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Abstract

OBJECTIVE—The purposes of this study are to develop quantitative imaging biomarkers 

obtained from high-resolution CTs for classifying ground-glass nodules (GGNs) into atypical 

adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive 

adenocarcinoma (MIA), and invasive adenocarcinoma (IAC); to evaluate the utility of contrast 

enhancement for differential diagnosis; and to develop and validate a support vector machine 

(SVM) to predict the GGN type.

MATERIALS AND METHODS—The heterogeneity of 248 GGNs was quantified using custom 

software. Statistical analysis with a univariate Kruskal-Wallis test was performed to evaluate 

metrics for significant differences among the four GGN groups. The heterogeneity metrics were 

used to train a SVM to learn and predict the lesion type.

RESULTS—Fifty of 57 and 51 of 57 heterogeneity metrics showed statistically significant 

differences among the four GGN groups on unenhanced and contrast-enhanced CT scans, 

respectively. The SVM predicted lesion type with greater accuracy than did three expert 

radiologists. The accuracy of classifying the GGNs into the four groups on the basis of the SVM 

algorithm was 70.9%, whereas the accuracy of the radiologists was 39.6%. The accuracy of SVM 

in classifying the AIS and MIA nodules was 73.1%, and the accuracy of the radiologists was 

35.7%. For indolent versus invasive lesions, the accuracy of the SVM was 88.1%, and the accuracy 

of the radiologists was 60.8%. We found that contrast enhancement does not significantly improve 

the differential diagnosis of GGNs.
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CONCLUSION—Compared with the GGN classification done by the three radiologists, the SVM 

trained regarding all the heterogeneity metrics showed significantly higher accuracy in classifying 

the lesions into the four groups, differentiating between AIS and MIA and between indolent and 

invasive lesions. Contrast enhancement did not improve the differential diagnosis of GGNs.

Keywords

computer-aided diagnosis; ground-glass opacity lesions; imaging biomarkers; International 
Association for the Study of Lung Cancer guidelines

Lung cancer is the leading cause of cancer-related deaths worldwide. The National Cancer 

Institute estimates that there will be 221,200 new cases of lung cancer in 2015, with 158,000 

deaths due to lung cancer. The introduction of low-dose screening CT has led to early 

detection of small lung adenocarcinoma, with a significant decrease in death due to lung 

cancer [1, 2]. On CT screening examinations, nodules appear as solid, part-solid, or nonsolid 

lesions, with a significant portion of part-solid and nonsolid lesions identified as malignant.

To address the problem of accurately classifying lung nodules, in 2011, the International 

Association for the Study of Lung Cancer (IASLC), the American Thoracic Society, and the 

European Respiratory Society proposed a new lung adenocarcinoma classification [3] 

according to which GGNs are classified as atypical adenomatous hyperplasia (AAH), 

adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive 

adenocarcinoma (IAC) on the basis of the size of the lesion and the presence of a solid 

component on pathologic analysis. The new classification has had a significant impact on 

patient therapy options and followup because prognosis varies widely among the different 

pathologic subtypes [4, 5]. Recent studies have shown that patients with early-stage AIS and 

MIA have a disease-free survival rate of almost 100%, whereas patients with IACs have a 

disease-free survival rate of 60–70% [6–9]. Therefore, it is crucial to determine the risk of 

lesion malignancy accurately on diagnostic CT examination, to enable early intervention. 

Although CT images have been shown to identify the pathologic invasiveness of lung lesions 

[10], it is not clear how the 2011 lesion classification guidelines can be translated into 

imaging findings on diagnostic CT examinations [11–14].

The three objectives of the present study are to develop and validate quantitative imaging 

biomarkers obtained from high-resolution CT examinations for classifying GGNs as AAH, 

AIS, MIA, or IAC; to evaluate the utility of contrast enhancement for differential diagnosis 

of the lesions; and develop and to validate a machine learning algorithm based on the 

support vector machine (SVM) for predicting the GGN type. Analysis was performed using 

open-source software that was developed for quantifying tumor heterogeneity, which is 

expected to encourage other users to validate the imaging biomarkers with the use of a 

standardized set of quantification tools.

Materials and Methods

Software Module

An open-source software module, HeterogeneityCAD, was developed as part of the image 

processing and navigation software 3D Slicer (version 4.3.0, Brigham and Women’s 
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Hospital) [15]. The module was developed in the programming language Python (version 

4.3.0, Python Software, Brigham and Women’s Hospital) and uses a cross-platform 

application framework for designing the user interface (Qt, version 4.8.7, Qt). The module 

allows the easy input of the 3D image volume and the label map that defines the ROI to be 

analyzed. Typically, the ROI outlines the tumor on diagnostic imaging. The image volume 

could be from MRI, CT, or PET/CT examinations or from parameter maps derived from 

pharmacokinetic models that analyze contrast perfusion. The module quantifies the 

heterogeneity of the ROI with the use of 57 metrics that are subdivided into first-order 

statistics, shape and morphologic metrics, texture metrics, geometric metrics, and Rényi 

dimensions. First-order statistics include minimum, maximum, and mean signal intensity 

values within the ROI, skewness, variance, and kurtosis. Shape and morphologic metrics 

include volume, surface area, compactness, and maximum 3D diameter. The texture metrics 

are derived from the gray-level co-occurrence matrix (GLCM) and the gray-level run-length 

(GLRL) matrix. The metrics quantify the texture or coarseness of the ROI. The Rényi 

metrics assume that the ROI is a fractal, and box counting and Rényi dimensions are 

computed. A full list of metrics and their definitions are provided at [16]. The module can 

also be run from the command line to enable batch processing of tumor volumes and label 

maps.

Patient Selection

The study was HIPAA compliant and was approved by an institutional review board. 

Informed consent was waived because the study is retrospective.

A total of 235 patients (93 men [age, 30–76 years] and 142 women [age, 31–77 years]) were 

included in this study. The patients had a total of 248 lesions, including AAH (n = 17), AIS 

(n = 73), MIA (n = 99), and IAC (n = 59). Lesions included solid, part-solid, and pure 

ground-glass opacity nodules (GGNs) that were less than 30 mm in diameter on preoperative 

CT evaluation.

All patients underwent diagnostic preoperative CT, in addition to lung surgery. Of the 235 

patients (248 nodules), 109 patients (122 nodules) also were administered contrast material 

and underwent postoperative CT, which resulted in the diagnosis of AAH (n = 7), AIS (n = 

49), MIA (n = 39), and IAC (n = 27). In addition, all patients underwent segmentectomy or 

lobectomy via video-assisted thoracic surgery, and the pathologic finding for the lesion 

served as the reference standard. No patient had a previous primary lung tumor.

CT Technique

The area covered by the chest CT examination extended from the apex to the base of the 

lung, including the chest wall and axillary fossa. The first dataset, which consisted of 

preoperative and postoperative CT scans of 122 nodules, was acquired using a 64-MDCT 

system (GE LightSpeed VCT or GE Discovery CT750 HD, GE Healthcare), with use of the 

following parameters: section width, 1.25 mm; reconstruction interval, 1.25 mm; pitch, 

0.984; tube voltage, 120 kV; tube current, 250 mA; display FOV, 28 × 28 cm to 36 × 36 cm; 

matrix size, 512 × 512; and pixel size, 0.55–0.7 mm. All patients received a bolus of 80–100 

mL of IV contrast medium (350 mg I/mL; Optiray, Mallinckrodt) administered at a rate of 

Li et al. Page 3

AJR Am J Roentgenol. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3–4 mL/s with the use of a power injector via an 18- or 20-gauge cannula in an antecubital 

vein. The postoperative CT scan was acquired 60 seconds after the administration of contrast 

medium. Both standard and high-resolution reconstruction kernels were used for image 

reconstructions. The second dataset, which consisted only of unenhanced CT images of 126 

nodules, was acquired using either a 16-MDCT system (Sensation 16, Siemens Healthcare) 

with use of a section width of 1 mm, a reconstruction interval of 1 mm, pitch of 1, tube 

voltage of 120 kV, and tube current of 150 mA or a 64-MDCT system (GE Discovery 

CT750 HD, GE Healthcare) with use of the same parameters used for preoperative CT.

Image Analysis

The CT images, which were obtained in DICOM format, were loaded in the image 

processing and navigation software. A chest radiologist with 16 years of experience 

delineated the lesion on preoperative and postoperative CT images. A threshold was initially 

set to differentiate the nodule from the surrounding parenchyma. After visual confirmation 

that the nodule was included, the user confirmed the choice of the signal intensity threshold 

for painting around the nodule. Using the threshold paint option, the nodule was segmented 

on preoperative CT and postoperative CT images. Care was taken to ensure that the vessels 

were not included in the segmentation mask. The CT volume and the segmentation mask 

were then provided to the software module. The heterogeneity metrics were computed for 

the segmented lesions on preoperative and postoperative CT. The heterogeneity metrics were 

saved and statistically analyzed for the four GGN groups.

Support Vector Machine

An SVM has been developed that uses heterogeneity metrics for predicting the GGN type 

[17–19]. The SVM algorithm learns and predicts the complex nonlinear mapping from the 

57-tuple vector consisting of the heterogeneity metrics (i.e., the input variable) to the lesion 

type (i.e., the output variable). To avoid numeric inaccuracies and problems with a large 

range of values for the parameters, the 57-tuple input vector for the training set is first scaled 

so that each of the elements of the vector lies between 0 and 1. A radial basis function (RBF) 

kernel is used to design the SVM so as to separate the 57-tuple vector with use of a complex 

decision boundary based on the lesion type. The RBF kernel nonlinearly maps input samples 

into a higher dimensional space. The RBF kernel has a form similar to that of a gaussian 

kernel and has two parameters that need to be optimized: a penalty factor for the error term 

(C) and a free parameter for the RBF (γ). We performed an N-fold cross-validation by first 

dividing the training set into N equally distributed subsets to determine the optimal C and γ 
parameters. The SVM was then sequentially trained on the N − 1 subsets and was tested on 

the one remaining subset. A grid search using exponentially growing values was used to 

sequentially choose (C, γ) pairs. The (C, γ) pair that provided the best cross-validation 

accuracy was chosen for the trained SVM. The dataset was divided into training and testing 

phases in which 80% of the samples were used for training the SVM and the remaining 20% 

of the samples were used for testing the SVM.

Manual Classification of the Lesion

Three expert chest radiologists categorized the lesions on the basis of the new classification 

of lung adenocarcinoma published in 2011 [3]. Each case was loaded in image processing 
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and navigation software with the lung window settings (width, 1400; level, −500) so as to 

highlight the lesions. The software provided the user with the option of measuring the size of 

the lesion and the size of the solid component used in classification of the lesion. The expert 

radiologists classified the lesions sequentially on preoperative and postoperative CT.

Statistical Analysis

All four classes—The metrics computed on preoperative and postoperative CT were 

compared for all four classes (AAH, AIS, MIA, and IAC) with use of the univariate Kruskal-

Wallis test. A p < 0.05 was considered to denote statistical significance.

Adenocarcinoma in situ versus minimally invasive adenocarcinoma—The 

heterogeneity on preoperative and postoperative CT was compared for the AIS and MIA 

categories with use of the Mann-Whitney test because the metrics were assumed to be 

nonnormally distributed.

Indolent versus invasive lesions—With AAH and AIS considered indolent 

carcinomas, and with MIA and IAC considered invasive carcinomas, the metrics computed 

from preoperative and postoperative CT were compared for the two groups with use of the 

Mann-Whitney statistical test, under the assumption that the metrics were nonnormally 

distributed.

Support vector machine prediction—The output of the SVM, which predicts lesion 

type, was compared with the pathologic results. The accuracy of predicting the lesions by 

the SVM was then computed.

Radiologists’ prediction—The lesion type predicted by the three radiologists was 

compared with the ground-truth classification obtained from pathologic analysis. The 

accuracy of manual classification of the lesions was computed for preoperative and 

postoperative CT examinations.

Interrater reliability—The Fleiss kappa value was also calculated to evaluate the interrater 

reliability. A kappa value of 1 implies perfect agreement, whereas values of less than 1 

imply less than perfect agreement. The agreement categories used in the study were defined 

as follows: poor agreement, κ ≤ 0.20; fair agreement, 0.21 < κ ≤ 0.40; moderate agreement, 

0.41 < κ ≤ 0.60; good agreement, 0.61< κ ≤ 0.80; and very good agreement, 0.81 < κ ≤ 

1.00. All statistical analyses were conducted using Matlab software (version 2013b, 

MathWorks).

Results

Three-Dimensional Slicer Module

Figure 1 shows the layout for the module in the image processing and navigation software. 

The module allows easy input of the DICOM volume and the segmented lesion label map 

for quantifying tumor heterogeneity. The various subpanels within the module show the 

heterogeneity metrics that have been selected for computation. When the metrics have been 

computed, the user has the option of saving the metrics for further statistical analysis.
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Statistical Analysis of Tumor Heterogeneity Metrics on Preoperative CT

Figure 2 shows the preoperative CT images for the four types of GGNs. Subtle changes in 

the lesion appearance on CT differentiate the four types of GGNs. The summary statistics 

for representative heterogeneity metrics are listed in Table 1. Of the 57 metrics that were 

computed for the segmented tumor on preoperative CT, 50 metrics showed significant 

differences for the four types of GGNs. In order of decreasing significance, the metrics that 

showed maximum differentiation between the four lesion groups were maximum signal 

intensity, variance of the signal intensity values, variance in the GLCM, autocorrelation, and 

the number of gray levels. The mean signal intensity (expressed as Hounsfield units) for the 

four lesion groups was as follows: for AAH, −805.3 HU; for AIS, −806.3 HU; for MIA, 

−785.7 HU; and for IAC, −736.6 HU. The increasing signal intensity values for the four 

lesion groups are directly related to the increasing size of the solid component of the lesions, 

although the mean signal intensities of the AAH and AIS groups are similar. Among the four 

groups, there is greater differentiation in maximum signal intensity, which, again, is caused 

by the increased size of the solid component of the lesion. Mean entropy, a measure of 

disorder, increases from AAH to IAC lesions as follows: for AAH, 1772.7; for AIS, 2696; 

for MIA, 6081; and for IAC, 22,019; these findings confirm that IAC lesions have a more 

disorganized structure than AAH, AIS, or MIA lesions.

The mean volumes (25th and 75th percentiles) of the four lesion groups were as follows: for 

AAH, 0.43 mL (0.11 and 0.32 mL); for AIS, 0.53 mL (0.18 and 0.47 mL); for MIA, 0.94 

mL (0.27 and 1.08 mL); and for IAC, 2.10 mL (0.53 and 2.23 mL). The mean maximum 3D 

diameters (25th and 75th percentiles) of the GGNs were as follows: for AAH, 12.0 mm 

(8.31 and 12.11 mm); for AIS, 13.7 mm (10.14 and 14.11 mm); for MIA, 16.1 mm (11.55 

and 21.05 mm); and for IAC, 22.5 mm (14.92 and 29.48 mm). It is interesting to note that 

the mean compactness for four lesions monotonically increases, indicating that the IAC 

lesions were more compact than the other three lesions.

The texture of the segmented lesions was quantified using the GLCM. The GLCM describes 

the second-order joint probability function of an image where the (i, j) element of the 

GLCM indicates the number of times the gray levels i and j occur at a specific pixel distance 

in a particular direction. The variance and the autocorrelation of the GLCM matrix show 

significant differences among the four lesion groups. The texture of the segmented lesion is 

also quantified in terms of the GLRL matrix. The element (i, j) of the GLRL matrix 

represents the number of times (j) that a signal intensity value (i) occurs consecutively in a 

specified direction. The short-run emphasis (SRE) computed from the GLRL matrix 

measures the distribution of short runs, which indicates small structures with similar signal 

intensity values. The higher the SRE, the finer the structures. SRE is not a statistically 

significant parameter for differentiating the four lesion groups. On the other hand, the long-

run emphasis (LRE) metric computes the distribution of long runs, indicating larger or 

coarser structures with similar signal intensity values. The LRE is a statistically significant 

parameter differentiating the four lesion groups. The low gray-level run emphasis metric 

measures the distribution of low gray levels, and the high gray-level run emphasis metric 

measures the distribution of higher gray level values. The low gray-level run emphasis is not 

a statistically significant metric that differentiates the lesions; the high gray-level run 
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emphasis differentiates the four groups. Similarly, short-run low gray-level emphasis and 

short-run high gray-level emphasis quantify the joint distribution of short runs and low-level 

signal intensity values and short runs and high-level signal intensity values, respectively. The 

short-run low gray-level emphasis does not show statistically significant differences among 

the four groups; the short-run high gray-level emphasis does show statistically significant 

differences among the four groups.

The metrics for all 248 nodules for which preoperative CT scans were available are 

summarized in Table 2.

Statistical Analysis of Tumor Heterogeneity Metrics on Postoperative CT

On postoperative CT, 51 metrics showed significant differences among the lesion groups. 

SRE was the only metric that showed significance on postoperative CT but not on 

preoperative CT. Table 1 shows that the trend for the metrics is very similar for postoperative 

CT and preoperative CT. Although the metrics computed from postoperative CT showed 

greater significance in differentiating among the four GGN groups compared with the 

metrics obtained from preoperative CT, the improvement in the differential diagnosis of the 

nodule was minimal.

Statistical Analysis of Tumor Heterogeneity Metrics for Adenocarcinoma In Situ and 
Minimally Invasive Adenocarcinoma Groups

On preoperative CT, 32 of 57 metrics showed statistical significance, and on postoperative 

CT, 24 of 57 metrics showed statistical significance. Of the 24 metrics that showed 

significant differences in the lesions on postoperative CT, 19 also showed significant 

differences between AIS and MIA on preoperative CT. The additional metrics that showed 

significance on postoperative CT only and no significance on preoperative CT were median 

signal intensity, correlations of the GLCM matrix, high gray-level run emphasis, short-run 

high gray-level emphasis, and long-run high gray-level emphasis. The box plots for the 

representative parameters for the AIS and MIA groups are shown in Figure 3.

Statistical Analysis of Tumor Heterogeneity Metrics for Indolent and Invasive Lesions

With AAH and AIS considered indolent tumors, and with MIA and IAC considered invasive 

tumors, Table 3 shows the summary statistics for indolent and invasive GGNs. Significant 

differences between indolent and invasive carcinomas on preoperative CT were found for 53 

of 57 metrics, and 51 of 57 metrics showed significant differences between the lesions on 

postoperative CT. The additional metrics that did not show significance on postoperative CT 

but showed significance on preoperative CT were minimum signal intensity and skewness. 

The box plots illustrating the variation of the parameters for the indolent and invasive lesion 

groups are shown in Figure 4.

Support Vector Machine and Manual Classification of Ground-Glass Opacity Nodules

As shown by the previously stated results, although there are a number of features that show 

differences among the four GGN classes, there is significant overlap in the metrics for the 

four classes, thereby preventing an accurate and robust choice of thresholds for classifying 

the GGNs. An SVM has been trained with all the heterogeneity metrics obtained on 
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preoperative CT to distinguish between the different groups of lesions. The accuracy in 

predicting lesion types is summarized in Table 4.

All four classes—The SVM was trained with 76% of the total samples (188/248). The 

SVM was trained using a leave-one-out strategy. The optimal parameters (C, γ) were 2 and 

0.125, respectively. The trained SVM was then tested on the remainder of the samples. The 

accuracy of predicting the lesion type was 70.9%.

Adenocarcinoma in situ and minimally invasive adenocarcinoma lesions—
When only AIS and MIA lesions were considered, the accuracy in predicting lesions was 

73.1%. For cases that were misclassified, the AIS lesions were misclassified as MIA, and 

MIA lesions were misclassified as IAC lesions. None of the AIS or MIA lesions was 

misclassified as less invasive nodules.

Indolent and invasive lesions—Similar to the aforementioned procedure, an SVM was 

trained for classifying indolent and invasive lesions. The size of the training set was 188 

samples (76% of the total size), with 13 AAH and 56 AIS lesions constituting the indolent 

set and with 74 MIA and 45 IAC lesions constituting the invasive lesion set. The optimal 

parameters (C, γ) were 4 and 0.125. The trained SVM was tested on the remainder of the 

samples. The accuracy of the SVM in classifying indolent and invasive lesions was 88.1%.

Manual classification of the lesions—Three expert radiologists (radiologist 1, who 

had 12 years’ experience; radiologist 2, who had 10 years’ experience; and radiologist 3, 

who had 1 year of experience) classified the lesions on preoperative CT and postoperative 

CT on the basis of the new classifications of lung adenocarcinomas published in 2011 [3]. 

The mean accuracy in classifying all four lesions was 42.1% on preoperative CT and 39.9% 

on postoperative CT. The accuracy of the radiologists in classifying AIS and MIA lesions on 

preoperative and postoperative CT was 35.0% and 29.7%, respectively. Their accuracy in 

predicting indolent and invasive lesions on preoperative CT and postoperative CT was 

64.5% and 63.4%, respectively. The interrater agreement based on the Fleiss kappa statistics 

was 0.0886 for classifying all the lesions, which corresponded to a poor level of agreement.

Discussion

In 2011, a new international multidisciplinary classification was published in the Journal of 
Thoracic Oncology under the sponsorship of the American Thoracic Society, the 

International Association for the Study of Lung Cancer, and the European Respiratory 

Society [3]. The primary motivation for this classification was to address the confusion 

resulting from the previous World Health Organization classification in which the term 

“bronchioloalveolar carcinoma (BAC)” was used to describe widely divergent tumors on the 

basis of clinical, radiologic, pathologic, and molecular subtypes of tumors. According to the 

new classifications, lung adenocarcinomas were to be primarily classified as follows: AAH 

is smaller than 5 mm and has no invasion, AIS is smaller than 30 mm and has no invasion, 

MIA is larger than 30 mm and has an invasive component smaller than 5 mm, and IAC has 

an invasive component larger than 5 mm. However, this classification was primarily based 

on the measurement of pathologic samples. It is not clear how the size criterion for 
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classifying lesions translates to imaging findings on lung CT images. What makes it more 

challenging for a radiologist is that a pure GGN on CT can manifest as either indolent or 

invasive cancer. Jin et al. [20] reported that nearly 40% of pure GGNs in their study were 

invasive adenocarcinomas. This underscores the importance for developing a better 

understanding of the appearance of GGNs on CT by using quantitative analysis to aid in 

determining a differential diagnosis.

With the advent of lung cancer screening for smokers and the detection of early-stage lung 

cancers smaller than 2 cm, it is imperative to understand how these nodules can be classified 

on diagnostic CT images, to aid decisions regarding the surgical approach. Recent studies 

have suggested that sublobar resection for pure AIS smaller than 2 cm yields disease-free 

survival and recurrence rates comparable to those of lobectomy. However, lobectomy is still 

considered the standard of care for lesions smaller than 2 cm with an invasive component 

(MIA or IAC) [21]. For limited resections to be oncologically valid, a precise preoperative 

diagnosis becomes imperative.

Several groups have developed computerized methods for classifying GGNs. Nine unique 

examples that describe the lesions have been developed using an unsupervised clustering 

technique [22]. The voxels within the lesion were compared with the nine exemplars, and 

the resultant color map was used to classify the voxels. A similar clustering-based algorithm 

was used to classify the GGNs [23]. Patel et al. [24] described a practical algorithmic 

approach for differentiating solitary pulmonary nodules on the basis of the morphologic 

characteristics of the lesion. Texture analysis based on PET/CT images was used to predict 

the survival of patients with non–small cell lung cancer [25].

In the present study, we developed an SVM-based machine-learning algorithm that learns 

the imaging characteristics of the four types of GGNs: AAH, AIS, MIA, and IAC. The 

imaging characteristics define the morphologic, shape, and texture features of GGNs with 

the use of 57 different metrics. To our knowledge, this is the first study that has exhaustively 

investigated the different features of GGNs. The imaging features have been quantified using 

an open-source software module, allowing other research groups to test and validate the 

imaging biomarkers for classifying GGNs.

In accordance with the 2011 International Association for the Study of Lung Cancer 

guidelines for lesion classification, the size of the GGNs, measured in terms of the volume 

and maximum 3D diameter, increases from AAH to IAC. However, the maximum 3D 

diameter of the nodules measured on preoperative CT is significantly lower than the 

thresholds based on pathologic imaging that are noted in the 2011 International Association 

for the Study of Lung Cancer guidelines. This may also explain the lower accuracy of 

classification of GGNs by the three radiologists, who classified the lesions on the basis of 

the International Association for the Study of Lung Cancer guidelines.

This study could provide the basis for a more accurate classification of GGNs on the basis of 

radiologic findings on high-resolution diagnostic CT examinations. One surprising result 

was that the compactness of the nodules monotonically increased from AAH to IAC, 

indicating that IAC lesions were more compact than AAH nodules. This was further 
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confirmed by the ratio of surface area to volume, which monotonically decreased from the 

AAH category to the IAC category. As expected, the mean signal intensity of the lesions 

increased from AAH to IAC nodules because of the increased size of the solid component 

within the nodule, a finding that was also confirmed by Ikeda et al. [26]. Mean entropy 

increased from AAH to IAC nodules because of the increased disorder in the lesion structure 

with increasing invasiveness, as was also found by Son et al. [27]. LRE, which quantifies the 

texture of coarser structures within the nodule, shows significant differences between the 

nodules, whereas SRE, which quantifies texture of finer structures, does not show 

statistically significant differences among the four lesion categories on preoperative CT. This 

could be because CT has insufficient resolution to delineate the finer structures within the 

nodule and because it can only detect changes in coarser structures within the lesion. The 

texture metric high gray-level run emphasis, which measures the distribution of higher gray 

levels, shows statistically significant differences among the four GGN categories; low gray-

level run emphasis shows no difference. This can be explained by a gradual increase in the 

size of the solid component from AAH to IAC nodules, which is reflected in the change in 

the high-signal-intensity gray levels. For the same reason, short-run low gray-level emphasis 

does not show significant differences, whereas short-run high gray-level emphasis shows 

significant differences between the four GGN groups.

One of the objectives of this study was to evaluate the use of iodinated contrast medium for 

improving the differential diagnoses of GGNs. The number of heterogeneity metrics that 

showed significant differences among the four GGN categories was similar (50 metrics on 

preoperative CT and 51 metrics on postoperative CT images), although the metrics showed a 

stronger statistical significance of differentiation among the four groups on postoperative CT 

images. For differentiation between AIS and MIA, the number of metrics that showed 

significant differences between the two groups was higher with the use of preoperative 

versus postoperative CT images. The same was true for differentiating between indolent and 

invasive carcinomas. The accuracy of the three radiologists in predicting lesions using 

postoperative CT images was comparable to the prediction using preoperative CT images, 

suggesting that contrast enhancement does not significantly improve the differential 

diagnoses of GGNs and that it is not necessary to expose patients to additional radiation to 

improve the accuracy of classifying GGNs. However, other groups have shown the utility of 

a different approach using dynamic first-pass perfusion CT on a multidetector scanner to 

differentiate between benign and malignant solitary pulmonary nodules [28–31]. Parameters 

such as mean perfusion, peak enhancement intensity, and blood volume were shown to be 

significantly lower in value for benign tumors than for malignant tumors. However, we did 

not address the perfusion of contrast medium into the GGNs, and we studied only the 

structural heterogeneity of the tumors on preoperative CT and postoperative CT.

The present study has several limitations. The most significant limitation was that 

segmentation of the lesions was done manually, and in many of the cases, it was difficult to 

exclude vessels or other structures that may have appeared as a solid component with the 

lesion. This could be one of the primary reasons for the SVM misclassifying GGNs as more 

invasive lesions. In addition, it was difficult to accurately delineate the spiculations of the 

nodule, which could explain the reason for the increasing compactness of the nodules as the 

invasiveness of the nodules increased. There were also significantly fewer AAH lesions that 
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were analyzed as part of this study, making it difficult to quantify the range of imaging 

metrics for AAH lesions. The quantitative metrics are also dependent on the CT acquisition 

parameters, making it imperative to standardize the acquisition protocol to enable uniform 

measurements across institutions.

Compared with the GGN classification done by the three radiologists, the SVM trained 

using all the heterogeneity features showed significantly higher accuracy in classifying the 

lesions into the four groups, differentiating between AIS and MIA and between indolent and 

invasive lesions. The high accuracy achieved by the SVM could provide radiologists a 

second-read option for reliably assessing the cancer risk of lesions and to improve 

interobserver agreement [32]. In addition, the prediction of malignancy risk by the SVM 

could also provide the surgeon with confidence in choosing an optimal therapeutic option.
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Fig. 1. 
Graphic user interface for module used in image processing and navigation software (3D 

Slicer, version 4.3.0, Brigham and Women’s Hospital).
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Fig. 2. 
Preoperative CT scans of four types of ground-glass opacity nodules (GGNs). GGNs have 

been segmented on CT images. Segmentation outline is shown in green.

A–D, CT scans show atypical adenomatous hyperplasia (A), adenocarcinoma in situ (B), 

minimally invasive adenocarcinoma (C), and invasive adenocarcinoma (D).

Li et al. Page 15

AJR Am J Roentgenol. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Box plots of representative metrics for adenocarcinoma in situ (blue) and minimally invasive 

adenocarcinoma (red) lesions on preoperative (A) and postoperative (B) CT scans. 

Horizontal lines within boxes denote mean values, and vertical lines and whiskers denote 

95% CIs. GLCM = gray-level co-occurrence matrix.
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Fig. 4. 
Box plots showing representative metrics for indolent (blue) and invasive (red) lesions on 

preoperative (A) and postoperative (B) CT scans. Horizontal lines within boxes denote mean 

values, and vertical lines and whiskers denote 95% CIs. GLCM = gray-level co-occurrence 

matrix.
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TABLE 4

Accuracy of Classification of Nodules on Preoperative CT by Three Radiologists Versus the Support Vector 

Machine (SVM)

Nodule Group(s) Accuracy of Radiologists (%) Accuracy of SVM (%)

All 39.6 70.9

AIS and MIA 35.7 73.1

Indolent and invasive 60.8 88.1

Note—AIS = adenocarcinoma in situ, MIA = minimally invasive adenocarcinoma.
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