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Alters Lung Vascular Development but Not Airway
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In the immature lung, inflammation and injury disrupt the epithelialemesenchymal interactions
required for normal development. Innate immune signaling and NF-kB activation disrupt the normal
expression of multiple mesenchymal genes that play a key role in airway branching and alveolar for-
mation. To test the role of the NF-kB pathway specifically in lung mesenchyme, we utilized the
mesenchymal Twist2-Cre to drive expression of a constitutively active inhibitor of NF-kB kinase subunit
b (IKKbca) mutant in developing mice. Embryonic Twist2-IKKbca mice were generated in expected
numbers and appeared grossly normal. Airway branching also appeared normal in Twist2-IKKbca em-
bryos, with airway morphometry, elastin staining, and saccular branching similar to those in control
littermates. While Twist2-IKKbca lungs did not contain increased levels of Il1b, we did measure an
increased expression of the chemokine-encoding gene Ccl2. Twist2-IKKbca lungs had increased staining
for the vascular marker platelet endothelial cell adhesion molecule 1. In addition, type I alveolar
epithelial differentiation appeared to be diminished in Twist2-IKKbca lungs. The normal airway
branching and lack of Il1b expression may have been due to the inability of the Twist2-IKKbca
transgene to induce inflammasome activity. While Twist2-IKKbca lungs had an increased number of
macrophages, inflammasome expression remained restricted to macrophages without evidence of
spontaneous inflammasome activity. These results emphasize the importance of cellular niche
in considering how inflammatory signaling influences fetal lung development. (Am J Pathol 2017, 187:
2635e2644; https://doi.org/10.1016/j.ajpath.2017.08.013)
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In preterm infants, inflammation and injury inhibit normal
lung development and lead to the chronic lung disease
bronchopulmonary dysplasia.1e5 Sources of inflammation
include elevated inspired oxygen concentrations, mechani-
cal stretch due to positive-pressure ventilation, and both
prenatal and postnatal exposure to microbes. In animal
models, inflammation in the developing lung arising from
these various sources disrupts the normal
epithelialemesenchymal interactions required for airway
and alveolar morphogenesis.6e9 However, the cellular and
molecular mechanisms connecting inflammation to
abnormal development are still being characterized.
stigative Pathology. Published by Elsevier Inc
In response to microbial products or environmental expo-
sures, lung macrophages mount an initial innate immune
response.10,11 At the molecular level, the macrophage response
is characterized by the activation and nuclear translocation of
the transcription factor NF-kB.12e14 After NF-kB activation,
lung macrophages express and release a number of soluble
inflammatory mediators that target adjacent cells within the
lung tissue.15,16 Based on experiments using NF-kB reporter
. All rights reserved.
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mice, the initial wave of NF-kB activity in macrophages is
followed by a later phase of NF-kB activation in surrounding
mesenchymal cells.17 Spreading inflammation throughout the
developing lung inhibits saccular airway branching morpho-
genesis in late-stage embryonic mouse lungs and alveolar
formation in postnatal mouse lungs.17,18 While multiple in-
flammatory mediators can affect lung development, inflam-
masome activation and IL-1b release are required for
inflammatory stimuli (both microbial products and environ-
mental injury/hyperoxia) to disrupt airway branching and
alveolar formation.18e20 Lung inflammation inhibits the
expression of several key mesenchymal genes important for
lung development, including Fgf10 and Itga8.21,22 In the case
of Fgf10, activated NF-kB interacts with specificity proteins 1
and 3 to reduce gene transcription.23,24

While macrophages play an important role in the initial
inflammatory response, we wanted to test whether NF-kB
activation in mesenchymal cells could affect lung morpho-
genesis in a cell-autonomous manner. To bypass
macrophages, we crossed mice expressing the mesenchymal-
specific Twist2-Cre transgene with a strain expressing a
constitutively active inhibitor of NF-kB kinase subunit
b (IKKbca) mutant downstream of a loxP-flanked STOP
cassette. Twist2-Cre animals display Cre activity throughout
the lung mesenchyme during development, but spare the
developing lung vasculature.25,26 The resulting double-
transgenic mice (Twist2-IKKbca) have increased IKKb ac-
tivity and subsequent NF-kB activation in mesenchymal cell
populations. Here we report that Twist2-IKKbca mice were
viable with normal fetal airway development. Mesenchymal
expression of IKKbca was sufficient for stimulating the
expression of the inflammatory chemokine-encoding gene
Ccl2 and for recruiting macrophages to the fetal lung. How-
ever, Twist2-IKKbca lungs did not express elevated Il1b
levels or inflammasome complexes outside of the macro-
phage population. These results emphasize the unique impact
of NF-kB activation in different cell populations on tissue
inflammation and lung development.

Materials and Methods

Reagents

The following reagents were used for immunofluorescence:
rat anti-CD68 (Acris Antibodies, San Diego, CA), rat antie
platelet endothelial cell adhesion molecule 1 (CD31; BD
Pharmingen, San Jose, CA), mouse antiea smooth muscle
actineCy3 (Sigma-Aldrich, St. Louis, MO), rat antieE-
cadherin (Thermo Fisher Scientific, Waltham, MA), rabbit
antiephospho histone H3 (EMD Millipore, Billerica, MA),
hamster anti-podoplanin (T-1a; Developmental Studies
Hybridoma Bank, University of Iowa, Iowa City, IA), rabbit
antiesurfactant protein C (Abcam, Cambridge, MA), rabbit
antiegreen fluorescent protein (Invitrogen, Waltham, MA),
rabbit anti-cryopyrin [(nucleotide-binding oligomerization
domain-containing protein)-like receptor protein (NLRP)-3;
2636
Santa Cruz Biotechnology, Dallas, TX], and rabbit antie
caspase 1 p10 (Santa Cruz Biotechnology). Prolong Gold
mounting media and fluorescent secondary antibodies Alexa
Fluor 488 and 555 were purchased from Invitrogen. The
nuclear stain DRAQ5 was purchased from Thermo Fisher.
Cells and explants were cultured and treated in the
following reagents: gel-purified Escherichia coli lipopoly-
saccharide (LPS) (O55:B5; Sigma-Aldrich), ATP (Sigma-
Aldrich), Dulbecco’s modified Eagle’s medium (Corning
Life Sciences, Tewksbury, MA), fetal bovine serum
(Thermo Fisher), and penicillinestreptomycin (Thermo
Fisher).

Mice

All experiments were approved by the Institutional Animal
Care and Use Committee at Vanderbilt University and the
University of CaliforniaeSan Diego. Twist2-Cre, RosamT/mG

and B6(Cg)-Gt(ROSA)26Sortm4(Ikbkb)Rsky/J mice were pur-
chased from The Jackson Laboratory (Bar Harbor, ME).
Twist2-IKKbca mutant mice were derived from Twist2-
Creþ27 X B6(Cg)-Gt(ROSA)26Sortm4(Ikbkb)Rsky/J matings.28

Genotyping was performed by standard PCR. For timed
matings, embryonic day zero (E0) was identified as the
morning of vaginal plug confirmation.

Cell and Explant Culture

Fetal lungs were dissected and enzymatically digested with
collagenase (0.7 mg/mL). Cells were passed through a 70-
mm strainer and centrifuged. Cells were then plated in
complete media. After macrophages were allowed to briefly
attach, nonadherent cells (including mesenchymal cells)
were collected and replated overnight. After passaging,
cultures were 95% positive for a smooth muscle
actineexpressing mesenchymal cells. Fetal lung explants
were isolated and cultured as previously described.17 Bright-
field images were captured at 24 and 72 hours of culture.
Branch count analysis was performed using ImageJ software
version 1.51 (NIH, Bethesda, MD; http://imagej.nih.gov.ij).

RNA Isolation and Real-Time PCR

Total RNA was isolated from whole-lung macrophages and
mesenchymal cells using TRIzol (Invitrogen). First-strand
cDNA was synthesized using oligo(dT) primers and Su-
perscript III (Invitrogen). Real-time PCR was performed
using either SYBR Green or TaqMan probes. PCR was
performed using a CFX96 thermocycler (Bio-Rad Labora-
tories, Hercules, CA). The 2�DDCt method was used for
comparing gene expression in samples. All samples were
normalized to glyceraldehyde-3-phosphate dehydrogenase.
Experiments were performed at least three independent
times. Data between groups were compared by analysis of
variance or t-test for the identification of significant
differences.
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Figure 1 Twist2-driven expression of constitutively active inhibitor of
NF-kB kinase subunit b (IKKbca) in fetal lung mesenchyme. Twist2-Cre X
B6(Cg)-Gt(ROSA)26Sortm4(Ikbkb)Rsky/Jmatings resulted in the expected genetic
distribution of E15 and E18 embryos. E15: 44.7% Twist2-IKKbca and 55.3%
Twist2-Cre� (94 embryos from 13 litters). E18: 55.7% Twist2-IKKbca and
44.3% Twist2-Cre� (70 embryos from 8 litters). Genotyping therefore sug-
gested fetal and embryonic viability. A and B: E18 Twist2-IKKbca fetal pups
(IKK) appeared todevelop normalwith similar crown to rump lengths compared
with littermate controls (ctrl). C: Twist2-Cre mice were crossed with
Rosa26mT/mG reporter mice, demonstrating Tomato fluorescence before Cre
recombination and green fluorescent protein (GFP) expression throughout lung
mesenchyme in embryos expressing Twist2-Cre. D: Twist2-IKKbca mice express
internal ribosome entry siteemediated GFP in Twist2-Creþ mesenchymal cells.
Laser scanning confocal immunostaining of E17 fetal lung sections showedGFP-
positive mesenchymal cells and smooth muscle cells expressing aesmooth
muscle actin (SMA) surrounding airways. Nuclei stained with DRAQ5 (blue).
Data are expressed as means � SD. n Z 4 control mice (B). Original magnifi-
cation:�4 (C); �40 (D). Tom, tomato fluorescence.

Mesenchymal IKKb and Lung Development
Immunoassay

Isolated lung mesenchymal cells were cultured until 90%
confluent. Cells were then treated with LPS (250 ng/mL),
ATP (5 mmol/L), or both LPS þ ATP. After treatment
culture media were collected, levels of IL-1b were measured
using enzyme-linked immunosorbent assay (BD Bio-
sciences, San Jose, CA). Assays were performed in triplicate
and in at least three independent experiments.

Tissue Processing and Immunostaining

Paraffin-embedded fetal mouse lungs were dissected and
fixed in 4% paraformaldehyde (Electron Microscopy Sci-
ences, Hatfield, PA). Paraffin sections were then stained
with hematoxylin (Dako North America, Carpinteria, CA),
eosin (Ricca Chemical, Arlington, TX), and Hart’s modified
stain (reagents from Electron Microscopy Sciences). He-
matoxylin and eosinestained sections were measured for
lung tissue and airspace volume using ImageJ. Frozen
embedded fetal mouse lungs were fixed in 4% para-
formaldehyde, washed, and processed through a sucrose
gradient before being embedded in OCT media (Tissue-Tek;
Sakura Finetek USA, Radnor, PA). Frozen sections were
stained with antibodies of interest followed by Alexa-
conjugated secondary antibodies, and nuclei were stained
with DRAQ5.

Imaging and Image Analysis

Confocal images were acquired using a TCS SPE laser-
scanning confocal microscope (Leica Microsystems, Buffalo
Grove, IL). Widefield fluorescent and bright-field images of
whole fetal mouse lung were obtained using an Olympus
IX81 inverted microscope (Olympus, Center Valley, PA)
with an Orca ER CCD camera (Hamamatsu Photonics,
Bridgewater, NJ). All images were saved and imported to
Photoshop software version CS6 (Adobe Systems, San Jose,
CA) for processing. Identical processing parameters were
used for achieving proper image comparison.

Flow Cytometry

The following antibodies were used for flow cytometry:
CD45-V500, stem cells antigen-1efluorescein isothiocya-
nate (BD Biosciences); CD140b-R-phycoerythrin, CD21-
phycoerythrin-cyanin 7, allophycocyanin-cyanin 7
(eBioscience); and E-cadherineallophycocyanin (R&D
Systems, Minneapolis, MN). Viable cells were selected
using Live/Dead fixable dead cell stain (Thermo Fisher).
Fetal lungs were enzymatically digested into a single-cell
suspension using collagenase type 2 (Worthington
Biochemical Corporation, Lakewood, NJ). Red blood cells
were lysed using ammonium-chlorideepotassium lysing
buffer (Invitrogen). Cells were placed on ice for 15 minutes
in flow cytometry staining buffer (eBioscience) and
The American Journal of Pathology - ajp.amjpathol.org
incubated with antibodies for 30 to 60 minutes. For intra-
cellular antibodies, cells were incubated on ice for 30 to 60
minutes using the Intracellular Fixation and Permeabiliza-
tion Kit (eBioscience). Flow Cytometry measurements were
2637
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Figure 2 Constitutively active inhibitor of NF-kB kinase subunit b (IKKbca) expression in fetal mesenchyme does not disrupt lung airway morphogenesis.
A: Similar overall size of E18 Twist2-IKKbca lungs compared with littermate controls. B: Hematoxylin and eosin stained sections of E18 lungs show similar
airway and interstitial morphology in Twist2-IKKbca and littermate controls. C: Morphometry measurements showed no change in Twist2-IKKbca lungs
compared with control littermates. D: Lung sections were stained with modified Hart’s stain to visualize elastic fibers, which appear similar in Twist2-IKKbca
and controls. E and F: E15 fetal mouse lung explants were cultured for 72 hours, with images acquired at 24 and 72 hours. Bright-field images show formation
of new saccular airway branches along the periphery. While Twist2-IKKbca airways appeared slightly more dilated, airway branching was similar to controls (F).
G: Expression of pro-inflammatory cytokines and chemokines were measured by real-time PCR using RNA isolated from E17 Twist2-IKKbca and littermate
control fetal whole lungs. Twist2-IKKbca lungs had elevated mRNA levels of the chemokine Ccl2. Expression levels of Il1b and Il18 were similar to those in control
littermates. Data are expressed as means� SD. nZ 9 to 15 mice (C, F, and G). ****P < 0.0001 versus control. Original magnification: �20 (B and D);�4 (E).
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conducted on a BD LSR II flow cytometer (BD Bio-
sciences). For gating, doublets were excluded based on
forward light scatter area against forward light scatter height
followed by side light scatter area against side light scatter
height. Data analysis was performed using FlowJo software
version 9 (FlowJo, Ashland, OR).

Results

To test whether increased NF-kB activation specifically in
developing mesenchymal cells could affect lung develop-
ment, we crossed Twist2-Cre transgenic mice27 with
B6(Cg)-Gt(ROSA)26Sortm4(Ikbkb)Rsky/J mice.28 The resulting
double-transgenic animals were predicted to express both a
Ikbkbca mutant allele and enhanced green fluorescent protein
in Twist2þ mesenchymal cell populations. Genotyping at
embryonal days 15 and 18 detected approximately the pre-
dicted numbers of double-transgenic Twist2-Cre:B6(Cg)-
Gt(ROSA)26Sortm4(Ikbkb)Rsky/J (Twist2-IKKbca) embryos,
suggesting developmental viability (E15: 44.7% Twist2-
IKKbca and 55.3% Twist2-Cre�, 94 embryos from 13 lit-
ters; E18: 55.7%Twist2-IKKbca and 44.3%Twist2-Cre�, 70
embryos from 8 litters). Crownerump measurements and
gross appearance of Twist2-IKKbca embryos were similar to
those of control littermates (Figure 1, A and B).

To confirm Cre-mediated transgene expression in the fetal
lung mesenchyme during embryogenesis, we crossed
Twist2-Cre animals with the Rosa26mT/mG reporter strain.29

In dissected hearts and lungs from control (Twist2-Cree)
2638
embryos, Tomato expression was observed throughout the
lung and surrounding structures (Figure 1C). Twist2-Creþ

lungs expressed green fluorescent protein throughout the
lung mesenchyme. In E17 Twist2-IKKbca embryos, we
detected green fluorescent protein expression from the in-
ternal ribosomal entry site sequence downstream of the
Ikbkbca allele throughout the lung mesenchyme. E17
Twist2-IKKbca lungs also expressed green fluorescent
protein in a smooth muscle actinepositive smooth muscle
cells along airways (Figure 1D). We next examined whether
mesenchymal expression of the IKKbca affected overall
lung and airway morphogenesis. Gross examination of
mutant Twist2-IKKbca and control littermate lungs
appeared similar at E18 (Figure 2A). Hematoxylin and
eosinestained sections showed a similar overall appearance
of both the proximal and distal airways, with comparable
airspace and tissue volume as measured by morphometry
(Figure 2, B and C). Elastin staining overall was also similar
between Twist2-IKKbca and control lungs (Figure 2D).
We previously demonstrated that NF-kB activation in

macrophages could disrupt distal airway branching both
in vivo and in cultured saccular stage explants.17 To test
whether similar effects could be observed with mesen-
chymal NF-kB activation, we cultured E15 Twist2-IKKbca
and littermate control explants, obtaining photomicrographs
every 24 hours (Figure 2, E and F). While the airways in
Twist2-IKKbca explants appeared slightly more dilated, the
number of new distal airway branches formed between 24
and 72 hours of culture was similar to that in controls. These
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Alterations of Type I epithelial cell and vascular development
in Twist2econstitutively active inhibitor of NF-kB kinase subunit b

(IKKbca) fetal lungs. E17 lungs from Twist2-IKKbca and littermate control
embryos were sectioned, immunostained, and visualized by laser scanning
confocal microscopy. Relative fluorescence intensity (RFI) was quantified
for each fluorescence channel across each image. A and B: Twist2-IKKbca
embryos had similar expression of the Type II cell marker surfactant protein
C (SP-C) (A), but reduced staining and RFI for the Type I cell marker
podoplanin (PDPN) (B). Epithelial cells detected by E-cadherin (E-cad)
immunolabeling. C: Twist2-IKKbca lungs had increased staining of the
endothelial marker platelet endothelial cell adhesion molecule (PECAM)-1.
Smooth muscle and mesenchymal cells detected by aesmooth muscle actin
(SMA) immunolabeling. D and E: Higher-magnification images show more
detail regarding reduced PDPN staining (D) and increased PECAM-1 staining
(E) in Twist2-IKKbca lungs. Nuclei labeled with DRAQ5 (blue). Data are
expressed as means � SD. n Z 30 images. *P < 0.05, ****P < 0.0001
versus control. Scale bar Z 50 mm (AeC). Original magnification, �63
(D and E).

Mesenchymal IKKb and Lung Development

The American Journal of Pathology - ajp.amjpathol.org
results, along with the lung morphometry measurements
from lung sections, demonstrated that the mesenchymal
expression of a IKKbca mutant was not sufficient for the
disruption of fetal airway branching.

We initially hypothesized that Twist2-IKKbca embryos
would have abnormal airway branching. To confirm that the
IKKbca isoform was sufficient for inducing the expression of
NF-kBedependent inflammatory mediators, we used real-time
PCR to measure the expression of several inflammatory genes
in E17 whole-lung isolates. Twist2-IKKbca lungs had
increased Ccl2, but similar Il1b and Il18 expression, compared
with control littermates (Figure 2G). Data from previous re-
ports have implicated IL-1b in linking inflammation to altered
airway morphogenesis.18e20 Therefore, the inability of the
IKKbca mutant to increase Il1b expression could explain the
normal airway morphogenesis in Twist2-IKKbca embryos.

While increased IKKb activity did not seem to affect
airway morphogenesis, we did measure changes in cell
populations within the developing lung. Immunostaining
for surfactant protein C in alveolar type II cells suggested
similar type II cell differentiation (Figure 3A). However,
staining for podoplanin (T1a), a marker for alveolar type I
cells, was diminished in Twist2-IKKbca lungs compared
with controls (Figure 3, B and D). Inflammatory chemo-
kines, including Ccl2, can stimulate fetal lung angiogen-
esis.30 We therefore examined vascular structures in the
developing Twist2-IKKbca lungs. Compared with litter-
mate controls, E17 Twist2-IKKbca lungs had more platelet
endothelial cell adhesion molecule-1 staining (Figure 3, C
and E), consistent with increased numbers of endothelial
cells and/or increased angiogenesis.

We next tested whether mesenchymal expression of the
IKKbca mutant could cause cell autonomous changes in
mesenchymal growth factors. Relative expression levels of
Fgf10 and Fgf18 were similar in Twist2-IKKbca lungs and
controls (Figure 4A), while Twist2-IKKbca lungs had only
slightly higher expression of the transcription factore
encoding genes Sox9 and Gata4. Because (sex-determining
region Y)-box 9 plays a role in mesoderm development and
differentiation,31 we used flow cytometry to test whether
Twist2-IKKbca lungs had changes in the overall mesen-
chymal progenitor cell populations (Figure 4, B and C).
After excluding CD45þ and E-Cadherin/CD324þ cells from
E15 and E18 fetal lungs, subpopulations of mesenchymal
cells were gated based on the expression of the stem cell
markers CD29, stem cells antigen-1, CD104b, and CD44.32

Twist2-IKKbca mutants and control littermates showed
similar percentages of mesenchymal cells expressing each
marker. Of note, we measured an increase in stem cells
antigen-1epositive mesenchymal cells in E18 lungs both in
control and mutants. These results suggest that mesen-
chymal cell differentiation during the later stages of lung
development was not altered by mesenchymal IKKbca
expression.

NF-kB activation induces the expression of soluble in-
flammatory mediators, including chemokines that recruit
2639
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additional immune cells. Consistent with increased Ccl2 in
Twist2-IKKbca lungs, we detected increased numbers of
CD68-expressing macrophages in E17 Twist2-IKKbca
lungs compared with controls (Figure 5A). We did not
measure differences in the percentages of macrophages
staining positive for phospho-histone H3, suggesting that
the increase was not due to cell proliferation. Therefore, the
increase in macrophage number was most likely due to the
recruitment of additional macrophages to the lung. To test
whether these additional macrophages were activated in
Twist2-IKKbca lungs, we isolated E18 lung macrophages
from control and Twist2-IKKbca embryos and measured the
expression of several inflammatory genes induced in acti-
vated macrophages. Fetal macrophages isolated from E18
lungs showed no differences in Il1b, Cxcl10, Ccl3, or the
2640
alveolar macrophage marker Mrc1 (encoding CD206) be-
tween mutants and controls (Figure 5B). Therefore, while
NF-kB activation in the fetal lung mesenchyme did recruit
macrophages to the lung, it did not appear to be sufficient
for causing macrophage activation.
Recent data have implicated inflammasome activation and

subsequent IL-1b release as key steps linking inflammation
and defective lung development.18 Inflammasome assembly
and activation are required for IL-1b release, and several
genes encoding inflammasome components are induced by
inflammatory signals. We therefore tested howmesenchymal
IKKb activity might affect inflammasome component
expression. Compared with controls, E15 Twist2-IKKbca
lungs expressed increasedmRNA levels ofNlrp3 andCasp11
but similar levels of Nlrc4 and Asc (Figure 6A). However,
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Mesenchymal IKKb and Lung Development
inflammasome component expression in cultured E15 lung
mesenchymal cells was similar in cells from Twist2-IKKbca
embryos and controls (Figure 6B). Twist2-IKKbca mesen-
chymal cells expressed higher Ccl2, consistent with our data
from whole-lung samples. To test whether mesenchymal
IKKb activity could affect where inflammasome proteins
were actually expressed in vivo, we used confocalmicroscopy
to identify cells expressing the activated, cleaved form of
caspase 1 andNLRP3 (Figure 6C). In E17 lungs, both cleaved
caspase 1 and NLRP3 appeared to be restricted to macro-
phages. Cultured lung mesenchymal cells from Twist2-
IKKbca embryos also did not release increased amounts of
IL-1b protein upon stimulation with LPS and/or ATP,
compared with controls (Figure 6D). Therefore, while IKKb
The American Journal of Pathology - ajp.amjpathol.org
activity in mesenchymal cells increased the expression of the
chemokineeencoding gene Ccl2 and some inflammasome-
encoding genes throughout the lung, we detected significant
inflammasome assembly only in lung macrophages.
Discussion

Our data demonstrate that increased IKKb activity in
mesenchymal cells increased Ccl2 expression but was not
sufficient for affecting lung airway morphogenesis. We
were surprised to find normal airway development in
Twist2-IKKbca mice given data from our group and others
using in vivo models and lung explants that show reduced
saccular airway branching with endotoxin exposure or in-
flammatory activation in lung macrophages.7,17,33,34

Inflammation in these other models influenced gene
expression in both lung mesenchyme and epithelium.
However, bypassing the initial macrophage-mediated
response using the mesenchymal Twist2-Cre to drive the
expression of IKKbca failed to cause the same degree of
defects. Consistent with normal airway branching, embry-
onic lungs in Twist2-IKKbca mice did not have changes in
the expression of Fgf10, a gene encoding an important up-
stream mesenchymal growth factor involved in branching
morphogenesis.22,35,36

The inflammatory cytokine IL-1b inhibits late-stage lung
development.18,37 While Il1b mRNA can be induced by
inflammatory stimuli, the release of the bioactive peptide
requires cleavage of pro-IL-1b by inflammasome complexes
containing activated caspases.38 Both LPS and the trans-
genic expression of IKKbca in macrophages lead to IL-1b
release in fetal lungs.17,18 However, the Twist2-IKKbca
lungs studied here did not contain increased Il1b mRNA. In
addition, Twist2-IKKbca mesenchymal cells did not release
IL-1b peptide when stimulated with LPS or the inflamma-
some activator ATP. Adding both agents may have released
a small amount of IL-1b peptide, but the levels were not
significantly above those in controls. Embryonic lung
mesenchymal cells did not appear to express active
inflammasome complexes. Several inflammasome gene
components were higher in Twist2-IKKbca cells compared
to controls. However, immunostaining for the inflamma-
some components NLRP3 and caspase 1 showed expression
only in lung macrophages. So while the increased expres-
sion in Twist2-IKKbca lungs may have been consistent with
previous data showing LPS induction of inflammasome
genes,18 the expression of the IKKbca transgene was not
sufficient for generating the ectopic expression of functional
inflammasome complexes in lung mesenchymal cells. We
speculate that restricting inflammasome complex expression
to professional immune cells such as macrophages both is
energetically favorable and helps to limit the spread of
inflammation and injury throughout developing tissues.

The chemokine-encoding gene Ccl2 was elevated in
Twist2-IKKbca lungs and mesenchymal cells, suggesting
2641
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that IKKb/NF-kB activity in fetal lung mesenchymal cells
may activate a different set of inflammatory mediators
compared with macrophages or other immune cell pop-
ulations. We recently published data showing the LPS
response in fetal mouse lung mesenchymal cells.39 While
Il1b, Tnf, Ccl3, and Ccl4 induction has been reported in
LPS-treated macrophages,40 LPS did not increase their
expression in fetal mouse lung mesenchymal cells. LPS did,
however, strongly increase the expression of other C-C and
C-X-C motif chemokine family members, including Ccl2,
Ccl7, Ccl20, Cxcl1, Cxcl5, and Cxcl10.39 These differences
suggest that the induction of genes like IL1B require tran-
scription factors present in macrophages or other immune
cells but perhaps missing in mesenchymal cell populations.
Alternatively, mesenchymal cells may have differences in
the chromatin landscape that produce a distinct transcrip-
tional response to NF-kB activation.41e43

Embryonic lungs in Twist2-IKKbca mice had increased
staining for the endothelial marker platelet endothelial cell
adhesion molecule-1. This increase, even if subtle, could
represent accelerated lung angiogenesis. Similar changes
2642
were seen after LPS-induced chemokine expression in lung
explants and in vivo.30 CCL2 can have multiple effects on
lung cells, stimulating proliferation and migration of lung
fibroblasts and airway smooth muscle cells.44,45 In addition,
CCL2emediated increases in lung endothelial permeability
appear to contribute to cancer cell metastases.46,47 Alter-
ations in lung capillary development and vascular perme-
ability could play a role in bronchopulmonary dysplasia
pathogenesis.30,48e50 While CCL2 and other chemokines
might not directly affect airway branching, the changes in
lung vasculature and increased numbers of macrophages
could predispose the immature lung to injury after a sub-
sequent exposure. In addition, we observed decreased
staining for the alveolar type I cell marker T1a. Type I
alveolar epithelial cells likely play important roles in facil-
itating gas exchange and maintaining a dry alveolar space.51

However, the consequences of the changes we observed and
the mechanisms leading to these changes are not yet known.
These data emphasize the importance of considering cell

specificity when designing therapeutic approaches for tar-
geting the inflammatory response. Immune cells, including
ajp.amjpathol.org - The American Journal of Pathology
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resident lung macrophages and potentially recruited mono-
cytes and neutrophils, may be the major cell populations
that produce inflammatory mediators capable of inhibiting
airway branching.17,52 Likewise, growth factors important
for lung development are expressed in specific cellular
compartments.53,54 Therefore, a strategy to affect
inflammation-mediated arrest in lung development might
need to specifically target macrophages, while increasing
growth factor expression could require targeting mesen-
chymal cells, epithelia, or even vascular endothelia. Mech-
anistic in vivo approaches as presented here will help to
characterize cell-specific responses and biological roles in
lung injury and disease.
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