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Abstract

Background: Renal cancers account for more than 3% of all adult malignancies and cause more than 23,400
deaths per year in China alone. The four most common types of kidney tumours include clear cell, papillary,
chromophobe and benign oncocytoma. These histological subtypes vary in their clinical course and prognosis, and
different clinical strategies have been developed for their management. Some kidney tumours can be very difficult
to distinguish based on the pathological assessment of morphology and immunohistochemistry.

Methods: Six renal cell carcinoma microarray data sets, including 106 clear cell, 66 papillary, 42 chromophobe, 46
oncocytoma and 35 adjacent normal tissue samples, were subjected to integrative analysis. These data were combined
and used as a training set for candidate gene expression signature identification. In addition, two independent cohorts
of 1020 RNA-Seq samples from The Cancer Genome Atlas database and 129 qRT-PCR samples from Fudan University
Shanghai Cancer Center (FUSCC) were analysed to validate the selected gene expression signature.

Results: A 44-gene expression signature derived from microarray analysis was strongly associated with the histological
differentiation of renal tumours and could be used for tumour subtype classification. The signature performance was
further validated in 1020 RNA-Seq samples and 129 qRT-PCR samples with overall accuracies of 93.4 and 93.0%,
respectively.

Conclusions: A 44-gene expression signature that could accurately discriminate renal tumour subtypes was identified
in this study. Our results may prompt further development of this gene expression signature into a molecular assay
amenable to routine clinical practice.

Keywords: Renal cell carcinomas, Gene expression profiling, Microarray, Next-generation sequencing,
Quantitative real-time PCR

Background
According to the newest Globocan 2012, renal cancers are
the 17th most common malignancy, accounting for more
than 3% of adult malignancies and causing approximately
23,400 deaths per year in China alone [1, 2]. In 2011, the
overall incidence of renal cancers in China rose to 3.35
cases per 105 people, and the estimated mortality rate was
1.12 deaths per 105 people [3]. According to the 2016

World Health Organization (WHO) classification, there are
16 subtypes of renal cell carcinoma (RCC), a family of car-
cinomas that arise from renal tubule epithelia [4]. Cur-
rently, the four most common types of kidney tumours
include clear cell RCC (ccRCC), papillary RCC (pRCC),
chromophobe RCC (chRCC) and benign oncocytoma [4].
These histological subtypes vary in their clinical course and
outcomes, and different clinical management strategies
have been developed for their treatment. Among patients
with the four most common types, patients with ccRCC
have the worst prognosis, and there are differences between
the prognosis of patients with pRCC and chRCC [5]. Differ-
ent genetic alterations induce the development of renal
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tubules into RCCs of varying histological subtypes that ex-
hibit different gene expression patterns or mutations, thus
providing specific molecular candidates for targeted therapy
(e.g., mTOR, VEGF, KIT, and checkpoint inhibitors) [6].
Improving the molecular understanding of the mechanisms
underlying RCC subtypes has facilitated the development
of targeted therapies and biomarkers in response to treat-
ment [6]. Distinguishing between some types of kidney tu-
mours based on morphology and immunohistochemistry
can be very difficult for pathologists, while the correct iden-
tification of these subtypes is important for making precise
decisions regarding therapeutic regimens.
Recent studies focused on microarray profiling of differ-

ent RCC subtypes to develop accurate diagnostic RCC bio-
markers. Using microarray analysis of renal tumours,
claudin-7 mRNA, a distal nephron marker, was overex-
pressed in chRCC compared with that in oncocytoma,
ccRCC, and pRCC [7]. Further immunohistochemical ana-
lysis of two independent cohorts showed that claudin-7 ex-
pression was detected in 67 and 100% of chRCCs, 0 and 7%
of ccRCCs, 28 and 90% of pRCCs, and 26 and 45% of onco-
cytomas [8, 9]. These studies revealed the potential of
claudin-7 as a biomarker for distinguishing chRCC from
the remaining three RCC subtypes and indicated the accur-
acy of microarray technology for detecting diagnostic bio-
markers. Compared with classifying diseases using a single
gene marker, simultaneously quantifying the expression of
numerous genes may potentially capture the complex phys-
iopathology underlying tumourigenesis and the develop-
ment of specific RCC subtypes. Several studies have used
microarray technology to identify gene expression signa-
tures for the classification of RCCs. Chen and coworkers
published a four-gene panel that could classify RCC sub-
types with an estimated prediction accuracy of 96% [10].
Youssef and colleagues also reported a classification system
using miRNA signatures with a maximum of four steps that
had sensitivities of 97% for distinguishing normal cells from
RCC, 100% for the ccRCC subtype, 97% for the pRCC sub-
type, and 100% accuracy in distinguishing the oncocytoma
subtype from the chRCC subtype [11].
In this study, to identify novel gene biomarkers for the

classification of RCC subtypes, we performed an integra-
tive analysis of six microarray data sets (n = 295). The
selected genes in the training set were validated in 1020
RNA-sequencing samples from The Cancer Genome
Atlas (TCGA) database and then tested in 129 independ-
ent specimens by qRT-PCR. A 44-gene signature was
identified and validated as being highly sensitive and
specific for the classification of RCCs.

Methods
Gene expression database curation
Gene expression data sets of 1315 renal tumours with his-
tologically confirmed subtypes and adjacent normal

tissues were collected from public data repositories (e.g.,
ArrayExpress, Gene Expression Omnibus (GEO), and
TCGA data portal) and curated to form a comprehensive
RCC transcriptome database. Array-based gene expression
profiling of 295 tissue samples obtained from six GEO
data sets (GSE12090, GSE15641, GSE19949, GSE8271,
GSE7023 and GSE19982) was mainly conducted on two
different Affymetrix oligonucleotide microarray platforms,
GeneChip Human Genome U133A Array and U133Plus
2.0 Array. Detailed descriptions of the specimen charac-
teristics and clinical features are provided in the original
studies [12–15]. The sequence-based gene expression pro-
files of 1020 tissue samples (including 534 ccRCC, 291
pRCC, 66 chRCC and 129 normal kidney samples) were
generated on an Illumina HiSeq 2000 RNA sequencing
platform and retrieved from the cBioPortal for Cancer
Genomics [16]. The gene expression profiles consisted of
transcriptomic data for 20,500 unique genes, and clinical
information for the selected samples was retrieved from
the “Clinical Biotab” section of the data matrix based on
the Biospecimen Core Resource IDs of the patients.

Microarray data processing and normalization
Gene expression data analysis was performed using R soft-
ware and packages from the Bioconductor project [17–19].
We used the Single Channel Array Normalization (SCAN)
approach from the SCAN-UPC package to process Affyme-
trix microarray data [20, 21]. Upon normalising each raw
CEL file, SCAN outputs probe-level expression values. We
further used the custom mapping files from the BrainArray
resource to summarise probe-level intensities directly to
gene-level expression values [22]. Thus, probes mapping to
multiple genes and other problems associated with older
generations of Affymetrix probe designs were avoided.
After normalization, we applied the ComBat approach to
adjust for batch effects [23].

Gene signature identification and performance
assessment
To identify a gene expression signature, we used the sup-
port vector machine-recursive feature elimination (SVM-
RFE) algorithm for feature selection and classification
modelling [24]. For multi-class classification, a one-versus-
all approach was used by which multiple binary classifiers
were first derived for each subtype. The results are reported
as the subtype classifying the test sample with the highest
confidence. For each specimen, the predicted subtype was
compared with the reference diagnosis, and a true positive
result was indicated when the predicted subtype matched
the reference diagnosis. When the predicted subtype and
reference diagnosis did not match, the specimen was con-
sidered a false positive. For each subtype on the panel, sensi-
tivity was defined as the ratio of true positive results to the
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total positive samples analysed, while specificity was defined
as the ratio (1 - false positive)/(total tested - total positive).

Biological network and functional enrichment analysis
Enrichment analysis of Gene Ontology and molecular
pathways was performed using the Lynx Systems Biology
Tool [25]. All significance tests were two-sided, and a false
discovery rate less than 0.05 was considered significant.
Biological network analysis was performed with Networ-
kAnalyst software [26, 27]. Protein-protein interaction in-
formation was retrieved from the IMEx Interactome
Database [28]. A dense network was connected by retain-
ing only the seed proteins as well as minimum essential
non-seed proteins to study the key interactions.

qRT-PCR analysis
We included 121 renal tumour samples and 8 non-
tumour kidney tissues for qRT-PCR analyses. Written in-
formed consent was obtained from all participants. The
study was approved by the Ethics Committee of Fudan
University Shanghai Cancer Center (FUSCC), China. Of
the 121 tumours, 26 were ccRCC, 40 were chRCC, 28
were pRCC, and 27 were oncocytoma. Total RNA was iso-
lated from formalin-fixed paraffin-embedded (FFPE) tissue
sections using a FFPE Total RNA Isolation Kit (Canhelp
Genomics, Hangzhou, China). Briefly, the paraffin sections
were placed in sterile 1.5-ml microcentrifuge tubes, depar-
affinized with 100% xylene, and washed twice with 100%
ethanol. The deparaffinized tissue was digested with pro-
teinase K at 56 °C for 15 min and then incubated at 80 °C
for another 15 min to partially reverse nucleic acid cross-
linking. The samples were treated with DNase and eluted
in 40 μl RNase-free water. The concentration of total
RNA was spectrophotometrically determined using total
absorbance at 260 nm, and the purity was quantified using
the A260/A280 ratio. RNA samples with A260/A280 ra-
tios of 1.9 ± 0.2 were included in this study.
For each sample, cDNA was generated from isolated

total RNA using a High-Capacity cDNA Reverse Tran-
scription Kit with RNase Inhibitor (Applied Biosystems,
Foster City, CA, Unites States). Primers and MGB
probes for the tested gene candidates and control gene
were designed using Primer Express software (Applied
Biosystems). Subsequently, the expression level of gene
candidates was analysed on an Applied Biosystems 7500
Real-Time PCR system using TaqMan Gene Expression
Assays (Applied Biosystems). The PCR program was ini-
tiated at 95 °C for 10 min, followed by 40 thermal cycles,
each at 95 °C for 15 s and at 60 °C for 1 min.

Results
Establishment of the RCC Transcriptome database
To create a RCC transcriptome database for subtype classi-
fication, we performed a systematic search of major

biological data repositories (e.g., ArrayExpress, GEO, and
TCGA) to collect gene expression data sets from ccRCC,
pRCC, chRCC, oncocytoma and adjacent normal tissue
samples. Overall, we accumulated the gene expression pro-
files of 1315 tissue samples to form a comprehensive RCC
transcriptome database. To identify a reliable gene expres-
sion signature, we adopted a training-testing-validation ap-
proach in this study. First, the microarray-based gene
expression profiles of 295 specimens were retrieved from
the database and curated to form a training set. Second,
two independent sets were used to test and validate the
classification performance of the gene expression-based sig-
nature; one was composed of the sequence-based gene ex-
pression profiles of 1020 specimens (Test Set 1), and the
other was composed of the gene expression profiles of 129
specimens that were analysed with qRT-PCR (Test Set 2).
Figure 1 depicts the three distinct phases of our study de-
sign, and Table 1 summarises the clinical characteristics of
the samples in the study.

Identification of a 44-gene signature in the training set
The training set consisted of 106 ccRCC, 66 pRCC, 42
chRCC, 46 oncocytoma and 35 adjacent normal tissue
samples. After the data normalization and annotation
steps, a matrix of 12,263 unique genes in 295 samples (≈
3.5 million data points) was prepared for downstream bio-
informatics analyses. Extracting a subset of informative
genes from high-dimension genomic data is a critical step
for gene expression signature identification. Although
many algorithms have been developed, the SVM-RFE ap-
proach is considered one of the best gene selection algo-
rithms. For each subtype, we used the SVM-RFE approach
to (1) evaluate and rank the contributions of each gene to
the optimal separation of a specific subtype from other
subtypes; (2) select the top 10 ranked genes as the most
differentially expressed for that subtype; (3) repeat the
process for each subtype, and obtain 5 lists of the top 10
gene set. After removing redundant features, 44 unique
genes (listed in Table 2) were obtained and used to cluster
the 295 training set samples. The average linkage hier-
archical clustering method was performed where the
metric of similarity was Pearson’s correlation between the
44-gene expression profiles of the samples. As shown in
Fig. 2a, the samples were clustered into five groups that
closely followed the histological subtypes. Among the four
tumour subtypes, the oncocytoma and chRCC samples
clustered together, whereas the ccRCC samples were more
similar to pRCC samples.

Functional enrichment and biological network analysis
We further investigated whether the 44 candidate genes
exhibited biological features relevant to renal carcino-
genesis. As shown in Table 3, the most significantly
enriched gene categories are involved in insulin-like
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growth factor binding, transmembrane transport of
small molecules, cocaine, amphetamine addiction, etc.
Interestingly, seven of the 44 candidate genes (ASS1,
DEFB1, IGFBP6, LCN2, SERPINA5, UMOD and VCAN)
were indeed overrepresented in the “Renal-cell cancer”
gene set (p < 1.4 E-5). More specifically, AQP6, CLDN8
and KRT7 were overrepresented in the “Renal oncocy-
toma” gene set (p < 6.1 E-6). We also explored the
underlying biological networks of these 44 candidate
genes. We used the 44 genes as seeds to generate a
minimum protein-protein interaction network. As
shown in Fig. 3, the network includes 33 genes of the
44-gene set and is centred on essential nodes such as
APP, ASS1, ATF2, CRYAB, HNF1A, S100A2 and UBC.
Enrichment analysis revealed that the most significant
molecular networks were the TGF beta signalling path-
way, Androgen receptor signalling pathway, Transcrip-
tional misregulation in cancer, etc. (Table 4).

Performance assessment with 5-fold cross-validation
As an initial step, we assessed the performance of the
classifier using 5-fold cross-validation within the training
set. In 5-fold cross-validation, we created the training
and testing sets by splitting the data into five equally
sized subsets. We treated a single subsample as the test-
ing set and the remaining data as the training set. We
then ran and tested models on all five datasets and aver-
aged the estimates. Given the limited sample size of the
training set, we repeated the 5-fold cross-validation
process 1000 times and estimated the average classifica-
tion accuracy and corresponding 95% confidence inter-
val (95% CI). The 44-gene expression signature showed
an overall accuracy of 95.7% (95% CI: 0.912 to 1.00) with
notable variation between different subtypes. Sensitiv-
ities ranged from 88.0% (chRCC) to 98.1% (ccRCC).
Using this internal validation of the training set, these
data provided a preliminary estimate of classification
performance.

Independent validation in renal Tumours profiled with
next-generation sequencing
The final classification model of the 44-gene expression
signature was established using the entire training set
and then applied to an independent validation set com-
prising 534 ccRCC, 291 pRCC, 66 chRCC and 129 adja-
cent normal tissue specimens profiled with next-
generation sequencing (Test Set 1). The hierarchical
clustering of 44 genes and 1020 samples revealed dis-
tinct patterns between ccRCC, pRCC, chRCC and adja-
cent normal samples (Fig. 2b). With the 44-gene

Fig. 1 Flow diagram of gene expression signature identification and performance assessment. Gene expression profiles were retrieved from the
U133A/ U133APlus2 microarray through a bioinformatics approach. Gene expression analyses were performed in the training set (six GEO
microarray datasets) first and then validated in TCGA cohort two validation sets (and the FUSCC cohort)

Table 1 Summary of sample information

Samples Training set Test Set 1 Test Set 2

n % n % n %

Normal tissue 35 11.9 129 12.6 8 6.2

RCC subtypes

ccRCC 106 35.9 534 52.4 26 20.2

chRCC 42 14.2 66 6.5 40 31

pRCC 66 22.4 291 28.5 28 21.7

Oncocytoma 46 15.6 0 0 27 20.9

Total 295 100 1020 100 129 100
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expression signature, 524 samples were classified as
ccRCC, 284 as pRCC, 81 as chRCC, 9 as oncocytoma
and 122 as normal kidney tissues. Overall, the gene
expression-based assignments reached a 93.4% overall
agreement with the reference diagnoses (953 of 1020;
95% CI: 0.917 to 0.948). Sensitivities ranged from 90.9%
(chRCC) to 94.6% (normal tissue), while specificities
ranged from 95.7% (chRCC) to 100% (normal tissue).
The detailed sensitivities and specificities are listed in
Table 5.

Clinical validation of the 44-gene signature by qRT-PCR
analysis
Microarray and RNA-sequencing data provide a global
assessment of transcriptomic variations, but their
resolution and accuracy are limited in individual gene
analyses, and they remain difficult to use in clinical
practice. qRT-PCR is generally considered the “stand-
ard procedure” assay for measuring individual gene
expression and often used to confirm the findings of
microarray and RNA-sequencing analyses. Hence, we
further evaluated the expression levels of 44 genes by
qRT-PCR in an independent cohort of 121 RCC tu-
mours (comprising 26 ccRCC, 28 pRCC, 40 chRCC,
and 27 oncocytoma) and 8 normal kidney tissues
(Test Set 2). Figure 2c shows the hierarchical cluster-
ing of the 44 genes and 129 samples based on the
qRT-PCR data. As seen in the figure, distinct patterns
were observed between four tumour subtypes and ad-
jacent normal samples. With the 44-gene expression
signature, 29 samples were classified as ccRCC, 25 as
pRCC, 39 as chRCC, 26 as oncocytoma and 10 as
normal kidney tissues. Overall, the gene expression-
based assignments reached 93.0% overall agreement
with the reference diagnoses (120 of 129; 95% CI:
0.868 to 0.966). Sensitivities ranged from 89.3%
(pRCC) to 100% (normal tissue), while specificities
ranged from 96.1% (ccRCC) to 100% (chRCC and
pRCC). The detailed sensitivities and specificities are
listed in Table 5.

Table 2 Descripotion of 44 genes annotation

Gene Symbol Gene description Cytoband

ABCA8 ATP-binding cassette, sub-family A
(ABC1), member 8

17q24

AKR1C2 aldo-keto reductase family 1, member C2 10p15-p14

ALDOB aldolase B, fructose-bisphosphate 9q21.3-q22.2

ANGPTL4 angiopoietin-like 4 19p13.3

AQP6 aquaporin 6, kidney specific 12q13

ASS1 argininosuccinate synthase 1 9q34.1

ATP6V0A4 ATPase, H+ transporting, lysosomal V0
subunit a4

7q34

C7 complement component 7 5p13

CALB1 calbindin 1, 28 kDa 8q21.3

CLDN8 claudin 8 21q22.11

CRYAB crystallin, alpha B 11q22.3-q23.1

DEFB1 defensin, beta 1 8p23.1

DHRS2 dehydrogenase/reductase (SDR family)
member 2

14q11.2

FLRT3 fibronectin leucine rich transmembrane
protein 3

20p11

FOSB FBJ murine osteosarcoma viral oncogene
homolog B

19q13.32

GSTA1 glutathione S-transferase alpha 1 6p12.1

HILPDA hypoxia inducible lipid droplet-associated 7q32.1

IGFBP1 insulin-like growth factor binding protein 1 7p12.3

IGFBP6 insulin-like growth factor binding protein 6 12q13

KRT7 keratin 7, type II 12q13.13

LCN2 lipocalin 2 9q34

MAL mal, T-cell differentiation protein 2q11.1

MAOB monoamine oxidase B Xp11.23

MMP7 matrix metallopeptidase 7 (matrilysin,
uterine)

11q21-q22

MT1G metallothionein 1G 16q13

NDUFA4L2 NADH dehydrogenase (ubiquinone) 1
alpha subcomplex, 4-like 2

12q13.3

NNMT nicotinamide N-methyltransferase 11q23.1

PAH phenylalanine hydroxylase 12q22-q24.2

PCP4 Purkinje cell protein 4 21q22.2

PLIN2 perilipin 2 9p22.1

RHCG Rh family, C glycoprotein 15q25

RNF128 ring finger protein 128, E3 ubiquitin
protein ligase

Xq22.3

S100A2 S100 calcium binding protein A2 1q21

SERPINA5 serpin peptidase inhibitor, clade A (alpha-
1 antiproteinase, antitrypsin), member 5

14q32.1

SFTPB surfactant protein B 2p12-p11.2

SLC12A1 solute carrier family 12 (sodium/potassium/
chloride transporter), member 1

15q15-q21.1

SLC18A2 solute carrier family 18 (vesicular
monoamine transporter), member 2

10q25

Table 2 Descripotion of 44 genes annotation (Continued)

Gene Symbol Gene description Cytoband

STAP1 signal transducing adaptor family
member 1

4q13.2

TACSTD2 tumor-associated calcium signal
transducer 2

1p32

TFPI2 tissue factor pathway inhibitor 2 7q22

TMEM255A transmembrane protein 255A Xq24

UMOD uromodulin 16p12.3

VCAN versican 5q14.3

ZNF395 zinc finger protein 395 8p21.1

Wang et al. Journal of Experimental & Clinical Cancer Research  (2017) 36:176 Page 5 of 11



Discussion
Due to the comprehensive development of high-
throughput microarray and next-generation sequencing
technologies, as well as the comprehensive efforts of sys-
tematic cancer genomics projects, numerous genomic
data sets were utilised in our research. In this study, we
identified a 44-gene expression signature for the accurate
and robust classification of RCC subtypes (ccRCC, pRCC,
chRCC, and oncocytoma). The 44-gene expression signa-
ture demonstrated an overall accuracy of 95.7% for 4 RCC
subtypes by cross-validation of the training set profiled
with the high-throughput microarray and 93.4% in an in-
dependent test set of 1020 RCC and normal kidney
samples profiled with next-generation sequencing. Fur-
thermore, we tested the signature on an independent co-
hort by qRT-PCR. An overall accuracy of 93.0% was
achieved with the 129 RCC samples with 4 subtypes and
normal specimens. This signature may serve as a reliable
diagnostic tool to aid pathologists with the growing unmet
need for RCC classification.
Kidney tumour subtypes are characterised by different

genetic mutations and chromosomal variations and thus
present different gene expression profiles. Numerous mol-
ecules have been reported as capable of distinguishing kid-
ney tumour subtypes. For example, vascular cell adhesion
molecule 1 (VCAM1) was reportedly significantly up-
regulated in ccRCC and pRCC, whereas it was down-
regulated in chRCC and oncocytoma [29]. Furthermore,
positive immunoreactivity of the metastasis suppressor
protein KAI1 was often detected in chRCC specimens and
rarely in ccRCC and oncocytoma specimens [30], and
GST-alpha mRNA expression was higher in most ccRCCs
than in other kidney tumours [31]. However, in addition
to being unable to consistently distinguish RCC subtypes

Fig. 2 Hierarchical clustering analysis of 44-gene expression data in the
training set and test sets. a Hierarchical clustering of 295 samples from
the training set. Normalized gene expression intensities were shifted to
mean = 0, and rescaled to STD = 1 to enhance the expression differences.
The average linkage hierarchical clustering method was performed
where the metric of similarity was Pearson’s correlation between every
pair of samples. The right panel indicates the official symbol of 44 genes.
The left panel shows a dendrogram of hierarchical clustering of these
genes. Colored pixels capture the magnitude of the expression for any
gene, where shades of red and blue represent over-expression and
under-expression, respectively, relative to the mean for each gene. The
upper panel shows a dendrogram of hierarchical clustering of samples.
The histological type of each sample is indicated in the bottom panel,
with chromophobe tumours shown in purple, clear cell tumours shown
in orange, oncocytoma samples indicated in yellow, papillary tumours in
pink, and adjacent tissue samples in blue. The samples clustered into five
groups that closely follow the histological types. Among the four tumour
subtypes, the oncocytoma and chromophobe samples cluster together,
whereas the conventional tumours show a higher degree of similarity to
papillary tumours. b Hierarchical clustering of 1020 samples from the Test
Set 1. c Hierarchical clustering of 129 samples from the Test Set 2
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based on regular microscopic morphology, single mole-
cules seldom exhibit extensive power for classifying all 4
major renal tumour subtypes. Therefore, comprehensive
analysis of multiple gene expression panels is necessary
for the classification of renal tumour types.
Based on the expression patterns of 44 genes, we classi-

fied the 4 most common renal tumour subtypes, ccRCC,
pRCC, chRCC, and oncocytoma, with sensitivities ranging
from 88% (chRCC) to 98% (ccRCC) in the training set,
90.9% (chRCC) to 94.6% (normal tissue) in Test Set 1, and
89.3% (pRCC) to 100% (normal tissue) in Test Set 2. In
addition, the diagnostic histological classification accuracy
was higher than that obtained with any of the genes used
alone. The chRCC and oncocytoma samples displayed al-
most identical gene expression profiles for MAL,
TMEM255A, RHCG, ATP6V0A4, STAP1, and DEFB1, as
demonstrated by both RNA microarray and RNA sequen-
cing, which is in agreement with the known fact that

chRCC and oncocytoma are related neoplasms [32]. How-
ever, because chRCC is potentially malignant, and oncocy-
toma appears to be a benign mimic of RCC [4, 33], the
potential subtle difference in gene expression is expected,
and the distinction between both subtypes has important
clinical significance. Thus, we proposed that biomarkers
identified by gene expression profiles accumulated from
large cohorts indeed help to discriminate important and
difficult differential diagnoses.
Several studies have reported the promise of gene

or protein expression-based signatures in the classifi-
cation of RCC subtypes. Unlike many studies in
which samples were often collected from single cen-
tral or ethnic cohorts, our approach exploited tumour
samples from two large databases; samples extracted
from the GEO database were used for construction of
the classification panel, and samples from the TCGA
database were extracted for testing our 44-gene

Table 3 GO and KEGG pathway analysis of 44 gene

Data source Feature ID Name Genes P Value

GO Molecular Function GO:0031995 insulin-like growth factor II binding IGFBP1, IGFBP6 1.25E-04

GO Molecular Function GO:0031994 insulin-like growth factor I binding IGFBP1, IGFBP6 1.60E-04

GO Molecular Function GO:0005539 glycosaminoglycan binding SERPINA5, VCAN 1.00E-03

GO Molecular Function GO:0016597 amino acid binding ASS1, PAH 1.00E-03

GO Biological Process GO:0007588 excretion AQP6, ATP6V0A4, SLC12A1, UMOD 1.76E-06

GO Biological Process GO:0071242 cellular response to ammonium ion ASS1, SLC18A2 4.50E-06

GO Biological Process GO:0048878 chemical homeostasis SLC12A1, UMOD 1.35E-05

GO Biological Process GO:0051412 response to corticosterone FOSB, MAOB, SLC18A2 1.38E-05

GO Cellular Component GO:0005615 extracellular space ANGPTL4, DEFB1, FLRT3, HILPDA, IGFBP1,
IGFBP6, LCN2, MMP7, SERPINA5, SFTPB,
TACSTD2, UMOD, VCAN

8.42E-07

GO Cellular Component GO:0016324 apical plasma membrane AQP6, ATP6V0A4, MAL, RHCG, SLC12A1,
UMOD

2.02E-05

GO Cellular Component GO:0005576 extracellular region ANGPTL4, C7, DEFB1, IGFBP1, IGFBP6,
LCN2, MMP7, PLIN2, SERPINA5, TFPI2,
UMOD, VCAN

3.77E-05

GO Cellular Component GO:0005578 proteinaceous extracellular matrix ANGPTL4, FLRT3, MMP7, TFPI2, VCAN 1.43E-04

Cancer Gene Index [CGI] C4863 prostate cancer AKR1C2, ANGPTL4, ASS1, GSTA1, IGFBP1,
IGFBP6, LCN2, MAL, MT1G, S100A2, TFPI2,
VCAN

3.20E-06

DISEASE DB (Univ of
Copenhagen)

DOID:6245 Renal oncocytoma AQP6, CLDN8, KRT7 6.14E-06

Cancer Gene Index [CGI] C9385 renal-cell cancer ASS1, DEFB1, IGFBP6, LCN2, SERPINA5,
UMOD, VCAN

1.41E-05

Cancer Gene Index [CGI] C2978 cysts GSTA1, IGFBP1, IGFBP6, LCN2, MAL,
UMOD

1.45E-05

KEGG path:hsa05030 Cocaine addiction FOSB, MAOB, SLC18A2 1.68E-04

REACTOME REACT_15518 Transmembrane transport of small
molecules

ABCA8, AQP6, ATP6V0A4, LCN2, RHCG,
SLC12A1, SLC18A2

2.28E-04

KEGG path:hsa05031 Amphetamine addiction FOSB, MAOB, SLC18A2 4.19E-04

KEGG path:hsa01230 Biosynthesis of amino acids ALDOB, ASS1, PAH 1.00E-03

KEGG path:hsa00360 Phenylalanine metabolism MAOB, PAH 1.00E-03
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expression signature. In addition, we further validated
our 44-gene expression signature in an independent
Chinese cohort using qRT-PCR. In a clinical scenario,
the application of multi-centre, multi-ethnic data
would greatly increase the reliability and universal ap-
plicability of our 44-gene expression signature. In this
study, we showed that the 44-gene expression signa-
ture could reliably identify the tumour subtypes in
95.7% of the 295 samples tested. This accuracy is
comparable to that of other signatures established by
mRNA or miRNA biomarkers (ranging from 90 to
96%) [10, 11, 34]. The performance of this mRNA
signature analysis by qRT-PCR also compares
favourably with protein signature analysis by immuno-
histochemistry, the current clinical practice standard,
which has shown 78–87% accuracy in identifying
RCC samples using AMACR, CK7, and CD10 [35].
Moreover, analysis of the expression patterns of 44
genes by qRT-PCR classified the 4 most common
renal tumour subtypes with 100% sensitivity in distin-
guishing normal from RCC, 96.2% for the ccRCC
subtype, 92.5% for the chRCC subtype, 89.3% for the

pRCC subtype, and 92.6% for the oncocytoma sub-
type; this signature is also comparable to other signa-
tures (97% in distinguishing normal from RCC, 98%–
100% for the ccRCC subtype, 93% for the chRCC
subtype, 97–98% for the pRCC subtype, and 86% for
the oncocytoma subtype) [10, 11, 34].
In routine clinical settings, the most commonly used

diagnostic materials are FFPE samples; thus, further re-
search is needed to successfully translate the 44-gene
signature from gene expression microarrays and qRT-
PCR to immunohistochemistry, thus allowing wide-
spread access and applications in clinical diagnoses.

Conclusion
In conclusion, in the present study, we developed and
validated a 44-gene expression-based signature for the
classification of RCC subtypes. Our results may prompt
further development of this gene expression signature
into a molecular assay amenable to routine clinical prac-
tice. We foresee its application in cases wherein morph-
ology and immunohistochemistry fail to distinguish
between renal tumour subtypes. Further studies are

Fig. 3 Protein-protein interaction network of the 44-gene set. The network of protein-protein interactions of the 44-gene set inferred using the
IMEx Interactome Database. Blue nodes indicate the proteins present in the 44-gene set, whereas grey nodes represent proteins not in the 44-
gene set. The size of the node is proportional to the degree of connections. The large nodes represent a few high-degree hub nodes, while most
small nodes have only a few connections
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Table 5 Performance characteristics of the 44-gene expression signature in two test sets

Test Set 1 Test Set 2

n Sensitivity Specificity n Sensitivity Specificity

Normal 129 94.6% 100.0% 8 100.0% 98.3%

ccRCC 534 94.2% 95.7% 26 96.2% 96.1%

chRCC 66 90.9% 97.8% 40 92.5% 97.8%

pRCC 291 92.1% 97.8% 28 89.3% 99.0%

Oncocytoma / / / 27 92.6% 98.2%

Total 1020 Overall accuracy = 93.4% 129 Overall accuracy = 93.0%

Table 4 Top 20 enriched pathways of 55 genes within network

Feature ID Name Data source Genes P Value

WP366 TGF beta Signaling Pathway WIKIPATHWAYS APP ATF2 EP300 FOSB
HDAC1 MYC PTK2 SP1
TP53

4.97E-07

WP138 Androgen receptor signaling pathway WIKIPATHWAYS EP300 HDAC1 KAT5 MDM2
PTK2 RELA SP1

4.27E-06

path:hsa05202 Transcriptional misregulation in cancer KEGG CEBPB HDAC1 MDM2 MYC
PTK2 RELA SP1 TP53

2.02E-05

WP2377 Integrated Pancreatic Cancer Pathway WIKIPATHWAYS APP EGR1 EP300 HNF4A
MDM2 MYC SP1 TP53

3.49E-05

path:hsa05169 Epstein-Barr virus infection KEGG ATF2 CD44 EP300 HDAC1
MDM2 MYC RELA TP53

4.12E-05

path:hsa05030 Cocaine addiction KEGG ATF2 FOSB MAOB RELA
SLC18A2

1.33E-04

REACT_169274 Cellular Senescence REACTOME CEBPB MDM2 RELA SP1
TERF1 TP53 UBC

3.43E-04

path:hsa05031 Amphetamine addiction KEGG ATF2 FOSB HDAC1 MAOB
SLC18A2

4.35E-04

REACT_169325 Oncogene Induced Senescence REACTOME MDM2 SP1 TP53 UBC 4.68E-04

REACT_120734 SMAD2/SMAD3:SMAD4 heterotrimer
regulates transcription

REACTOME HDAC1 MYC SP1 UBC 1.00E-03

path:hsa05220 Chronic myeloid leukemia KEGG HDAC1 MDM2 MYC RELA
TP53

1.00E-03

REACT_120956 Cellular responses to stress REACTOME CEBPB EP300 MDM2 RELA SP1
TERF1 TP53 UBC

1.00E-03

WP1984 Integrated Breast Cancer Pathway WIKIPATHWAYS EP300 HDAC1 MDM2 MYC SP1
TP53

1.00E-03

WP254 Apoptosis WIKIPATHWAYS IGF2 MDM2 MYC RELA TP53 1.00E-03

REACT_121061 Transcriptional activity of
SMAD2/SMAD3:SMAD4
heterotrimer

REACTOME HDAC1 MYC SP1 UBC 1.00E-03

path:hsa05166 HTLV-I infection KEGG ATF2 EGR1 EP300 KAT5 MYC
RELA TP53

2.00E-03

WP399 Wnt Signaling Pathway and
Pluripotency

WIKIPATHWAYS CD44 EP300 MMP7 MYC TP53 2.00E-03

REACT_118780 NOTCH1 Intracellular Domain
Regulates Transcription

REACTOME EP300 HDAC1 MYC UBC 2.00E-03

REACT_299 Signaling by NOTCH REACTOME EP300 HDAC1 MYC TP53 UBC 3.00E-03

h_arfPathway Tumor Suppressor Arf Inhibits
Ribosomal Biogenesis

BIOCARTA MDM2 MYC TP53 3.00E-03
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needed to determine the role of our gene expression-
based signature in personalised therapy choices and the
prognosis of therapeutic outcomes for RCC patients with
different subtypes.
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