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Abstract

Objective—Effective pain assessment and management strategies are needed to better manage 

pain. In addition to self-report, an objective pain assessment system can provide a more complete 

picture of the neurophysiological basis for pain. In this study, a robust and accurate machine 

learning approach is developed to quantify tonic thermal pain across healthy subjects into a 

maximum of ten distinct classes.

Methods—A random forest model was trained to predict pain scores using time-frequency 

wavelet representations of independent components obtained from electroencephalography (EEG) 

data, and the relative importance of each frequency band to pain quantification is assessed.

Results—The mean classification accuracy for predicting pain on an independent test subject for 

a range of 1–10 is 89.45%, highest among existing state of the art quantification algorithms for 

EEG. The gamma band is the most important to both inter-subject and intra-subject classification 

accuracy.

Conclusion—The robustness and generalizability of the classifier is demonstrated.

Significance—Our results demonstrate the potential of this tool to be used clinically to help 

improve chronic pain treatment, and establish spectral biomarkers for future pain-related studies 

using EEG.
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Pain is considered to be the product of a conscious, multidimensional response to noxious 

stimuli [1], [2]. The neural correlates of such a response can either reflect sensory 

information, or can be modulated by various psychological and social factors [3]. As pain is 

considered a subjective experience, the most prevalent means of measuring it has been 

through self-report. While there are established and effective treatments for acute pain [4], 

such an approach to rating pain provides an incomplete picture of the various neurological 

processes pertinent to both acute and chronic pain. Moreover, the capacity to effectively rate 

pain is limited in cases where the subject is unable to adequately express himself or herself 

(due to age or infirmity). Hence, developing an accurate objective pain assessment system 

which can generalize across a population can increase the efficacy of clinical treatments [5] 

by serving as an additional unbiased tool to evaluate pain, and drastically reduce the current 

costs of managing and treating chronic pain [6].

Many recent studies have demonstrated the involvement of several spatially distinct cortical 

regions in pain processing. The most consistent regions are the anterior cingulate cortex 

(ACC), the primary (S1) and secondary (S2) somatosensory cortices, the prefrontal cortex 

(PFC), and the insular cortex [7]–[9]. Due to such spatially distinct regions showing 

concurrent activation during pain, traditional univariate approaches [10] are not suitable for 

capturing the spatio-temporal dynamics of the pain response. Hence, a branch of multi-

variate approaches, collectively called Multivariate Pattern Analysis (MVPA) techniques 

[11], [12] has been increasing in popularity over recent years [13]. Machine learning based 

approaches are a form of MVPA which focus on identifying patterns in data, and making 

predictions about future behavior of similar data [14]. Such approaches can potentially be 

used to solve problems associated with real-time brain decoding [15] and for selecting the 

best biomarkers for various acute and chronic medical conditions [16].

Electroencephalography (EEG) is a useful noninvasive tool for assessing pain responses due 

to its high temporal resolution, clinical convenience, and low cost of setup and maintenance 

[17]. Many studies have shown observable pain-related cortical activity using EEG [18]–

[20]. Studies have also been carried out which effectively demonstrate the activity of certain 

frequency bands in the pain response, mainly the alpha band [21], [22], and more recently, 

the gamma band [23]–[25]. However, most of these studies have investigated the effects of 

phasic pain stimuli. To mimic responses triggered during chronic pain [26], there are a 

growing number of studies using tonic thermal stimuli [27]–[31].

The aim of the present study was to build a robust and generalizable classification model for 

predicting various levels of tonic thermal pain from EEG data recorded in a group of 

subjects. This approach was used to train and test the performance of classifier models both 

across subjects and within a subject. Using the constructed model, the frequency bands that 

consistently contribute most to the accuracy of the model were analyzed.

II. METHODS

A. Subjects

Twenty-five healthy subjects participated in this study with a median age of twenty-four 

years old, eleven of whom were female. The study was approved by the Institutional Review 
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Board at the University of Minnesota and conducted in conformity with the Declaration of 

Helsinki. Subjects were screened so that none of the healthy volunteers had any history of 

mental illness. All subjects provided written informed consent before participating in the 

study.

B. Experimental Procedure

The experimental procedure consisted of four phases: pain threshold and tolerance 

determination, the tonic pain phase, and a control phase, performed on each subject in that 

order. A tonic thermal stimulus was delivered to subjects using a thermal stimulator (CHEPs, 

Medoc, Ramat Yishai, Israel). A custom-built analog pain-rating device was used to record 

pain scores. Subjects could rate pain by indicating the level of pain intensity using the device 

and aided by a color bar with a gradient from green (indicating no pain and non-painful 

heat) to red (indicating high pain). A line was placed on the color bar to indicate pain 

threshold, and subjects were asked to rate any painful thermal stimuli above the bar. Before 

beginning the experiment, subjects were given time to practice with the device by rating 

thermal stimuli delivered to their left forearm. In this training session, subjects experienced 

different levels of the thermal stimulus ranging from non-painful heat to moderately high 

pain temperatures. This practice allowed subjects to accurately determine how to rate their 

pain on the provided color bar.

The phases of the experimental procedure are illustrated in Fig. 1. To determine pain 

threshold, the heat delivered by the thermode was increased at a constant rate of 0.5°C/

second with a safety limit of 50°C. Seven trials were conducted with an inter-trial interval of 

10 seconds. During this phase, the subjects were asked to pay attention to the stimulus and 

use a response unit to indicate the instant the stimulus changed from heat to pain, after 

which the temperature was brought back to baseline at a rate of 5°C/second. The rate of 

increase of temperature for tolerance testing was the same as that for the threshold test, with 

the same number of trials. However, for the tolerance test, subjects were instructed to 

continuously rate their pain with the analog rating device using their left hand, and to use the 

response unit to indicate the temperature at which the painful stimulus became intolerable. 

The threshold and tolerance tests were used to determine the minimum and maximum 

temperatures to be administered to the subject during the tonic pain condition to ensure the 

desired range of pain scores was obtained for each subject and to make sure no one was 

administered an unbearable pain stimulus. The thermode was placed on the ventral left 

forearm for both the tests, while the right arm remained motionless.

The tonic pain phase was split into three conditions: low pain, medium pain, and high pain. 

The thermode was shifted to the right ventral forearm for tonic pain trials, which subjects 

were asked to keep motionless while they rated their pain with the device using their left 

hand. The order of the condition was decided at random, and the intensity of the stimulus for 

each condition was decided based on the subject’s threshold and tolerance trials. The 

subjects rated their pain responses using the analog device and the color bar. For the low 

pain condition, the subject was administered heat a degree higher than the median threshold 

response of the seven trials. During high pain, the administered temperature was half a 

degree lower than the median tolerance response of the seven trials. The temperature 
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administered was constant to eliminate the possibility of saliency or awareness of 

temperature changes being reflected in the EEG recording. Subjects were not aware of the 

stimulus paradigm so that there was no inherent bias on how they would rate their pain. The 

only instruction given to the subjects during this phase was to try to accurately rate their pain 

intensity based on the stimulus received. The low and medium pain conditions consisted of 

two trials of a constant temperature lasting four minutes each, with a resting period of three 

minutes between each trial. Due to the intensity of the high pain condition, the trials were 

shortened to four trials of one minute each, with a resting period of one minute between 

trials. During rest, subjects were instructed to either stare at a fixed point on the screen, or 

observe a silent video clip of an aquarium to constrain their streams of consciousness.

The visual control phase was used to account for the visual, attentional and motor 

components of all the trials to ensure that EEG components from these sources during the 

tonic pain phase do not adversely influence the machine learning algorithm [30], [32], [33]. 

During this phase, subjects were asked to use the pain rating system to rate the height of a 

continuously shifting point displayed on the screen, while the temperature of the thermode 

was maintained at body temperature (37°C). The height of the point was determined by the 

temporally inverted pain rating of one of the previous low/medium trials chosen at random, 

resulting in the trial lasting four minutes.

C. EEG Recording and Pre-processing

During all phases in the procedure, EEG data were recorded at 1 kHz using 64 channel 

Neuroscan system (Compumedics, NC). The impedance was kept below 5KΩ for all 

conditions. The pain rating was collected at a sampling rate of 10Hz.

During the analysis of each pain trial, the initial and final 10 seconds of EEG data were 

discounted to eliminate portions of the EEG signal with high variability and noise due to 

inconsistencies in initial and final sensations caused by the stimulus. These variations were 

more likely to reflect awareness of a drastic change in the stimulus rather than actual pain 

rating scores. The analysis was performed in MATLAB and Python using native toolboxes 

and those developed by EEGLAB [34].

The EEG signal was down sampled to 256 Hz and band-pass filtered between 1 Hz and 100 

Hz to remove any muscle contraction artifacts and voltage drifts. Line noise at 60 Hz was 

filtered out using a notch filter. EEG was re-referenced to average reference. Artifact 

Subspace Reconstruction [35] was used to clean eye blink, muscle movement artifacts and 

reject bad time windows. This method works using sliding window Principal Component 

Analysis (PCA), which estimates the signal values of high-variance components exceeding a 

threshold relative to a covariance matrix calculated using 1 minute of empirically determined 

clean data. This mixing matrix is then used to reconstruct noisy EEG time segments and in 

extreme cases, reject EEG segments more than five standard deviations away from the 

statistics of the reference clean data. Independent component analysis (ICA) [36] is then 

used to reject other noisy components, primarily eye movement, cardio-ballistic artifacts, 

and other bad electrode sources.
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D. EEG Analysis

The EEG data corresponding to the pain and the control conditions were then concatenated 

along with the pain ratings, with the data acquired from control conditions assigned a pain 

score of one. Two minutes of resting state data were also appended to enable the model to 

discriminate between rest and pain states. The data were then concatenated across subjects, 

and subjected to full rank group ICA [37]. This was done to enable multivariate analysis by 

focusing on the fraction of source information available at each scalp electrode. Subsequent 

steps were carried out separately on the time course of each independent component (IC), 

which was warranted since the dependency between ICs is reduced to a minimum.

The ground truth obtained was labeled as follows: all the rest conditions, including the 

control conditions and non-painful heat, were assigned a pain score of one, while the 

continuous pain responses were discretized into ‘n’ equal interval classes. The variable ‘n’ is 

iterated from 2 to 10, 2 corresponding to a common ‘pain’ class, and 10 corresponding to 9 

ordinal “pain” classes, and one rest class.

A continuous wavelet transform using the Gabor wavelet was used to extract the Time-

Frequency Representations (TFR) [38], owing to its excellent tradeoff between temporal and 

frequency resolution among existing signal analysis methods [40]. Wavelet coefficients were 

computed for 60 scales, corresponding to a frequency range of 2–80 Hz. Choosing a smaller 

scale would result in more high frequency noise than actual signal, so a maximum of 80 Hz 

was chosen. This resulted in computing a feature vector of 60 scales per sample, while the 

number of samples skipped was made equal to half the width of the smallest wavelet scale 

used to analyze the EEG data. This was done to minimize redundancy in the feature space, 

while also analyzing all available data. All such time points computed were then used as 

data points to train and test the classifier model.

E. Pattern Analysis using Random Forests

Random Forest (RF) models are an ensemble method of classification, where the 

fundamental classifier is a decision tree. A decision tree splits a dataset into several leaf 

nodes in an attempt to “purify” the dataset at each node, where purification implies finding 

the best feature in the dataset to split a node to obtain leaf nodes which have a majority class 

[40]. In short, RF models are created by growing many unpruned decision trees trained on a 

random subset of the data, and return a class for each data point that is the mode of all 

classes decided by all the trees. They are known for their high accuracies, efficiency on large 

datasets, and resistance to overtraining in the presence of sparsity as the number of trees 

increases by undersampling majority class labels [41]. This characteristic is relevant for the 

problem of pain quantification since the data corresponding to higher pain classes is 

relatively sparse. As the primary unit is a decision tree, the splitting rules for identifying the 

best feature used to split the training set forces the classifier to address all classes in an 

imbalanced dataset, making it a suitable choice for this study. The ensemble bootstrapping 

approach to quantification minimizes the trade-off between bias and variance. They also do 

not make any assumption about the distribution of the data or interactions between the 

features.
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F. Performance Metrics for Quantification

Due to the non-uniform distribution of the discrete pain scores collected for this study, 

metrics other than classification accuracy were used to judge classifier performance during 

training and testing. The confusion matrices obtained during the training and testing phases 

were used to calculate statistics such as Balanced Classification Accuracy (BCA), F-measure 

(F) and the Matthews Correlation Coefficient (MCC). For a given class i in a multi-class 

setting consisting of N possible classes, each of the metrics are defined below for a 

confusion matrix CNxN as:

(1)

(2)

(3)

(4)

(5)

These measures were computed from confusion matrices calculated for each test subject to 

ascertain the robustness of the classifier. The trend of the BCA, which is the mean of the 

precision across all classes, is analyzed across all subjects for various resolutions of the 

continuous pain score. The F-score is the harmonic mean of the precision (positive 

predictive value) and the recall (sensitivity). The MCC (5) is a robust measure of the quality 

of the classifier when it is trained/tested on imbalanced classes. It can be interpreted as a 

measure of correlation between observed and predicted classes, and has a range of [−1, 1] 

where a score of 0.4 (70%) or higher indicates good agreement between the observed and 

predicted class labels.

G. Training and testing paradigms for quantification

The efficacy of the quantification approach was tested both across subjects and within 

subjects. To test performance across subjects, Leave-One-Out Classification (LOOC) was 
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used to train the classifier across 24 subjects and test on one subject. An illustration of the 

training and cross-validation pipeline for LOOC is shown in Fig. 2 (I). The wavelet power 

spectrum of each time instant of a group IC, along with the corresponding discrete pain 

scores was used as data for a RF model. The training data for the LOOC case is over a 

million data points, while the test set is about 100,000 time points. The goal was to find the 

model and the corresponding group IC that contained the best representation of the pain 

response. Each model was trained on two-thirds of the training data using various 

resolutions of the continuous pain score, and cross validation was performed on the 

remaining one-third of the training data where the accuracy of each model was returned. The 

model returning the best cross-validation performance metrics, along with the spatial IC 

weights corresponding to the most discriminative group IC were used in the testing phase 

shown in Fig. 2(II).

In this phase, the EEG data collected from the remaining test subject were projected into a 

new subspace using the weights of the most informative group IC obtained during cross-

validation. The corresponding RF model was then used to estimate the discrete pain score 

for each time instant of the wavelet power spectrum calculated from the projected EEG data. 

Statistics of model performance were then computed using the ground truth pain score for 

that test subject. For evaluating within-subject performance metrics, the pipeline in Fig. 2(I) 

was used to train each subject, where the two-thirds of the wavelet scalogram of an IC was 

used to train a specific model. The model with the best training performance was then tested 

with the remaining one-third of the corresponding IC time course.

To investigate within-subject classifier performance, two-thirds of the subject’s EEG data 

were used to compute the ICs and individual RF models were trained on the corresponding 

wavelet time courses. The statistics of classifier performance (BCA, F-score, and MCC) 

were used to select the most informative IC using ten-fold cross validation. The 

corresponding spatial map was then used to project the remaining one-third of the EEG data 

to the component subspace, and the wavelet time course of this test data was used to test 

classifier performance. This process was repeated thrice to utilize all the EEG data for that 

subject.

In addition to predicting the pain score, analysis was also performed on the frequency 

spectrum on the most accurate test ICs for each subject to determine the frequency band 

most relevant to classification. Consider the feature set F = {f1, f2, …, fM} where there are 

M features per data point. Let the decision set across all trees in the RF classifier be denoted 

as D = {d1, d2, …, dN}, where di is the pain score predicted by the classifier, and N is the 

number of decision trees in the forest. To determine the importance of a feature j within the 

testing set, the values of this feature were then randomly permuted within its range across all 

data points in the test set. The modified test set is then projected down the unchanged 

decision tree. Let the new decisions be denoted as . The number of 

votes cast for the correct class is subtracted from that of the unperturbed decision tree. The 

magnitude of this deviation is the raw importance score, denoted by , 

where
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(6)

The final score is then computed by dividing the mean of the set Rj by its standard deviation. 

The feature importance score C for a feature j is thus given as

(7)

Hence, the final set C = {C1, C2, …, CM} provides the feature importance scores for every 

feature independent of the other in the test dataset. The features with the highest scores are 

found to contribute most to the classification accuracy.

III. RESULTS

A. Results of Classification Analysis

The statistics for the LOOC paradigm performed across subjects are presented in Fig. 3. The 

horizontal axis shows the number of intervals that the continuous pain score is discretized 

into, while the vertical axis shows the classification accuracy. The BCA for 2-way 

classification is 95.33±0.6%, and is 89.45±1.05% for 10-way classification, where chance 

BCA is 10%. While the slope indicates expected deterioration in the performance of the 

classifier as the ground truth intervals are made finer, the low rate of decrease demonstrates 

the scalability of the classifier to finer resolutions of continuous pain scores.

In addition to BCA calculated for different resolutions of the pain score across subjects, the 

confusion matrix computed for worst case (10-way) classification for one test subject is 

shown in Fig. 4. Most misclassifications occurred within the neighborhood of the true class 

label, and on average, 73% of the total misclassifications occurred within the lower half of 

the pain scale and 62% of all errors occurred within a 2-neighborhood distance from the true 

class. Hence, it is seen that misclassifications are more prevalent in the lower half of the pain 

scale than the upper half, and most of the wrongly predicted scores are about the true 

classes. From a clinical perspective, this is less of a risk compared to a larger 

misclassification rate on higher pain scores, and across larger pain intervals.

For a test subject, the BCA of each component is shown in Fig. 5. The components are 

sorted in descending order of BCA performance from left to right for 10-way classification, 

where the dotted red line corresponds to chance BCA. The spatial topographies of the three 

best and worst performing components are also depicted. As described in [42], muscle 

artifacts show the strongest activity in pre-frontal and temporal electrodes, with spikes in 

higher frequency bands. It is seen from Fig 5 that ICA succeeds in isolating such type of 

activity. These ICs also perform consistently poorly across subjects for various resolutions of 

the pain score, showing that classification accuracy is not informed by any muscle activity. 

Alternatively, these ICs can be removed manually prior to classification to speed up 

computation time.
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The performance metrics computed for the confusion matrices in the 10-way classification 

for both the cross-subjects and within-subject paradigms are shown in Fig. 6. All 

performance metrics are higher when the classifier is trained and tested within subjects, as 

expected. The F-score for each subject is averaged across all classes. The F-score for both 

the inter-subject and the intra-subject paradigms (91.3±3.4% and 94.2±2.6%, respectively) is 

slightly higher than the BCA (89.45±1.07% and 93.26±1.49%, respectively). The MCC is 

0.466 (73.3%) for the inter-subject paradigm, while it is 0.609 (80.46%) for the intra-subject 

paradigm, indicating strong agreement between the ground truth and predicted pain scores in 

the presence of class imbalance.

B. Contributions of Frequency Bands to Pain Quantification

Estimation of frequency importance is performed on all subjects for ten-way classification. 

The frequency spectrum was divided into the delta (1.5 Hz – 4 Hz), theta (4 Hz – 7 Hz), 

alpha (7 Hz – 15 Hz), beta (15 Hz – 30 Hz), and the gamma (30 Hz – 80 Hz) bands. Fig. 7 

shows a boxplot depicting the normalized contribution scores for all subjects. It is seen that 

the gamma band contributes the most to classification accuracy, and that the alpha band has 

the highest variance across all subjects. The alpha band also showed a reduction in relative 

importance as the resolution of the pain score was made finer (Fig. S4). The effect of each 

frequency band was also investigated in a paradigm where, during classification, the 

frequency information was ignored from one band at a time during training to observe its 

effect during testing. The results illustrated in Fig. 8 show that BCA drop is the highest 

when the gamma band is ignored, with a 10% decrease in performance compared to the 

original approach. However, it is interesting to note that accuracy suffers regardless of which 

frequency band is ignored, showing that all frequency bands seem to be important to pain 

quantification.

IV. DISCUSSION

A. Improvements over Previous Methods

Table 1 compares the current quantification method to existing state of the art methods. 

While such studies have had a fair amount of success, most [43]–[48] examined the efficacy 

of a two-class version of this problem (presence vs absence, or low pain vs high pain), while 

others [49], [50] pursued a regression-based approach. Those studies that pursued a multi-

class approach [25], have broken it down to various two-class sub-problems with a vote-

based approach to arrive at a pain score. In addition to the high computational time for 

training these models, such voting procedures would need testing data from both low-pain 

and high-pain trials to arrive at a single discrete score for a test subject, which may not be 

always clinically available. The current model substantially improves on the state of the art, 

and is trained to accurately predict a maximum pain range of 1–10 based on any 2–3 second 

snippet of the time course of independent components derived from scalp-recorded EEG, 

which is clinically more convenient.

In addition, most of the past approaches using EEG have worked towards finding the most 

informative electrode i.e. the electrode where the quantification accuracy is the highest. 

While fairly accurate, such approaches may, in fact, be interpreted as univariate rather than 
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multivariate [13] as a decision is made by processing data from one electrode at a time. In 

the end, this may not be the most informative due to the distributed nature of pain 

processing. By projecting EEG data into another subspace in which each component 

contains phase-locked information from multiple electrodes, group ICA isolates patterns 

recurring throughout the training data, which can generalize better for larger datasets as it 

favors selecting an IC with a more consistent temporal pain signature. In addition, ICA also 

isolates EEG/muscle artifacts, which can be removed either before or after the classification 

pipeline upon performance analysis. Even though Support Vector Machines (SVMs) are one 

of the most commonly used classifiers in this field, issues with multi-class implementation 

and optimal parameter selection [51], [52] make RF decision trees a better alternative due to 

their scalability to large datasets and resistance to overfitting.

B. Spectral and Spatial Activity Most Important to Pain

The most informative IC found during testing for each subject was used to analyze inter-

individual variability of the spatio-temporal pain signature in both the frequency and the 

topographical domains. It was found that the gamma band (31–80 Hz) was the most 

important in discriminating between different pain scores, and the degree of importance was 

consistently high from two-way classification up to (and including) 10-way classification.

The gamma band has been previously found to be important in the subjective perception of 

both acute and tonic pain. The sensory and attentional aspects of brain activity in response to 

acute pain were found to be most prevalent in the gamma band [23], [24], [30], [53], 

Moreover, [53] showed that the predictive power of gamma band activity is independent of 

the rate of repetition of the stimulus. In this study, the high degree of importance of the 

gamma rhythm for pain quantification at both coarse and fine resolutions of the continuous 

pain score was observed across subjects for the first time in tonic thermal pain stimuli. 

Hence, it is likely that the gamma rhythm primarily encodes reactionary aspects of 

nociception for the entire duration of the stimulus. As previous studies investigating acute 

and tonic thermal pain have highlighted the gamma rhythm as well, this would point to the 

gamma rhythm being the most important biomarker for thermal pain.

C. Salience

Salience, in the context of sensation and pain perception, is defined [55] to be the awareness 

of how much the stimulus intensity contrasts with the surrounding. It has been suggested in 

[56], [57] that the regions constituting the pain neuromatrix have been implicated in the 

processing of other auditory, visual, and tactile stimuli as well. Since non-nociceptive 

neurons have been observed to outnumber the nociceptive kind [58], it can be argued 

subjective pain ratings are based on an awareness of change of stimulus intensity [59], and 

may not provide information about pain processing. It has also been shown that the Default 

Mode Network (DMN) has significant deactivation during performance of attention-related 

tasks [60], [61]. This inverse relationship between the DMN and attention could also reflect 

attention to the task of rating pain, rather than pain processing, contributes to pain prediction 

scores.
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In this study, attempts are made to minimize effects of salience by keeping the stimulus 

intensity constant. To test if attention to the task was a factor in predicting pain scores, we 

compared the uncertainty of our classifier during the control task (which accounted for 

visual and attention-related stimuli) to rest, where no task was performed. As shown in Fig. 

9, there was greater uncertainty during the control task, indicating attention does play a role. 

However, the reduced uncertainty during pain conditions shows the classifier is confident 

during the pain stimulus and attention to the task is not the only factor contributing to pain 

prediction. However, further studies need to be conducted as to the extent of the role of non-

nociceptive stimuli in pain processing.

D. Study Limitations

Pain is a sensation that is experienced and processed differently by everyone. While the 

initial shock of sensation is likely the same, the spatio-temporal correlates of affective and 

emotional processing are uncommon across individuals. While the ICs selected for the inter-

subject case seem consistently accurate, there are significant spatial differences between 

those and the ICs chosen by the within-subject training paradigm. This shows that the 

uniqueness of the pain response topology diminishes as more subjects are considered for 

analysis, and this may account for a drop in the accuracy when more subjects are considered 

for training. With a high enough number of training subjects, the problem of pain prediction 

could potentially devolve into one of sensory discrimination.

Using mutual information in the RF model is an indirect measure of frequency importance, 

as no monotonic relationship between any of the frequency bands with the pain score was 

identified. To determine the extent of similarity between different frequency bands and the 

pain score at the electrode level, the best performing components were projected back to the 

scalp domain and the Welch power spectrum was computed for every second of the data to 

dynamically observe the changes in the frequency spectrum with time. Correlation analysis 

between any combination of frequency bands and the pain score did not yield results above 

significance, suggesting that the relationship between EEG data and the pain score is subtler 

than previously studied.

V. CONCLUSIONS

We have developed a novel noninvasive approach to the problem of pain quantification in the 

presence of tonic thermal pain and evaluated the excellent performance of our method in 25 

human subjects with 89.45% accuracy in 10-way pain quantification. The temporal wavelet 

characteristics of independent components is used to characterize the EEG information 

corresponding to the pain score, and the most informative component is evaluated, along 

with observing its characteristics in the spatial and the frequency domains. The present 

approach outperforms existing state of the art methods for pain quantification by reliably 

predicting the pain score and demonstrating scalability of the approach for finer resolutions 

of a continuous pain scale. The present promising results suggest the generalizability of a 

biomarker for pain across a population. The gamma band in EEG is found to be the most 

important predictor of pain for all resolutions of the pain score across inter-subject and intra-
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subject prediction paradigms. Changes in other frequency bands can be further explored by 

extending these approaches; unraveling a potential pain response mechanism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Stages of the experimental protocol: (I) Threshold determination. (II) Tolerance 

determination. (III) Illustration of the stimulus time course for all pain conditions. (IV) 

Control condition to account for various sensory and attentional stimuli during the 

experiment.
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Fig. 2. 
Algorithm workflow. (I) Training paradigm. (a) Training EEG data, along with the ground 

truth is collected from all but one subjects. (b) Group ICA is used on concatenated pre-

processed EEG data. (c) Random Forest models are trained on two-thirds of the training data 

for each component, and the best performing model along with the corresponding group IC 

weights are picked for testing. (II) Testing paradigm, where the spatial group IC weights of 

the most discriminative IC are used to project the test data to the component subspace. The 

best model selected in I(c) is used to test performance of the prediction method on the 

unseen test subject.
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Fig. 3. 
Boxplot of balanced classification accuracies (BCA) at different resolutions of the 

continuous pain score for classification across subjects. The X-axis depicts the results 

starting from 2-way classification (rest vs pain), up to and including those for 10-way 

classification (1–10 pain score). The low drop in BCA between 2-way and 10-way 

classification paradigms (6%) demonstrates the scalability of the classifier.
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Fig. 4. 
Confusion matrix for 10-way quantification using a classifier trained on 24 subjects, and 

tested on the remaining subject. The color bar indicates the number of classified data points 

for the test subject. The diagonal nature of the matrix and the skew of errors towards lower 

pain scores demonstrate the feasibility of such a classifier in a clinical setting.
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Fig. 5. 
Balanced Classification Accuracy (BCA) of each component when tested on a subject, 

sorted in descending order of performance. The scalp maps of the best and worst three ICs 

are presented. The red line indicates chance BCA for the classifier. Scalp topographies 

corresponding to muscle activity or EEG artifacts consistently perform the worst during 

classification.
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Fig. 6. 
Calculating goodness of performance metrics for assessing classifier performance when 

trained and tested both within and across 25 subjects. All metrics are higher for the intra-

subject case compared to the inter-subject case in the presence of class imbalance, as 

expected.
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Fig. 7. 
Box plot of normalized frequency contribution scores across all subjects for 10-way 

classification. The gamma band is seen to be consistently important across all subjects, 

while the alpha band shows the most variability in importance.
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Fig. 8. 
Effect of ignoring each frequency band in turn on training classification accuracy. Largest 

accuracy drop is seen when the gamma band is ignored, suggesting it is the most important.
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Fig. 9. 
Classifier uncertainty for rest, control, and two pain scores. The uncertainty is a probability 

measure of how unsure the algorithm is of classifying a test point into the correct class. 

Greater uncertainty while classifying points belonging to the control condition shows that 

attention to the task plays a role during pain prediction, but low uncertainty while classifying 

pain scores shows that attention is not the dominant factor.
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TABLE I

Comparison of Existing Classification Approaches

Source Modality
Average Accuracy (%)

Intra-subject Inter-subject

Broderson et al., 2012 [2-class] fMRI 66.50

Marquand et al., 2010 [3-Class] fMRI 72.67

Schulz et al., 2013 [10-Class] EEG 83.00*

Brown et al., 2011 [2-Class] fMRI 86.60

Misra et al., 2017 [2-class] EEG 89.58*

Kuo et al., 2017 [2-class] MEG 83.00

Current method [10-Class] EEG 93.26 89.45

Wager et al., 2013 [10-Class] fMRI 94.00 92.00

Huang et al., 2013[2-class] EEG 86.30 80.30

*
Listed maximum accuracy

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 December 01.


	Abstract
	II. METHODS
	A. Subjects
	B. Experimental Procedure
	C. EEG Recording and Pre-processing
	D. EEG Analysis
	E. Pattern Analysis using Random Forests
	F. Performance Metrics for Quantification
	G. Training and testing paradigms for quantification

	III. RESULTS
	A. Results of Classification Analysis
	B. Contributions of Frequency Bands to Pain Quantification

	IV. DISCUSSION
	A. Improvements over Previous Methods
	B. Spectral and Spatial Activity Most Important to Pain
	C. Salience
	D. Study Limitations

	V. CONCLUSIONS
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	TABLE I

