58 kDa DNAJ protein that is targeted to the cyto-

plasmic face of the ER [77,78]. DNAJC3 can also bind and

inhibit the UPR sensor PERK in the ER, suggesting a role in

regulating the UPR [79,80]. DNAJC3 can recruit cytosolic

HSP70 to the face of the ER and work with Sec61 as part of

the translocation machinery [81]. Knockdown of DNAJC3

results in accumulation of misfolded protein in the ER and

activation of the UPR [82] and Dnajc3 knockout mice have

decreased ability to cope with ER stress [81,83]. Mutations in

DNAJC3 cause multisystemic neurodegeneration, including

early-onset cerebellar ataxia and peripheral neuropathy, along-

side diabetes mellitus [36]. Interestingly, Dnajc3 knockout mice

also show a diabetic phenotype [83] and recent work has also

shown that the ubiquitin ligase CHIP is involved in the turn-

over of the insulin receptor, suggesting a link between

proteostasis network control and insulin regulation [84].

(e) DNAJC5 (CSPa)
DNAJC5 is a secretory vesicle protein found in both neuronal

and non-neuronal tissues; however, the main a-isoform is

only expressed in the brain [85]. DNAJC5 is characterized by

a cysteine-rich region and is targeted to post-Golgi membranes

via palmitoylation [86]. DNAJC5 has a role in binding and fold-

ing many proteins required at the synapse, such as SNAP-25,

syntaxins and synaptotagmins [87–89], where it acts as a co-

chaperone with the constitutive HSP70, HSC70 (HSPA8) [90].

DNAJC5, therefore, most likely plays a key role at the synapse

as a chaperone [91,92]. Mutations in DNAJC5 cause autosomal

dominant adult onset neuronal ceroid lipofusinosis (ANCL),

an accumulation of autofluorescent lysosomal waste (known

as lipofuscin) that causes a progressive neurodegenerative dis-

order characterized by ataxia, seizures and dementia [93].

ANCL is a rare disease and to date only two distinct mutations

in DNAJC5 (deletion of leucine 116 and missense change

L115R) have been identified in a handful of families

[37,38,94,95]. The location of the mutations in the cysteine-

rich region suggests a defect in the membrane trafficking of

patient DNAJC5 and subsequent protein aggregation [96,97].

DNAJC5 interacts with another ANCL disease-causing

protein, palmitoyl-protein thioesterase 1 (PPT1). PPT1 is accu-

mulated in DNAJC5 patient brains and has decreased

activity, suggesting a link between ANCL and palmitoylation

of synaptic proteins [98]. Dnajc5 KO mice have deficient

neuromuscular function and sensorimotor impairment.

Indeed, these mice have specific degeneration of the neuromus-

cular junctions, implying that KO of Dnajc5 leads to synapse

dysfunction [85]. Interestingly, DNAJC5 mutations in Caenor-
habditis elegans lead to sensory neuron dysfunction that could

be rescued by treatment with resveratrol [99].

( f ) DNAJC6 (auxilin)
Another well-characterized vesicle-associated protein is

DNAJC6, which has a role in uncoating clathrin-coated ves-

icles [100]. DNAJC6 binds clathrin via its C-terminal

clathrin binding-domain [101,102]. The clathrin-coating and

uncoating cycle is well characterized; clathrin triskelions

form coated pits at the pre-synaptic membrane around the

intended cargo. Before fusing with the endosome, the vesicles

need to be uncoated by HSC70, following recruitment and

activation by DNAJC6 [103,104]. In neurons, this process is
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vital for synaptic vesicle recycling. Mutations in DNAJC6
were first associated with autosomal recessive juvenile par-

kinsonism (ARJP) [39,40]. Symptoms of ARJP include

typical PD features, but also include mental retardation and

seizures. ARJP typically manifests in the first decade and

rapidly leaves patients wheelchair-bound. There is also a

report of a 80 kb large-scale deletion including DNAJC6
that results in ARJP [41]. A recent study also identified var-

iants in DNAJC6 that are associated with early-onset PD,

which has a later onset than ARJP [42]. The authors suggest

that this may be due to residual DNAJC6 activity compared

to the ARJP mutations, which likely cause complete loss of

function, and therefore represents a genotype–phenotype

correlation of DNAJC6 mutations. Interestingly, a mutation

in a highly conserved residue (R927G) in the J-domain was

found that potentially disrupts the HSC70 interaction.

(g) DNAJC11
DNAJC11 was originally described as a 63 kDa protein con-

taining an N-terminal J-domain that is often deleted in

neuroblastoma [105,106]. DNAJC11 was later identified as a

mitochondrial protein [107], specifically as a member of the

mitochondrial complex I, involved in the electron transport

chain, although siRNA-mediated knockdown had no effect

on the assembly of the complex [108]. Using random

N-ethyl-N-nitrosurea (ENU) mutagenesis, Ioakeimidis et al.
created a spastic mouse model with a deep intronic mutation

in Dnajc11, resulting in the addition of a 109 bp cryptic exon

and a frameshift truncation and reduction of Dnajc11 protein

[44]. These mice had abnormal locomotion and progressive

muscle wasting and spasticity resulting in death at five

weeks of age. They also had highly vacuolated motor neur-

ons in the lumbar spinal cord, generated from either

abnormal mitochondrial cristae or ER, as mitochondria in

these motor neurons were severely disrupted [44].

(h) DNAJC13 (RME-8)
DNAJC13 is an endocytic protein that has been shown to

localize to early and recycling endosomes [109]. The

J-domain of DNAJC13 is located in the middle of the protein,

with a membrane-binding region at the N-terminus and four

potential clathrin-binding motifs [109]. DNAJC13 interacts

with the retromer complex [110] and thus may have a role

in recruiting HSC70 to vesicle formation sites. An inherited

variant (N855S) in DNAJC13 was originally thought to

cause autosomal-dominant PD [46]; however, two affected

family members did not have this variant and subsequent

whole-exome sequencing identified two causative changes

in another endosomal/synaptic protein TMEM230, question-

ing the importance of this variant for PD [111]. However,

sequence analysis of exon 24 of DNAJC13 in a Caucasian

population study has suggested that N855S could be a rare

variant associated with PD [112]. Further analysis revealed

that other DNAJC13 variants (E1740Q, R1615H, L2120W)

might be associated with increased risk of PD [113,114].

(i) DNAJC19 (TIM14)
DNAJC19 is one of several mitochondrial DNAJ proteins,

found at the inner mitochondrial membrane. It recruits and

activates mitochondrial HSP70 (HSPA9) to function as part

of the mitochondrial import machinery [115]. Mutations in
DNAJC19 cause autosomal recessive dilated cardiomyopathy

and cerebellar ataxia (DMCA). A splice site change that leads

to the loss of exon 4 and subsequent truncation of the protein

was the first mutation identified [48]. Recently, single nucleo-

tide deletions and splice deletions have also been identified

with associated disease features [49,50,51].

( j) DNAJC29 (sacsin)
The largest known DNAJ protein is DNAJC29 (520 kDa),

which contains a C-terminal J-domain, an N-terminal ubiqui-

tin-like (UbL) domain, three sacsin repeat regions (SRRs),

which show homology to the ATP-binding domain of

HSP90, and a C-terminal higher eukaryote and prokaryote

(HEPN) domain [116,117]. DNAJC29 is a neuronal protein

that is localized to the cytoplasmic face of the mitochondria;

knockdown of DNAC29 results in disruption of the mito-

chondrial network [118]. Mutations in DNAJC29 cause

autosomal recessive spastic ataxia of Charlevoix-Saguenay

(ARSACS), an early-onset disorder characterized by cerebel-

lar ataxia and peripheral neuropathy, with prominent

Purinkje cell death in the cerebellum [119]. There is a large

founder effect in the patient population; the vast majority

of patients are from the Quebec region in Canada and have

the R2502X mutation [54], although more than 150 other

patient mutations are now known worldwide, including

large-scale deletions [120,121]. Mutations in DNAJC29 are

the second most common cause of autosomal recessive

ataxia after mutations in frataxin, which causes Freidrich’s

ataxia. The J-domain of DNAJC29 has been shown to func-

tional via a bacterial complementation assay in an E. coli
DnaJ and CbpA temperature-sensitive mutant, and interest-

ingly there are two patient missense mutations located in

the J-domain (R4331Q and E4343K) [55,56]. Dnajc29 knock-

out mice have ataxic symptoms with peripheral neuropathy

and progressive Purkinje cell loss, recapitulating the human

disorder [122]. Furthermore, Dnajc29 null mice motor neur-

ons have elongated mitochondria and accumulations of

neurofilaments [122]. DNAJC29 interacts with the mitochon-

drial fission protein DRP1 [118] and recent work using

patient fibroblasts has shown that there is a reduction of

DRP1 foci at the mitochondria and mitochondrial health

and function in ARSACS are decreased, suggesting impair-

ment in the ability of the mitochondrial network in affected

neurons [123].
4. Manipulation of DNAJ proteins in models of
neurodegeneration

The late onset of many neurodegenerative diseases has

been suggested to correlate with a reduced efficiency of the

protein quality control machinery as a result of ageing. Cor-

respondingly, the manipulation of molecular chaperones is

a promising therapeutic approach for many neurodegenera-

tive diseases [12]. Recently, several studies have focused on

increasing the expression of chaperones in different neurode-

generation models and the data support the potential of

chaperone manipulation, and in particular DNAJ proteins,

in the battle against neurodegenerative diseases. In this sec-

tion, the focus will be on targeting different disease-related

proteins in neurodegeneration with members of the DNAJ

chaperone family.
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(a) Polyglutamine ( polyQ) expansion disorders
The polyglutamine (polyQ) disorders are a group of neurode-

generative diseases caused by a trinucleotide CAG repeat

expansion that confers a toxic gain-of-function, with a direct

relationship between the length of the polyQ expansion and

the propensity to aggregate. PolyQ expansions have been

identified in Huntington’s disease (HD; huntingtin, htt),

spinal and bulbar muscular dystrophy (SMBA; androgen

receptor, AR) and spinocerebellar ataxias (SCA1, SCA2,

SCA3, SCA7, ataxin; SCA6, CACNA1A; SCA17, TATA box-

binding protein (TBP)) (figure 3). Ubiquitylated inclusions of

aggregated protein are characteristic of these diseases [124].

Manipulation of polyQ protein aggregates by molecular

chaperones was first reported by Cummings et al. in 1998:

overexpression of DNAJA1 in cells reduced aggregation of

polyQ-expanded ataxin-1 (SCA1) [125]. In cells overexpres-

sing polyQ-expanded ataxin-1, knockdown of DNAJC29

has been shown to enhance ataxin-1-mediated toxicity, indi-

cating a protective role against polyQ-expanded ataxin-1

toxicity [116]. DNAJB2a has been shown to have a dual

role on ataxin-3 (Atx3; SCA3) depending on the chaperone’s

domains. In cells, DNAJB2a can either reduce the protein

levels of Atx3 by promoting proteosomal degradation

through J-domain, or diminish this process by preserving

ubiquitylated Atx3 via the UIM domain [126]. Interestingly,

DNAJA1 has also been reported to increase polyQ aggrega-

tion depending on the cell line used, an effect attributed to

the J-domain that is responsible for the recruitment of

endogenous HSP70 [127]. Since DNAJ chaperones are co-cha-

perones of HSP70, differences in levels of endogenous

expression of HSP70 and DNAJ proteins between cell lines

could explain this effect, as it could depend on the cellular

chaperone balance. Similarly, overexpression of DNAJB1 in

Neuro2a cells suppressed htt inclusion formation, while sim-

ultaneous overexpression of HSP70 improved folding

efficiency and cellular proliferation and reduced cytotoxicity

[128,129]. DNAJB1 has been also shown to increase solubility

of polyQ-expanded AR and also enhance proteasome-

mediated degradation in cells, an effect again amplified in

the presence of HSP70 [130,131].

A screen of several different DNAJA and DNAJB proteins

revealed that a subfamily of DNAJB proteins were the most

efficient at reducing polyQ aggregation [69,132]. This sub-

family includes DNAJB2a, DNAJB6b and DNAJB8, which

are closely related (figure 1c), but the effect is also dependent

on their sub-cellular localization. In vitro studies with purified

proteins have shown that DNAJB6b can supress the for-

mation of amyloid-like fibrils of polyQ peptides [133].

Moreover, DNAJB6b and DNAJB8 were shown to suppress

polyQ aggregation and related toxicity in cells and transgenic

Xenopus laevis models [132]. Genome-wide RNA interference

screen on transgenic C. elegans expressing polyQ proteins

identified DNAJ as a suppressor of polyQ aggregation

[134]. Interestingly, DNAJB6b and DNAJB8 are effective in

suppressing the aggregation not only of polyQ-expanded

htt, but also of other disease-related polyQ-expanded pro-

teins, such as Atx3 and the androgen receptor (SBMA)

[132]. DNAJB6 and DNAJB8 were suggested to act on earlier

stages of aggregation in cells despite their irreversible recruit-

ment on larger aggregates in an unsuccessful attempt to

prevent aggregation [135]. Furthermore, the cytoplasmic/

nuclear DNAJB2 isoform, DNAJB2a, is recruited to polyQ
inclusions and can reduce the polyQ aggregation and

inclusion incidence in a cellular overexpression model in a

J-domain and UIM independent manner by promoting

degradation via the proteasome [62,136]. DNAJB2b has

been also shown to inhibit neuronal death caused from

mutant htt in vitro and also improve neuronal dysfunction

in a C. elegans model of HD independent of any effect on

polyQ aggregation [136]. In vitro studies have suggested

that HSP70 and DNAJB1 can act on early stages of polyQ

aggregation by halting or suppressing the formation of

detergent-insoluble amyloid-like fibrils of polyQ [137].

In vivo investigation in Drosophila models for HD identified

dHDJ1, the homologue of DNAJB1, as a suppressor of polyQ-

driven toxicity [138]. A separate study showed that the

DNAJB1-induced reduction of eye degeneration in transgenic

polyQ Drosophila was enhanced by Drosophila HSC70cb and its

human homologue APG-1, while DNAJB1 also had an effect

in the absence of HSP70 [139]. Moreover, dMRJ, the Drosophila
orthologue of the human DNAJB6, was recruited in the polyQ

inclusions and was shown to suppress polyQ-mediated tox-

icity in flies [140]. In the same model, early expression

of dHDJ1 dramatically promoted cytoplasmic aggregation of

polyQ, while both DNAJ chaperones increased the level of

detergent-soluble polyQ, illustrating the similarities and diver-

sity of DNAJ chaperones [140]. Expression of dHDJ1 on

mutant Atx3-expressing flies restored eye structure, an effect

attributed to both J- and C-terminal domains. Interestingly,

the effect of dHDJ1 on toxicity is enhanced in the presence

of HSP70 and abolished in the presence of mutant HSP70.

Both dHDJ1 and HSP70 overexpression altered the solubility

of polyQ; however, expression of dHDJ2, which has the

same J-domain but different C-terminal domains, resulted in

weak suppression of eye degeneration in the flies, suggesting

a role of the C-terminal domain [141]. In Drosophila models

of SCA6 that express a CAG expansion in exon 47 of

CACNA1A (a1ACT), DNAJ-1 was shown to suppress

a1ACT-induced toxicity in the eye, while DNAJ-1 knockdown

dramatically accelerated eye degeneration [142]. Interestingly,

normal Atx3 has been shown to alleviate toxicity of several

polyQ-expanded disease proteins including itself and mutated

htt. Atx3 interacts with Rab23, which leads to increased

DNAJ levels, which in turn leads to reduced eye degeneration

in flies [143].

Despite these promising effects in other models, few

direct chaperone overexpression experiments have success-

fully translated to the mammalian nervous system.

DNAJB2a was effective in reducing polyQ inclusion for-

mation in a rat brain model of SBMA using viral delivery,

by increasing ubiquitylation and targeting to the UPS [144].

Moreover, two members of the DNAJ family have been

shown to be effective on polyQ aggregation in the R6/2

transgenic mouse model of HD [145,146]. Transgenic overex-

pression of human DNAJB2a led to a reduction in polyQ

aggregation and inclusion size in the cortex and striatum of

R6/2 mice at 15 weeks of age and led an increase in htt solu-

bility; however, the improvement in the neurological

performance was relatively modest and there was no increase

in lifespan [145]. Immunopurification of htt from mouse

brain and combinations of purified polyQ protein with cell

or mouse brain extracts suggested that the maximal

DNAJB2 effect required functional J and UIM domains, and

that the effect was mainly being mediated on preformed

aggregates, preventing further seeding of aggregation [145].
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A recent study on transgenic R6/2 mice overexpressing

human DNAJB6 also showed a reduction in inclusion for-

mation in the brain accompanied by improved neurological

performance and increased lifespan [146]. In vitro studies

suggest this was through an effect on primary nucleation of

polyQ aggregation [146]. The differences in the magnitude of

the neurological effect between the DNAJB2a and DNAJB6

R6/2 mice could be attributed either to differences in the

mechanism of action of the two chaperones, differences in

the level of the transgene expression (as different promoters

were used), or differences in chaperone regulation. For

example, recently DNAJB2a has been shown to be a target

of the ubiquitously expressed kinase CK2. CK2 phosphory-

lated DNAJB2 in the second UIM and reduced its ability to

bind ubiquitylated clients [147]. Therefore, it is possible that

the maximal activity of DNAJB2a was repressed by CK2 and

that inhibition of CK2 could amplify the effect of DNAJB2.
(b) a-synuclein and Parkin in Parkinson’s disease
Parkinson’s disease (PD) is the second most common neuro-

degenerative disorder. Although most cases of Parkinson’s

disease are sporadic, a-synuclein is the main component of

Lewy bodies, which are ubiquitin-positive cytoplasmic

inclusions formed in patients with PD, Lewy body dementia

and other disorders [148]. Furthermore, mutations in SNCA,

which encodes a-synuclein, have been associated with PD

and mutations in PARK2, which encodes Parkin, lead to the

autosomal recessive juvenile form of the disease ARJPD [149].

DNAJB1 has been shown to slow down the assembly of a-

synuclein fibrils and increase the binding of HSC70 to fibrillar

a-synuclein in vitro [150]. In addition, DNAJA1 was reported

to bind a-synuclein fibrils and increase binding of HSC70 to

preformed fibrils in vitro; however, DNAJA1 alone had no

effect on the assembly of a-synuclein fibrils [150]. Both
DNAJA1 and DNAJB1 have been shown to co-localize with

a-synuclein inclusions in cells [151]. Post-mortem PD brain

tissues showed immunoreactivity for both DNAJB1 and

DNAJB6 in Lewy bodies, while DNAJB1 was also present in

Lewy neurites and DNAJB6 was upregulated in astrocytes,

indicating a potential role in the disease [152,153]. Moreover,

co-expression of a-synuclein and either DNAJA1 or DNAJB1

dramatically decreased a-synuclein aggregates in cells [151].

Finally, DNAJB1 combined with HSP70 and HSP110 can

recover amorphous a-synuclein aggregates, while they also

enhance the effect of non-mammalian Hsp104 to remodel

a-synuclein amyloids in vitro [154]. In vivo overexpression of

the human homologue DNAJC10 in C. elegans decreased

a-synuclein aggregates and toxicity [155].

Mutations in PARK2 cause ARJPD. PARK2 encodes Parkin,

a ubiquitin E3 protein ligase containing a N-terminal ubiqui-

tin-like domain and two C-terminal RING finger domains

that play an important role in mitochondria dynamics and

function [156]. DNAJB2a expression was effective in reducing

misfolding and aggregation of RING1 domain mutant Parkin

in cells. Furthermore, in the presence of DNAJB2a, mutant

Parkin was relocalised to mitochondria and its ability to pro-

mote mitophagy of damaged mitochondria was significantly

restored [157]. In contrast to polyQ, most cytosolic DNAJ pro-

teins tested could reduce Parkin RING1 domain mutant

(C289G) aggregation, and for DNAJB6 and DNAJB8 this was

less reliant on their S/T region and more dependent on

HSP70 [158]. This illustrates that chaperone manipulation

can be versatile and unique to individual protein clients.
(c) Tau and amyloid-b
Extracellular amyloid plaques composed of amyloid-b (Ab)

peptides and intraneuronal tau neurofibrillary tangles form

the characteristic pathophysiological profile of Alzheimer’s
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disease (AD) [159]. Although accumulation of Ab fibrils occurs

extracellularly on senile plaques, intraneuronal generation of

Ab has been correlated to synapse damage and enhanced

intracellular accumulation in AD-transgenic mice [160].

Interestingly, DNAJB1 has been shown to enhance the

effect of HSP70 in vitro in reducing Ab aggregation through

targeting smaller species such as oligomers [161]. Moreover,

DNAJB6, and specifically the DNAJB6b isoform, which is

localized in both the nucleus and the cytosol, has been

shown to be a potent suppressor of Ab42 aggregation

in vitro preventing the formation of amyloid fibrils by interact-

ing with the early formed aggregates during nucleation [162].

In a cellular model of AD overexpressing GFP-tagged Ab42,

DNAJB6 was shown to reduce intracellular Ab aggregation

and required interaction with HSP70. In C. elegans models of

Ab, overexpression of DNAJ27 (orthologue of mammalian

DNAJC10) had a protective role against Ab-induced toxicity;

however, overexpression of human DNAJC10 in Ab worms

had no effect [155].

DNAJA1 has been shown to act as a regulator of tau fate

depending on HSP70 levels. More specifically, in the absence

of HSP70, DNAJA1 enhanced ubiquitin-mediated proteolysis

of mutant tau, while in the presence of HSP70, DNAJA1

stabilized tau and halted degradation [163]. Considering

that it is still not clear whether aggregation of misfolded pro-

teins is a protective or pathogenic mechanism for neurons,

this dual potential of DNAJA1 could be of value in targeting

AD pathogenesis. DNAJB1 had a dose-dependent effect on

tau aggregation in vitro [164]. Finally, Brehme et al. have

shown that knockdown of DNAJA1 and DNAJA4 or the

C. elegans homologues can increase the aggregation and

toxicity of Ab42 [165].

(d) SOD1 and TDP-43
The misfolding and aggregation of TAR DNA-binding

protein-43 kDa (TDP-43) and superoxide dismutase 1

(SOD1) are associated with amyotrophic lateral sclerosis

(ALS), which presents with degeneration of the upper and

lower motor neurons. In healthy individuals, TDP-43 appears

predominantly in the nucleus, while in disease TDP-43 forms

ubiquitin-positive nuclear and cytoplasmic inclusions with

abnormal phosphorylation. In familial ALS, SOD1 mutations

lead to the formation of ubiquitin-positive SOD1 inclusions in

ALS patient spinal cord and in mouse models [166].
Both DNAJB2 isoforms have been shown to significantly

reduce mutant SOD aggregation in an overexpression cell

model [22,167]. In vivo investigation of DNAJB2a overexpres-

sion in double transgenic SOD1G93A mice has shown that

DNAJB2a can improve muscle function in late stages of the

disease by improving the survival of motor neurons and

muscle weight [167].

DNAJB1 co-immunopurified with mutant SOD1, but not

with wild type or endogenous SOD1 from cell extracts [168].

In the presence of Hsp70, DNAJB1 can reduce the formation

of cytoplasmic aggregates of SOD1 and improve neurite

outgrowth in a neuronal cell model (Neuro2a) [169].

Finally, Chen et al. [170] showed that HSF-1 overexpression

could reduce TDP-43 aggregation in HEK293 cells. A screen

of several DNAJ chaperones revealed that overexpression of

DNAJB2a was the most efficient at suppressing TDP-43

aggregation at similar levels to HSF-1 activation. It was

suggested that DNAJB2a binds TDP-43 aggregates and delivers

them to HSP70 for refolding via its J-domain and not for

degradation [170].
5. Conclusion
The essential role of molecular chaperones in maintaining

neuronal proteostasis is highlighted by the disease-causing

mutations in members of the DNAJ family. Moreover, several

DNAJ proteins have been shown to be beneficial for restoring

neuronal proteostasis and reducing neurotoxicity associated

with a wide range of neurodegeneration proteins both in
vitro and in vivo. The great diversity among DNAJ proteins

might enable individual DNAJ proteins to be tailored to dis-

tinct aggregation-prone proteins. Conversely, some members

of the DNAJ family, such as DNAJB2 and DNAJB6, appear to

have the ability to affect a wide range of neurodegeneration-

related protein clients for potential therapeutic benefit.

Enhanced understanding of the DNAJ family function and

regulation in neurons is likely to lead to better application

of these potentially critical architects of neuronal proteostasis.
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