
The American Journal of Pathology, Vol. 187, No. 12, December 2017
ajp.amjpathol.org
GASTROINTESTINAL, HEPATOBILIARY, AND PANCREATIC PATHOLOGY
Regulation of Cellular Senescence by miR-34a in
Alcoholic Liver Injury

Ying Wan,*yzx Kelly McDaniel,*yz Nan Wu,z Sugeily Ramos-Lorenzo,y Trenton Glaser,y Julie Venter,z Heather Francis,*yz

Lindsey Kennedy,*z Keisaku Sato,z Tianhao Zhou,*z Konstantina Kyritsi,z Qiaobing Huang,{ Tami Annable,yk Chaodong Wu,**
Shannon Glaser,*yz Gianfranco Alpini,*yz and Fanyin Meng*yz
From the Division of Research,* Central Texas Veterans Healthcare System, Temple, Texas; the Baylor Scott & White Health Digestive Disease Research
Center,y Baylor Scott & White Healthcare, Temple, Texas; the Department of Internal Medicine,z Texas A&M University Health Science Center College of
Medicine, Temple, Texas; the Department of Pathophysiology,x Southwest Medical University, Luzhou, China; the Department of Pathophysiology,{ Key Lab
for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, China; the Temple Health and Bioscience
District,k Temple, Texas; and the Department of Nutrition and Food Science,** Texas A&M University, College Station, Texas
Accepted for publication
C

h

August 22, 2017.

Address correspondence to
Fanyin Meng, Ph.D., or
Gianfranco Alpini, Ph.D.,
Division of Research,
Department of Medicine and
Baylor Scott & White Digestive
Diseases Research Center,
Central Texas Veterans Health
Care System, Baylor Scott &
White Health, Texas A&M
Health Science Center College
of Medicine, 1901 S. 1st St.,
Bldg. 205, Temple, TX
76504. E-mail: fmeng@
medicine.tamhsc.edu or
galpini@medicine.tamhsc.edu.
opyright ª 2017 American Society for Inve

ttps://doi.org/10.1016/j.ajpath.2017.08.027
Alcoholic liver disease remains a major cause of liver-related morbidity and mortality, which ranges
from alcoholic steatohepatitis to fibrosis/cirrhosis and hepatocellular carcinoma, and the related
mechanisms are understood poorly. In this study, we aimed to investigate the role of miR-34a in
alcohol-induced cellular senescence and liver fibrosis. We found that hepatic miR-34a expression
was upregulated in ethanol-fed mice and heavy drinkers with steatohepatitis compared with
respective controls. Mice treated with miR-34a Vivo-Morpholino developed less severe liver fibrosis
than wild-type mice after 5 weeks of ethanol feeding. Further mechanism exploration showed that
inhibition of miR-34a increased cellular senescence of hepatic stellate cells (HSCs) in ethanol-fed
mice, although it decreased senescence in total liver and hepatocytes, which was verified by the
changes of senescence-associated b-galactosidase and gene expression. Furthermore, enhanced
cellular senescence was observed in liver tissues from steatohepatitis patients compared with
healthy controls. In addition, the expression of transforming growth factor-b1, drosophila mothers
against decapentaplegic protein 2 (Smad2), and Smad3 was decreased after inhibition of miR-34a
in ethanol-fed mice. Our in vitro experiments showed that silencing of miR-34a partially blocked
activation of HSCs by lipopolysaccharide and enhanced senescence of HSCs. Furthermore, inhibition
of miR-34a decreased lipopolysaccharide-induced fibrotic gene expression in cultured hepatocytes.
In conclusion, our data suggest that miR-34a functions as a profibrotic factor that promotes
alcohol-induced liver fibrosis by reducing HSC senescence and increasing the senescence of he-
patocytes. (Am J Pathol 2017, 187: 2788e2798; https://doi.org/10.1016/j.ajpath.2017.08.027)
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Alcoholic liver disease (ALD) is a predominant cause of
liver-related mortality in developed countries. The patho-
genesis of ALD in humans is characterized by steatosis,
which is the accumulation of fat in hepatocytes.1 Along with
the development of ALD, steatosis can progress to steato-
hepatitis, fibrosis and cirrhosis (8% to 20%), or hepatocel-
lular carcinoma (3% to 10%).2

The entire pathophysiology of ALD still is incompletely
understood, although the role of alcohol exposure has been
identified, including alcohol exposureeinduced hepatocyte
apoptosis, necrosis, and necroptosis, as well as inflammatory
stigative Pathology. Published by Elsevier Inc. All rights reserved.
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miR-34a Regulation of Hepatic Senescence
cytokines released from hepatic macrophages, which are
activated as a result of translocation of lipopolysaccharide
(LPS) from intestine.3 In addition, miRNAs may be involved
in ALD progression. miRNAs are small noncoding RNA
molecules with 20 to 22 nucleotides that function in tran-
scriptional and post-transcriptional regulation of gene
expression.4 There is accumulating evidence that miRNAs
play an important role in the pathogenesis of ALD.5 In recent
years, increased miR-34a expression has been reported in
alcoholic hepatitis.6 However, the functional role of miR-34a
in ethanol-induced liver fibrosis remains unclear.

Liver fibrosis is a common consequence of ALD and
other chronic liver insults, which is characterized by accu-
mulation of excess extracellular matrix (ECM) components,
including collagen type I, a 1 (Col1a1).7 In a setting of
chronic fibrogenic stimuli, myofibroblast-like cells produce
large quantities of ECM components. Extensive investiga-
tion has shown that hepatic stellate cells (HSCs) are the
major source of ECM in liver fibrosis. Previous studies have
shown that miR-34a is involved in the development of
fibrosis in many organs. For example, miR-34a has been
found to promote lung epithelial injury and pulmonary
fibrosis.8 miR-34a can contribute to cardiac tissue fibrosis
by directly targeting drosophila mothers against decap-
entaplegic protein 4 (Smad4)9 and promote radiation-
induced fibrosis in a murine skin model by inhibition of
c-Met production.10 Furthermore, it has been reported that
the miR-34a/sirtuin 1 (SIRT1)/p53 signaling pathway is
activated in hepatocytes but not in HSCs, which resulted in
the apoptosis of hepatocytes and thus activated HSCs,
eventually contributing to the progression of carbon
tetrachlorideeinduced rat liver fibrosis.11 Interestingly,
miR-34a has been identified to be upregulated in human
fibrotic livers compared with normal human liver.12 Based
on these observations, we speculate that miR-34a may
contribute to the progression of alcoholic liver fibrosis.

Cellular senescence is an irreversible cell-cycle arrest in
the G0/G1 phase that occurs when cells experience
oncogenic insults or stress signals.13 Senescent cells are
characterized by high senescence-associated b-galactosi-
dase (SA-b-gal) activity and a high expression level of
markers related to cell-cycle arrest, such as, p53, p16, and
p21.14 Although senescence is a well-known mechanism of
tumor suppression, emerging evidence has indicated that it
may play a role in aging, tissue repair, and even malig-
nancy.15 Cellular senescence of hepatocytes, chol-
angiocytes, HSCs, and immune cells has been shown in a
wide spectrum of chronic liver disorders.16 Senescence of
activated HSCs can lead to regression of carbon tetra-
chlorideeinduced liver fibrosis.17 Increased senescence in
hepatocytes also has been observed in ethanol-induced
liver injury and fibrosis.18 In addition, a number of
senescence-associated miRNAs has been reported,19

including the members of the miR-34 family, which are
downstream effectors of p53-mediated cellular senes-
cence.20 miR-34a has been found to induce senescence in
The American Journal of Pathology - ajp.amjpathol.org
human hepatocellular carcinoma,21 but Cui et al22 found
that miR-34a inhibits lung fibrosis by inducing fibroblast
senescence. Because miR-34a is a prime putative player
that induces senescence, cell-cycle arrest, and apoptosis,23

and the role of miR-34aeregulated cellular senescence is
different in lung fibrosis from that in the heart and skin
fibrosis, we are interested to explore the effect of miR-34a
on cellular senescence and liver fibrosis during alcoholic
liver injury.

Given these observations, we hypothesized that miR-34a
may promote ethanol-induced liver fibrosis by regulating
cellular senescence in HSCs and hepatocytes. In the
present study, we mainly explored the effect of inhibition
of miR-34a by miR-34a Morpholino on the development of
liver fibrosis and cellular senescence in the alcoholic liver
injury mouse model. Meanwhile, through in vitro experi-
ments, we examined whether silencing of miR-34a
influences the activation and senescence of cultured
human HSCs simulated with LPS. Mainly, we assessed the
role of miR-34aeregulated cellular senescence in ALD by
posing the following four questions: i) is miR-34a and
cellular senescence altered in ethanol-exposed mice and
ALD human liver tissues, ii) does modulation of miR-34a
alter cellular senescence in vitro and in animals with ALD,
iii) is there a different mechanism in altered senescence
response between HSCs and hepatocytes in ALD, and iv)
what are the downstream target genes of miR-34a involved
in cellular senescence in ALD?

Materials and Methods

Materials

Reagents were purchased from Sigma-Aldrich Chemical
Co. (St. Louis, MO) unless otherwise indicated. The rabbit
polyclonal antibodies against a-smooth muscle actin
(a-SMA), desmin, fibronectin 1 (Fn1), p16 (used for
Western blot assay), and plasminogen activator inhibitor-1
(PAI-1) were purchased from Abcam (Cambridge, MA).
The antibodies against hepatocyte nuclear factor 4-a and
p16 were purchased from Santa Cruz Biotechnology (Dal-
las, TX). The SA-b-gal staining and activity assay kits were
purchased from Millipore Sigma (Billerica, MA). The
inhibitor for miR-34a and the control inhibitor were pur-
chased from Thermo Fisher Scientific (Waltham, MA). The
miRNA Isolation Kit for RNA purification was purchased
from Thermo Fisher Scientific (Rockford, IL), and all
selected primers were purchased from Qiagen (Valencia,
CA). The iScript Complementary DNA Synthesis Kit
(170-8891) and iTaq Universal SYBR Green Supermix
(172-5124) were purchased from Bio-Rad (Hercules, CA).

Animal Models

All animal experiments were performed in accordance
with protocols approved by the Baylor Scott & White
2789
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Health Institutional Animal Care and Use Committee.
Male C3H/HeOu/J mice (weight, 25 to 30 g) were
purchased from The Jackson Laboratory (Bar Harbor, ME)
and housed in a temperature-controlled environment
(22�C) with 12:12-hour light-dark cycles. The mice (age,
10 wk; n Z 15) were divided randomly into 3 groups:
wild-type mice, ethanol-fed mice (Lieber-DeCarli liquid
diet ethanol, ethanol feeding for 5 weeks, Rodent Liquid
Diet Lieber-DeCarli ’82; Bio-Serv, Flemington, NJ), and
ethanol-fed mice (for 5 weeks) treated with miR-34a
Morpholino (CAACAACCAGCTAAGACACTGCCAA;
Gene Tools, LLC, Philomath, OR) by two tail vein in-
jections (one on day 3 and one on day 7, 30 mg/kg body
weight) for 5 weeks. The inhibitors of miR-34a are small,
chemically synthetic, single-stranded, nucleic acids
designed to specifically bind to and inhibit endogenous
miR-34a molecules. For chronic intragastric ethanol
administration, mice were implanted aseptically with gas-
trostomy catheters as described.24,25 A dose of liquid
ethanol (5%) or control solution was infused for 5 weeks.24

After 5 weeks of treatment, mice were weighed and
anesthetized. Livers then were excised, weighed, and
portions were fixed in formalin, frozen in Optimal Cutting
Temperature medium (Sakura Finetek USA, Torrance,
CA), snap-frozen in liquid nitrogen, and stored in �80�C
for further use.
Human Healthy Control and Steatohepatitis Samples

Healthy human liver (n Z 3) and liver samples of steato-
hepatitis patients with heavy alcohol consumption (n Z 3)
were purchased from Xeno Tech (Kansas, KS). The samples
were used for RNA extraction, frozen section slides, and
protein extraction. The patients’ characteristics are listed in
Table 1.
Isolation of Mouse HSCs and Hepatocytes, and
Transient Transfection in Cultured Human HSC Lines
and Human Hepatocytes

Mouse HSCs and hepatocytes were isolated by laser capture
microdissection as described previously26 (using desmin as
a marker of HSCs and hepatocyte nuclear factor 4-a as a
Table 1 Characteristics of Healthy Controls and Steatohepatitis Patien

Groups
Samples
ID

Product
name Diagnosis Sam

Control H1255 HHPL.NT Normal Live
H1293 HHPL.NT Normal Live
H1296 HHPL.NT Normal Live

Steatohepatitis H0959 HHPL.HST Steatohepatitis Live
H1063 HHPL.HST Steatohepatitis Live
H1259 HHPL.HST Steatohepatitis Live

The human liver samples listed were purchased from Xeno Tech (Kansas City, K
NA, not applicable.
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marker of hepatocytes). The RNA from laser capture
microdissectioneisolated HSCs and hepatocytes were
extracted with the Arcturus PicoPure RNA isolation kit
(Thermo Fisher Scientific, Grand Island, NY) according to
the instructions provided by the vendor. Expression of
cyclin-dependent kinase inhibitor 2A (p16), cyclin-
dependent kinase inhibitor 1A (p21), and transforming
growth factor-b1 (TGF-b1) was measured in these cells by
quantitative PCR. The in vitro studies were performed in
human HSC (HHSC) lines and human hepatocytes (both
Sciencell, Carlsbad, CA). HHSCs and human hepatocytes
were seeded onto six-well plates the day before transfection.
The cells were transfected with inhibitors of miR-34a or
negative control miRNAs using Lipofectamine RNAiMAX
Transfection Reagent (Thermo Fisher Scientific). After
culture with the transfection mix for 24 hours, the cells were
cultured in normal medium or medium containing 20 ng/mL
LPS for 24 hours. Cells then were harvested and the
expression of fibrosis and senescent markers was evaluated
by quantitative PCR or immunofluorescence. All studies
were performed in quadruplicate unless otherwise specified.

Liver Histologic Analysis and Measurement of Serum
Chemistry

Liver histology was evaluated in liver sections (4- to 5-mm
thick) from mice and human samples by staining with he-
matoxylin and eosin. Hepatic fibrosis was assessed by Sirius
Red staining in liver sections (4- to 5-mm thick) (10 different
fields were analyzed from three different samples obtained
from three different animals). Images were obtained by a
Leica scanner (Buffalo Grove, IL). Collagen deposition in
liver sections with Sirius Red staining was quantified using
Image Pro-Premier software version 9.0 (Media Cybernetics,
Rockville, MD). The serum levels of alanine aminotransferase
were measured by a Dimension RxL Max Integrated Chem-
istry System (Dade Behring, Deerfield, IL) located at Baylor
Scott & White Health. The expression of p16 was detected
in human liver sections by immunohistochemistry.

Total RNA Extraction and Quantitative PCR Analysis

Total RNA was extracted from the liver samples as well as
cultured HHSCs and human hepatocytes using a miRNA
ts

ple Sex
Age,
years

Alcohol
use

Alcohol
frequency Origin

r Female 56 No NA Xeno Tech
r Female 52 No NA Xeno Tech
r Male 46 No NA Xeno Tech
r Male 48 Yes Heavy Xeno Tech
r Male 43 Yes Heavy Xeno Tech
r Male 64 Yes Heavy Xeno Tech

S).
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Figure 1 The expression of miR-34a Morpholino (miR-34a) and cellular senescence are increased in livers from heavy alcohol consumers with
steatohepatitis. A: Expression of miR-34a was upregulated in the livers from steatohepatitis patients with heavy alcohol consumption compared with
healthy controls. B: Histologic changes were detected by hematoxylin and eosin (H&E) staining. C: Ingenuity Pathway Analysis software showed that
several genes implicated in cellular senescence are regulated by miR-34a, including p16, p21, CCL2, and plasminogen activator inhibitor-1 (PAI-1).
D: Increased cellular senescence in heavy alcohol consumers with steatohepatitis was verified by senescence-associated b-galactosidase (SA-b-gal)
staining compared with healthy controls. n Z 3 (A). *P < 0.05 versus healthy controls. Scale bars: 100 mm (B); 50 mm (D). Original magnification, �10
(B); �20 (D). Sirt1, sirtuin 1.

miR-34a Regulation of Hepatic Senescence
isolation Kit. The expression of fibrosis markers such as
a-SMA, Fn1, and Col1a1, and senescence markers such
as p16, PAI-1, and monocyte chemoattractant protein-1/
CC-chemokine ligand 2 (MCP1/CCL2) were measured by
quantitative PCR.27 Primers were designed for the se-
quences described on https://www.ncbi.nlm.nih.gov/nuccore
per the listed accession numbers. The mouse PCR primers
for Col1a1 (PPM03845F), a-SMA (PPM04483A), p16
(PPM02906F), p21 (PPM02901B), CCL2 (PPM03151G),
PAI-1 (PPM03093C), SIRT1 (PPM05054A), TGF-b1
(PPM02991B), drosophila mothers against decapentaplegic
protein 2 (Smad2) (PPM04430C), drosophila mothers
against decapentaplegic protein 3 (Smad3) (PPM04461C),
and glyceraldehyde-3-phosphate dehydrogenase (PPM02946E)
were purchased from Qiagen. The human PCR primers
for a-SMA (PPH01300B), Col1a1 (PPH01299F), CCL2
(PPH00192F), Fn1 (PPH00143B), p16 (PPH00207C),
TGF-b1 (PPH00508A), PAI-1 (PPH00215F), and glyc-
eraldehyde-3-phosphate dehydrogenase (PPH00150F)
were purchased from Qiagen. The genes related to
cellular senescence (p16, p21, CCL2, and PAI-1) were
analyzed using Ingenuity Pathway Analysis (IPA) soft-
ware (Qiagen, Redwood City, CA) for the functionally
relevant pathway. IPA is a web-based functional analysis
software that helps researchers to model, analyze, and
understand the complex biological and chemical systems
in life science research.28 By using IPA, we can under-
stand if there is a functional relationship between miR-
34a and the earlier-described senescent genes.
The American Journal of Pathology - ajp.amjpathol.org
Immunofluorescence and Western Blot Assay

The expression ofa-SMA in liver section (6- to 8-mm thick) and
the expression of PAI-1 in cultured HHSCs were evaluated by
immunofluorescence as described.27 For the detection of PAI-1
expression, the cells were seeded on glass coverslips. Before
staining, the cells were washed with 1� phosphate-buffered
saline. Then, immunofluorescent staining for PAI-1, similar to
staining in liver sections, was performed. After staining, images
were obtained using the Leica AF 6000 Modular Systems. The
protein of liver samples was extracted with lysis buffer and
quantified by the bicinchoninic acid method (Pierce Biotech-
nology, Inc., Rockford, IL). Then, the protein expression of a-
SMA, Fn1, and p16 was evaluated by immunoblotting as
described.26 Protein expression was visualized and quantified
using the LI-COR Odyssey Infrared Imaging System
(LI-COR Bioscience, Lincoln, NE).

SA-b-Gal Staining and Activity Assay

Cellular senescence was measured in frozen liver sections
from mice (n Z 4) and human samples (n Z 3; 10-mm
thick) by staining for SA-b-gal using a commercially
available kit according to the instructions provided by the
vendor. The pictures from one representative slide are
shown for SA-b-gal staining. Images were obtained by a
Leica scanner. The SA-b-galepositive areas were measured
in at least three microscope fields from each liver section
using the Image Pro-Analyzer software. SA-b-gal activity in
2791
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Figure 2 The mRNA and protein levels of senescence markers are
increased in the livers of heavy alcohol consumers with steatohepatitis
compared with healthy controls. A: The hepatic mRNA expression of
senescence-related genes [CCL2 and plasminogen activator inhibitor-1 (PAI-
1)] was increased in steatohepatitis patients compared with healthy controls.
B and C: Increased expression of p16 in livers from steatohepatitis patients
was observed by immunohistochemistry and Western blot assays compared
with healthy controls (red arrows show direct p16-positive staining). n Z 3
(A and C). *P < 0.05 versus healthy controls. Scale bar Z 25 mm (B).
Original magnification, �40 (B). C, healthy control; S, steatohepatitis.
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HHSCs was detected by a commercial kit (mentioned
earlier) according to provided instructions.

Statistical Analysis

All data are expressed as means � SEM. The differences
between groups were analyzed by an unpaired t-test when
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two groups were compared or by one-way analysis of
variance when more than two groups were compared
using SPSS 22.0 software (IBM, Armonk, NY). A
P value < 0.05 was used to indicate statistically significant
differences.
Results

Expression of miR-34a Is Upregulated along with
Enhanced Cellular Senescence in the Livers from
Steatohepatitis Patients with Heavy Alcohol
Consumption

miR-34a plays a critical role in both liver physiology
and the pathogenesis of alcoholic liver diseases. Quan-
titative PCR revealed that expression of miR-34a was
increased in the livers of steatohepatitis patients with
heavy alcohol consumption compared with healthy
controls (Figure 1A). Typical pathologic changes were
observed in liver sections from steatohepatitis patients
compared with healthy controls (Figure 1B). IPA was
performed to ascertain the cellular context of the
differentially expressed signaling mechanisms related to
miR-34aemediated liver injury. IPA analysis indicated
that the cellular senescence pathway was the most
altered signaling through p16, p21, CCL2, PAI-1, and
SIRT1-related pathologic mechanisms (Figure 1C). SA-
b-gal staining showed the increased cellular senescence
in livers from patients with steatohepatitis compared
with healthy controls (Figure 1D). As well, the
messenger RNA (mRNA) expression of senescence
markers (PAI-1 and CCL2) was increased in steatohe-
patitis patients compared with healthy controls
(Figure 2A). Increased protein expression of the senes-
cence marker p16 in livers from steatohepatitis patients
was verified by immunohistochemistry and Western
blot assay when compared with healthy controls
(Figure 2, B and C).
*

†

EtOH  EtOH +
 miR-34a MO

*

†

EtOH  EtOH +
miR-34a MO

Figure 3 Ethanol feeding induces upregula-
tion of miR-34a in the liver and results in alcoholic
liver injury. A: Expression of miR-34a was detected
by real-time PCR. B: Inhibition of miR-34a
decreased alanine aminotransferase (ALT) serum
levels in ethanol-fed mice. C and D: Histologic
changes were measured by hematoxylin and eosin
(H&E) staining and scored. n Z 4 (AeD).
*P < 0.05 versus wild-type control mice;
yP < 0.05 versus EtOH-fed mice. Scale bar Z 25
mm (C). Original magnification, �40 (C). EtOH,
ethanol; miR-34a MO, miR-34a Morpholino.
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Ethanol Feeding Increases miR-34a Expression and
miR-34a Morpholino Treatment Decreases Liver
Damage in Ethanol-Fed Mice

Ethanol feeding significantly increased the hepatic expres-
sion of miR-34a compared with wild-type control mice.
A

C

*

†

0

1

2

3

Control EtOH EtOH +
miR-34a MO

α-
SM

A 
pr

ot
ei

n 
le

ve
ls

(fo
ld

 c
ha

ng
e)

TG
F-

β1
 m

R
N

A 
re

la
tiv

e 
ex

pr
es

si
on

 (f
ol

d 
ch

an
ge

)

α-SMA

β-actin

C
on

tr
ol

Et
O

H

Et
O

H
+ 

m
iR

-3
4a

 M
O

 

F

β-ac

0

1

2

3

4

5

Control

Sm
ad

2 
m

R
N

A 
re

la
tiv

e 
ex

pr
es

si
on

 (f
ol

d 
ch

an
ge

)

D

*

†

0

0.4

0.8

1.2

1.6

2

Control EtOH EtOH +
miR-34a MO

Figure 5 Inhibition of miR-34a reduces the expression of a-smooth muscle a
growth factor-b1 (TGF-b1)/Smad2/3 signaling pathway. A and B: Immunoblot for
the liver was decreased after miR-34a Morpholino treatment in ethanol-fed mice
mRNA expression of TGF-b1, Smad2, and Smad3 was decreased after miR-34a Morph
mice; yP < 0.05, yyP < 0.01 versus EtOH-fed mice. EtOH, ethanol; Fn1, fibronect

The American Journal of Pathology - ajp.amjpathol.org
Furthermore, miR-34a expression was decreased in ethanol-
fed mice treated with miR-34a Morpholino compared with
ethanol-fed mice (Figure 3A). Treatment with miR-34a
Morpholino to ethanol-fed mice decreased alanine amino-
transferase serum levels compared with ethanol-fed mice
(Figure 3B). In ethanol-fed mice, liver cell swelling,
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Figure 6 Inhibition of miR-34a results in decreased cellular senescence in total liver and hepatocytes but increased senescence in HSCs. A: There was
enhanced cellular senescence shown by senescence-associated b-galactosidase (SA-b-gal) staining in liver sections from ethanol-fed mice compared with
control mice. Cellular senescence was reduced in the livers from ethanol-fed mice treated with miR-34a Morpholino compared with ethanol-fed mice. B: The
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compared with control mice and decreased expression of these senescence-related genes in total liver from ethanol-fed mice treated with miR-34a Morpholino
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irregular nucleus size, shrinkage in varying degrees, and
fatty degeneration of a large number of liver cells were all
observed (Figure 3C). These pathologic changes and path-
ologic scores were reduced in ethanol-fed mice treated with
miR-34a Morpholino compared with ethanol-fed mice
(Figure 3, C and D).

miR-34a Morpholino Treatment Decreases Ethanol-
Induced Liver Fibrosis

Sirius red staining showed that liver fibrosis was increased
in ethanol-fed mice compared with control mice, but was
reduced significantly in ethanol-fed mice treated with miR-
34a Morpholino compared with ethanol-fed mice
(Figure 4A). By immunofluorescence, increased expres-
sion of a-SMA, a marker of HSC activation, was observed
in ethanol-fed mice compared with control mice
(Figure 4B). In mice fed with ethanol and treated simul-
taneously with miR-34a Morpholino, there was reduced
expression of a-SMA compared with ethanol-fed mice
(Figure 4B). Furthermore, the mRNA expression of
fibrosis markers a-SMA and Col1a1, as well as protein
expression of a-SMA and Fn1, was decreased in total liver
samples from miR-34a Morpholino-treated mice with
ethanol feeding compared with ethanol-fed mice
(Figures 4C and 5, A and B). There also was decreased
expression of TGF-b1, Smad2, and Smad3 in total liver
2794
samples from ethanol-fed mice treated with miR-34a
Morpholino compared with ethanol-fed mice (Figure 5,
CeE). In addition, the increased expression of TGF-b1
was observed in isolated HSCs and hepatocytes from
ethanol-fed mice compared with control mice, which was
reduced by miR-34a Morpholino treatment (Figure 6, D
and E). These findings suggest that TGF-b1/Smad
signaling is involved in miR-34a modulation of alcoholic
liver fibrosis.

miR-34a Morpholino Treatment Decreases Ethanol-
Induced Cellular Senescence in Total Liver and Isolated
Hepatocytes, but Increases Senescence in Isolated
HSCs from Ethanol-Fed Mice

To further evaluate the underlying mechanisms of miR-34a
modulation of liver fibrosis during ALD, we measured the
changes in cellular senescence in total liver, isolated HSCs,
and hepatocytes. We observed enhanced senescence
(reflected by SA-b-gal staining) in livers of ethanol-fed mice
compared with control mice (Figure 6A). However,
administration of miR-34a Morpholino to ethanol-fed mice
reduced cellular senescence in total liver compared with
ethanol-fed mice (Figure 6A). As shown by quantitative
PCR, ethanol-fed mice had increased expression of the
senescence-related genes (p16, p21, CCL2, and PAI-1) and
decreased SIRT1 mRNA expression in total liver compared
ajp.amjpathol.org - The American Journal of Pathology
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with control mice, which was reversed by treatment with
miR-34a Morpholino (Figure 6, B and C). Interestingly, the
expression of the senescence gene p16 was decreased in
HSCs isolated from ethanol-fed mice compared with control
mice, which was reversed owing in part to miR-34a Mor-
pholino treatment (Figure 6D), suggesting that senescence
of HSCs was increased after miR-34a Morpholino treatment
in ethanol-fed mice. Conversely, miR-34a Morpholino
treatment decreased ethanol-induced expression of the
senescence gene p21 in hepatocytes (Figure 6E).

Silencing of miR-34a Decreases the Expression of
Fibrosis Genes in Cultured HHSCs and Hepatocytes and
Increases the Expression of Senescence Markers in
HHSCs

By quantitative PCR, we showed that LPS increased the
expression of TGF-b1, a-SMA, Col1a1, and Fn1 in HHSCs
compared with the basal group; however, the expression of
these genes was decreased after silencing of miR-34a
(Figure 7, A and B), which suggests that silencing of
miR-34a inhibited activation of HSCs. Similarly, silencing
of miR-34a decreased LPS-induced fibrosis gene expression
in cultured human hepatocytes (Figure 8). At the same time,
LPS decreased mRNA expression of the senescence-related
gene p16 in HHSCs compared with the basal group, which
The American Journal of Pathology - ajp.amjpathol.org
was reversed by incubation with miR-34a inhibitor
(Figure 7C). Silencing of miR-34a increased mRNA and
protein expression of the senescence-related gene PAI-1 in
HHSCs treated with LPS (Figure 7, C and D). Moreover,
silencing of miR-34a increased SA-b-gal activity in cultured
HHSCs stimulated with LPS (Figure 7E).

Discussion

Long-term alcohol consumption and abuse results in liver
damage, fibrosis/cirrhosis, and, ultimately, liver failure.1

The development of alcoholic liver fibrosis/cirrhosis is
associated with the activation/proliferation of HSCs, secre-
tion of proinflammatory cytokines, and increased deposition
of ECM proteins.29 Several studies have shown that expres-
sion of liver miRNAs is altered in ethanol-fed mice,5,30 but
the functions of these miRNAs in the pathogenesis of ALD,
especially in alcoholic liver fibrosis, remains largely unclear.
In our study, the findings elucidated that the expression of
miR-34a was increased in mice liver during alcoholic liver
injury as well as in the livers of heavy drinkers with steato-
hepatitis compared with healthy controls. After inhibition of
miR-34a by Vivo Morpholino treatment, cellular senescence
increased in HSCs and decreased in total liver and hepato-
cytes, resulting in decreased liver fibrosis in ethanol-fed mice.
In in vitro experiments, silencing of miR-34a similarly
2795
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increased the senescence of cultured human HSCs stimulated
by LPS. Therefore, our data suggest that the profibrotic effect
of miR-34a is related to decreased cellular senescence in
HSCs and increased senescence in total liver and hepatocytes
during ALD.

Cellular senescence, a stable cell-cycle arrest blocking
further proliferation, is involved in multiple pathophysio-
logical processes.17,31 Ethanol-induced oxidative stress,
which is considered a key player leading to cellular
senescence because alcohol consumption increases the
production of reactive oxygen species and reduces cellular
antioxidant levels,32 causes double-strand DNA breaks.33,34

A previous study showed that hepatocyte senescence,
characterized as increased expression of p21 in liver
sections of patients with ALD, is linked to the development
of fibrosis during alcohol-related liver disease.35 Similarly,
in our study, we observed that chronic ethanol feeding
increased miR-34a expression, SA-b-gal activity, and
senescence gene expression (p16, p21, CCL2, and PAI-1) in
total liver as well as p21 expression in hepatocytes, sug-
gesting that upregulation of miR-34a leads to a cellular
senescence increase in total liver and hepatocytes and
contributes to the progression of liver fibrosis. Interestingly,
we observed enhanced cellular senescence in the livers of
steatohepatitis patients with heavy alcohol consumption
along with upregulation of hepatic miR-34a. The majority of
senescence-associated miRNAs are involved in the regula-
tion of p53/p21/pRb or p16/pRb pathways.14 miR-34 is a
direct transcriptional target of tumor suppressor p53, upre-
gulation of miR-34a may inhibit SIRT1, thus activating p53,
2796
and enhance p53-mediated cell-cycle arrest and apoptosis.36

In our study, we identified that the expression of SIRT1 was
decreased in total liver of ethanol-fed mice along with
increased expression of miR-34a, which may explain why
ethanol-induced expression of miR-34a contributed to the
cellular senescence increase in total liver. In support of our
findings, other studies showed that enhanced expression of
miR-34a contributes to the suppression of hepatocyte
proliferation during the late phase of liver regeneration after
partial hepatectomy,37 and the prosenescence effect of
miR-34a by targeting SIRT1 also has been observed in
mesenchymal stem cells and vascular smooth muscle
cells.38,39 Furthermore, activation of miR-34a/SIRT1/p53
signaling has been proved to promote liver fibrosis by
inducing apoptosis in hepatocytes.11

During ALD, damaged or senescent hepatocytes can
induce activation of HSCs, resulting in liver fibrosis.40

Activation of HSCs is the key step in the development of
liver fibrosis.41 In response to alcohol-induced injury, HSCs
are activated and a-SMA and Col1a1 are upregulated.42

However, senescence of activated HSCs has been found to
limit fibrosis during carbon tetrachlorideeinduced liver
injury.17,43 In this study, we observed higher expression of
miR-34a in alcoholic liver injury and decreased senescence
marker (p16) expression in HSCs, although the cellular
senescence in total liver and hepatocytes was increased,
which contributes to the development of alcohol-induced
liver fibrosis. After inhibition of miR-34a, the expression
of senescence genes increased in HSCs, but decreased in
total liver and hepatocytes from ethanol-fed mice. Along
ajp.amjpathol.org - The American Journal of Pathology
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with enhanced HSC senescence resulting from inhibition of
miR-34a, cytokines and ECM production was decreased as
a result, leading to alleviation of liver fibrosis in ethanol-fed
mice. In addition, it is well known that LPS/endotoxin plays
an important role in ALD. First, enhanced translocation of
Gram-negative, bacteria-derived, endotoxin/LPS itself from
the gut into the portal circulation leads to activation of
Kupffer cells through the LPS/Toll-like receptor 4 pathways
to produce reactive oxygen and nitrogen species, tumor
necrosis factor a, and other proinflammatory mediators,
providing pivotal noxious effects on other liver cells and
particularly on hepatocytes.44 Second, a previous study
reported that activation of LPS/Toll-like receptor 4 signaling
in HSCs promoted liver fibrogenesis.45 Third, LPS/endo-
toxin increased activation of NF-kB by high ethanol treat-
ment in rat hepatocytes.46 Fourth, it recently was reported
that LPS stimulation in vitro mimics conditions of binge
alcohol drinking in vivo.47 Therefore, in view of the vital
role of LPS in ALD, we used LPS to stimulate HSCs and
hepatocytes in vitro and observed the effects of miR-34a on
the expression of fibrosis and senescence markers. We
observed that knockdown of miR-34a decreased LPS-
induced fibrosis marker expression in human HSCs and
hepatocytes and increased senescence gene expression in
human HSCs stimulated by LPS, which confirms that in-
hibition of miR-34a contributes to decreased activation and
increased senescence of HSCs. Supporting our work, other
studies have reported that miR-34a promotes HSC activa-
tion by targeting peroxisome proliferator-activated receptor
g48 or acyl-CoA synthetase long-chain family member 1.49

However, there are few studies related to the effect of miR-
34a on senescence of HSCs and our current study provides a
better understanding of these effects. Collectively, our
findings suggested that miR-34a contributes to the pro-
gression of liver fibrosis during ALD. Conversely, there is a
study showing that miR-34a can inhibit lung fibrosis by
inducing senescence in lung fibroblast.22 Taken together,
whether cellular senescence is regulated by miR-34a,
inducing either profibrosis or antifibrosis, essentially de-
pends on which cell population is influenced primarily by
this cellular process. In future studies, we need to explore
the effect of miR-34 further in cellular senescence on spe-
cific liver cells in miR-34a knockout mice.

TGF-b1 is an important cytokine expressed after liver
injury and is the most important cytokine stimulating
fibrogenesis in HSCs.42 In our study, we observed decreased
expression of TGF-b1 and downstream molecules Smad2
and Smad3 in ethanol-fed mice with miR-34a Morpholino
treatment. Therefore, it may be possible that inhibition of
miR-34a decreased hepatocyte damage and senescence,
which reduced activation of TGF-b1/Smad2/3 signaling
induced by ethanol feeding, resulting in decreased activation
of HSCs. Decreased activation of HSCs together with
increased senescence of activated HSCs contributes to
regression of alcoholic liver fibrosis in ethanol-fed mice
with miR-34a Morpholino.
The American Journal of Pathology - ajp.amjpathol.org
In summary, the present study identifies that miR-34a
reduces senescence of HSC and increases cellular senes-
cence in hepatocytes and total liver during alcoholic liver
fibrosis, which may present a new therapeutic target for
alcohol-induced liver fibrosis. Further detailed studies on
the specific genes that may be the targets in HSCs by
miR-34a need to be performed to fully understand the
mechanism of miR-34a involved in the senescence and liver
fibrosis.
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