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Abstract

Current efforts in precision oncology largely focus on the benefit of genomics-guided therapy. Yet, 

advances in sequencing techniques provide an unprecedented view of the complex genetic and 

non-genetic heterogeneity within individual tumors. Herein, we outline the benefits of integrating 

genomic and transcriptomic analyses for advanced precision oncology. We summarize relevant 

computational approaches to detect novel drivers and genetic vulnerabilities, suitable for 

therapeutic exploration. Clinically relevant platforms to functionally test predicted drugs/drug 

combinations for individual patients are reviewed. Finally, we highlight the technological advances 

in single-cell analysis of tumor specimens. These may ultimately lead to the development of next 

generation cancer drugs, capable of tackling the hurdles imposed by genetic and phenotypic 

heterogeneity on current anticancer therapies.

Precision Medicine Aims to Address Inter- and Intratumor Heterogeneity

Precision medicine aims to use multiple types of data to classify patients into groups that 

will most likely respond to a given treatment. The identification of biomarkers that correlate 

with response to therapy or function in disease initiation/progression -- therefore 

representing therapeutic targets themselves -- is fundamental in this process [1]. 

Determination of molecular biomarkers is not limited to a specific methodology, and DNA, 

RNA, proteins, metabolites or microorganisms can individually, or in combination, serve as 

biomarkers. With cancer primarily being a genetic disease, precision oncology has largely 
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focused on the determination of genetic biomarkers and multiple clinical trials to test 

whether targeting these genetic alterations in cancer can prolong survival. Remarkable 

success in applying genomics-driven cancer therapy has been noted [2], yet, serious 

criticism remains regarding this genomics-focused precision oncology concept, including 

scientific, social, ethical and economical aspects [2–5]. In this review, we focus on the 

biological rationale for precision oncology and outline current efforts and achievements of 

implementing precision oncology in the clinic, while highlighting promising routes to 

overcome the limitations of genomic-focused approaches. The current availability of 

screening platforms and the armamentarium of anticancer drugs now allows us to recognize 

and address inter-tumor heterogeneity (the different molecular characteristics observed 

between patients). We outline how the simultaneous assessment of genomic and 

transcriptomic data, combined with functional testing, can serve to overcome hurdles 

imposed by inter-tumor heterogeneity. In addition, we discuss the major limitations of 

prolonged response to current anticancer therapies, including intra-tumor heterogeneity 

(ITH); namely, differences in the molecular makeup of tumor cells within individual 

patients. We have only begun to decipher and address therapeutically such challenges.

The Technical and Molecular Basis for Precision Oncology

The ability to detect mutations in a tumor sample was one of the first milestones in 

recognizing the genetic events that underlie the cellular transformation process, denoting an 

early phase of genetic-based evidence for cancer occurrence and development. Improved 

technologies enabling the detection of such mutations in non-neoplastic tissues (including 

bodily fluids), has allowed the early detection of somatic oncogenic mutations such as Ras 

mutations and hotspot p53 tumor suppressor mutations [6–8]. While these developments 

reflect advances made already in the 80’s, it has taken another generation to better establish 

the importance of mutation frequency, its variability in the transformed tissue, and its 

causative role. This growing understanding has been a prerequisite for the introduction of 

mechanism-based therapies into clinical practice. Commonly known as targeted therapies, 

these therapeutic approaches are based on small molecules or monoclonal antibodies that 

inhibit oncogenic drivers [9–14], or target genetic vulnerabilities (e.g. Poly (ADP-ribose) 

polymerase PARP inhibitors in tumors with homologous recombination deficiency [15]). 

Several years of clinical experience with targeted agents -- and especially of the resistance to 

drugs – has led to the recognition of the central role of genetic heterogeneity and plasticity 

of growth-promoting signaling pathways in determining a patient’s individual response. A 

notable example is the targeting of BRAF mutations that are present in more than 40% of 

melanomas [16]. Although targeting recurrent BRAF-mutation(s) by mutant-specific BRAF 

inhibitors demonstrated great clinical success [9, 17], understanding the complex feedback 

and cross-talk between key players of the altered RAS/RAF/MEK/ERK signaling axis 

became necessary for optimizing therapy. Accordingly, in terms of clinical outcomes, 

combined BRAF and MEK inhibition proved superior over single agent use[18]. 

Furthermore, new generations of specific BRAF inhibitors are currently in the pipeline, 

finely-tuned to overcome mutation-driven altered signaling events in the 

RAS/RAF/MEK/ERK pathway [18]; these might be expected to outperform previous 

inhibitors of this pathway. Similar undertakings may be required to target deregulated 
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signaling pathways arising from other mutations in different tumors, where a driver mutation 

is known, and where drugs targeting a given driver may exist.

Beyond direct targeting of genomic alterations, the impact of differentiation hierarchies, 

epigenetic alterations and the role of the microenvironment in driving tumor pathogenesis 

has become increasingly recognized. Accordingly, therapeutic approaches that aim to restore 

normal differentiation programs such as all-trans retinoic acid in acute promyelocytic 

leukemia and neuroblastoma have been developed [19]. Along these lines, drugs are/have 

been developed to reprogram epigenetic marks and restore normal gene expression 

programs, such as various HDAC inhibitors [20], in addition to drugs that interfere with 

tumor-microenvironment crosstalk, including angiogenesis inhibitors [21] and 

immunotherapeutic agents [22]

The search for cancer vulnerabilities in specific cancer types has been facilitated by 

numerous technological advances yielding large-scale molecular profiling of major cancer 

types [23, 24]. This system-based analysis of tumor samples, together with massive 

hypothesis-based research, has significantly changed our understanding of cancer biology 

(Key Figure, Figure 1): Carcinogenesis is generally considered to be driven by the natural 

selection of continuously acquired genetic and epigenetic variation in individual cells [25]. 

These converge on common phenotypic characteristics for cancer cells, including sustained 

proliferation, migration, invasion, and/or resistance to apoptosis [26]. Tissue 

microenvironments provide the fitness selection defining spatial and temporal changes in 

environmental pressures. These influence the evolutionary path of any given cancer cell, 

resulting in (epi-)genetically heterogeneous subpopulations. Diversity within cancer 

populations is not limited to the genome, and dynamic variations in differentiation 

hierarchies, transcriptional signals and the proteomic landscape add to the phenotypic 

heterogeneity observed within tumors [27]. Indeed, cancer cells do not exist as isolated 

entities, but rather, engage in heterotypic interactions with stromal cells and cooperate with 

adjacent tumor subclones; this is important, as it can result in increased robustness of a 

tumor [28].

Moreover, large-scale sequencing of human cancer genomes and transcriptomes have 

identified nearly 200 “consensus” driver genes (of which ~15% were identified primarily 

using DNA sequencing of cancer genomes [29]) and an additional 300 putative driver genes 

have been suggested [30, 31]. The pathways in which these genes function are also emerging 

[32–36]. Coupled with the success seen using targeted therapies in certain cancer subtypes 

[9–14], these efforts have contributed to laying the basis for precision molecular oncology: 

patients are treated according to the molecular makeup of their tumors rather than solely 

based on tumor histology, type, grade and stage (Figure 1).

Clinically Relevant “Omics“ Approaches

Genomics-driven Cancer Therapy in Clinical Testing

While at present only a small proportion of cancer patients benefit from targeted therapies, 

great efforts are ongoing to extend the scope of precision oncology to a broader spectrum of 

patients (reviewed in [2]). Massive inter-tumor heterogeneity that has been rigorously 
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documented through large-scale DNA and RNA sequencing, as well as DNA copy number 
and DNA methylation profiling (e.g. TCGA, ICGC, and others) [23, 24] (see 

supplementary Table S1 for relevant data sources). However, unexpected similarities 

between tumors of different tissues-of-origin have been uncovered, while certain tumors 

have been found to be more similar at the molecular level to tumors from a different tissue-

of-origin [37]. These similarities, together with the detection of rare variants within well-

characterized driver genes suggest that approved targeted therapies might be effective in 

diverse tumor types with distinct molecular alterations [32, 36]. This has resulted in the 

initiation of clinical programs that evaluate whether molecular profiling of patients is 

clinically feasible and importantly, whether treating patients based on their genomic profiles 

might be beneficial relative to a given standard of care, or a physician’s treatment choice 

(see Table 1 for examples of programs/studies). In addition to the identification of new 

putative driver genes found in a low percentage of patients with less common cancer types or 

subtypes, several novel clinical hypotheses have been generated but await verification. 

Recently, Foundation Medicine reported that in a targeted sequencing study of 63,220 

tumors, more than 75% of patients presented a mutation in at least one of 10 cancer driver 

genes, and more than 25% of patients presented a known driver mutation within these genes 

[38]. Accordingly, in silico computational studies predict that up to 90% of patients may 

benefit from molecularly-guided therapy when biomarkers of uncertain clinical significance, 

as well as off-label and investigational drugs are considered to inform therapy [39, 40]. To 

test this multitude of novel clinical hypotheses, new adaptive trial designs, including basket 
and umbrella trials have been employed [41, 42] (Table 2). Basket trials are designed to test 

the effects of a single (or a few) drug(s) in a variety of cancer types (or possibly subtypes) 

using specific mutation(s) as biomarker(s). By contrast, umbrella trials are designed to test 

the impact of specific drugs on different mutations within the same cancer type.

The majority of these studies profile the mutation status of a few dozen or hundreds of 

selected genes [2]. This is based on the fact that although whole genome sequencing (WGS) 

can detect DNA sequence variants as well as focal and large chromosomal rearrangements, 

deletions or amplifications, it is difficult to identify driver events within large chromosomal 

abnormalities. Therefore, clinically valuable sequencing approaches can be reduced to either 

the whole exome (WES) or targeted exomes (panel sequencing) of cancer-related genes. 

These approaches are often combined with the analysis of some well-characterized intronic 

regions (e.g. ALK, RET1, ROS, BCR) that are frequently rearranged in cancer genomes [2] 

(Figure 1). Furthermore, targeted sequencing has the advantage of yielding a high 

sequencing depth, which is important to be able to infer clonality of a detected driver event. 

Determining the clonal distributation of identified alterations should be a priority in 

precision oncology trials given that targeting trunk mutations appears to be crucial to 

maximizing the efficacy of targeted therapies [43].

Most studies have demonstrated that genomics-guided therapy improves patient outcomes 

when well-characterized biomarker-drug pairs -- with strong clinical or preclinical 

evidence-- are used (Table 1). For example, the MOSCATO 01 trial [44] that used only last-

generation drugs with high affinity to a specific target, achieved positive results, whereas the 

SHIVA study [45], which heavily relied on everolismus -- a drug weakly affecting the 
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PI3K/AKT/mTOR pathway, indicated that genomic profiling did not result in patient benefit. 

Furthermore, emerging evidence suggests that targeting multiple drivers by combination 

therapy is superior over single-agent use [46] as patients with advanced tumors frequently 

exhibit multiple aberrations detected by genomic profiling. Despite these advances, several 

challenges remain: First, trial recruitment of patients with rare mutations is difficult [47] and 

only a small percentage of patients (2–5%) undergoing genomic profiling have been 

subsequently treated with off-label drugs or been enrolled in genotype-matched trials [46, 

48]. Noteworthy, the recent report on the positive outcomes of the MOSCATO 01 trial 

indicates that match-rate can be improved (19%) when performed within a big cancer 

center offering access to a variety of clinical trials [44]. Second, the presence of validated 

genetic biomarkers does not strictly predict a response to targeted therapies to different 

tumor types [49], given that the effect of therapies is known to be context-dependent (as 

seen, e.g., by the lack of response of BRAFV600-positive colorectal cancer to BRAF 

inhibitors which show good clinical responses to melanomas carrying the same mutation 

[50]). On a positive note, identifying such genomic-context effects has already expanded the 

use of inhibitors, such as against BRAF [49] or PARP [51], and may result in expedited 

approval of investigational drugs. Finally, identifying high-confidence biomarkers to guide 

specific drug treatments remains a challenge. One approach to expanding the biomarker 

landscape may be to determine the differential molecular profile of patients showing a 

dramatic response to targeted therapy versus non-responsive ones. An increasing number of 

publications report such “exceptional responders”, which has led to the identification of rare 

genomic events likely to predict the response or resistance to targeted therapies [52–62]. 

Taken together, sequencing efforts of cancer genomes within clinical trials or by research 

initiatives such as the TCGA and ICGC initiatives (see supplementary Table S1) are 

expected to improve the identification of driver mutations, as well as patient stratification 

strategies associated with these. This in turn may expand the scope of genomics-based 

precision oncology to a broader spectrum of patients.

Limitations of Using Genomics as a Single Approach for Biomarker Identification

While genomic profiling provides valuable information regarding genetic mutation / 

amplification / deletion and certain epigenetic modifications (e.g. methylation), there are 

certain inherent limitations of using an approach that simply tests the presence or absence of 

genetic driver events to inform therapeutic decision-making. This includes limitations of 

using genomics as a single platform for biomarker identification; indeed, some cancer types, 

such as prostate cancer or some pediatric malignancies have very few or even no recurrent 

mutations detected, indicating that other types of somatic variation, may be potent drivers 

of oncogenesis [36]. Furthermore, no genetic alterations have been found to correlate with 

well-characterized predictive biomarkers such as the expression of estrogen receptor or 

androgen receptor, in breast or prostate cancer, respectively. In addition, genomic profiling 

does not provide sufficient information regarding the activity of actual protein products 

mediating oncogenic or tumor suppressor gene functions. In other words, variations in 

oncogenes/tumor suppressor genes do not necessarily predict activation of the corresponding 

biological pathway, and vice versa: cancer driver pathways can be active without the 

presence of a mutation(s) [63]. Finally, novel biomarkers linked to non-genetic 

vulnerabilities, such as those involving cancer cell reliance on stress response or metabolic 
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pathways, may be able to predict responses to autophagy inhibitors or drugs inhibiting 

antioxidant enzymes, and these need to be defined [64].

The most comprehensive approach to overcome these challenges and to elucidate cancer 

vulnerabilities is the simultaneous characterization of the genome, epigenome, 

transcriptome, proteome, and metabolome of tumors and their surrounding stroma; indeed, 

these are all crucial parameters to defining cellular phenotypes involved in cancer 

pathogenesis, as well as in characterizing responsiveness to therapy [65] (Box 1). As these 

parameters are dynamic entities (e.g. changes in responses to external stimuli), they are 

expected to show spatial heterogeneity (geno- or phenotypic distinct clones may show 

different growth kinetics or survival rates dependent on their location). Coonsequently, an 

analysis of multiple biopsies and longitudinal follow-up of patients would ideally be 

performed to predict the initial responses to therapy and to identify putative mechanisms of 

drug resistance. Although such comprehensive approaches are not yet feasible for routine 

clinical practice, current state-of-the-art technologies are already enabling the combination 

of at least two different omics platforms for cancer analysis, genomics with epigenomics, 

and/or transcriptomics. As discussed below, combined genomic and transcriptomic analysis, 

together with functional testing of omics-derived treatment predictions, are expected to 

overcome many of the challenges that current precision oncology-based trials are facing.

Box 1

Relevant “Omics” for Precision Oncology

Epigenetic profiling holds great promise in deciphering the cellular states and 

characterizing phenotypic heterogeneity. The importance of epigenetic reprogramming in 

cancer is evidenced by the fact that chromatin regulators are often mutated [32, 36] and 

widespread epigenetic changes throughout cancer genomes can be identified, intricately 

linked to the activity of known tumor promoters/suppressors such as EGFR [193] or 

TP53 [194]. There are two general classes of drugs targeting the epigenome: (i) broad 

reprogrammers, which include inhibitors of DNA methyltransferases, histone 

deacetylases or bromodomain and extra-terminal motif proteins, and (ii) targeted 

therapies that pin specific activating mutations in DNA-modifying enzymes such as 

EZH2, or in enzymes whose mutations have a profound effect on epigenetic pathways, 

e.g. IDH1/2 [20]. Currently, there are no epigenetic drug-sensitivity biomarkers that 

would predict the response to these approved or investigational drugs. Therefore, the 

addition of epigenetics in clinical practice awaits the identification of epigenetic marks 

that mediate distinct tumor phenotypes of clinical relevance (such as mesenchymal 

differentiation, stemness, dormancy or therapy resistance) [65].

Proteomics combined with genomic data likely reveal the most accurate information on 

the activity state of individual genes. The proteome represents the ideal readout to define 

a cell’s functional state in response to internal or external perturbations, and 

proteogenomic analysis is being integrated in large-scale characterization efforts of the 

TCGA [195–197]. This integration has the power to nominate driver genes from large 

chromosomal deletions or amplifications and can identify new driver clusters that are not 

easily found in transcriptomics signatures [195, 196, 198]. Although TCGA analysis has 
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long included antibody-based phosphoprotein analyses, the comprehensive proteomic 

characterization based on mass spectrometry increases the breadth of phosphoproteomics 

data and importantly, allows for the identification of post-translational modifications 

beyond phosphorylation [199]. The latter may represent important biomarkers for drugs 

that do not target kinases such as the identification of “acetylation-signatures” in serous 

ovarian cancer, and which may predict responses to HDAC inhibitors [197]. While it is 

expected that future technologies will provide the platform for large-scale proteomic 

assessment of tumor samples, current proteomic analysis requires a large amount of 

tissue, is costly, labor-intensive and lacks the analytical validity and sensitivity that 

genomics provides.

Emerging metabolome and microbiome data, are expected to provide important additions 

to genomics: Rewired metabolic pathways in tumors provide alternate fuel sources that 

can be targeted, and the mutations and/or deregulated expression of metabolic genes have 

been linked to tumor propensity for metastasis or therapeutic resistance [200]. Translating 

this knowledge in the clinic will require further preclinical analysis, especially given the 

differences between cancer cell metabolism in vitro and in vivo [201, 202]. Microbiome-

based data is a likely addition in the more distant future, which might provide novel 

putative biomarkers and means to monitor predicted therapeutic responses, and possibly, 

improvements.

Transcriptomics as a Valuable Measure to Improve Biomarker Identification

At present, the most common way to enhance genomic information available to us is by the 

inclusion of transcriptomic analyses (Figure 1). RNA sequencing (RNA-seq) technologies 

allow the mapping of the entire transcriptome or select gene expression networks, and are 

readily available, becoming economically feasible. The ability to decipher the landscape of 

gene expression offers important steps over acquiring genomic data alone. First, aside from 

the ability of RNA-seq to detect splice variants [66], RNA-seq can also detect novel or 

known gene fusions, which have been identified as drivers of disease in a variety of rare and 

common tumors [66–69]. The latter are promising therapeutic targets as the inhibition of 

fusion-genes is often associated with striking efficacy, as exemplified by targeting the BCR-

ABL fusion in chronic myeloid leukemia, or targeting RET, ALK, ROS, FGFR or BRAF 

fusions in various malignancies (reviewed in [2]). Second, transcriptomics can provide 

indirect information about protein expression status; knowing that a candidate gene 

harboring certain mutation(s) is also expressed (and to what level) is valuable in establishing 

the importance and contribution of this gene to the tumor phenotype. Third, beyond 

providing information about the expression of tumor driver genomic variations, the inclusion 

of transcriptomics allows the mapping of non-oncogene vulnerabilities, and provides 

information about oncogenic pathway activities, even in the absence of mutated driver genes 

[63, 70]. One such example is the BRAF-mutation signature in colon cancer that can be 

found in BRAF-mutated but also BRAF-wildtype tumors, and characterizes (in addition to 

the KRAS and PI3K signatures) patients resistant to EGFR inhibition [71]. The BRAF-

signature can not only serve as a resistance biomarker but has been recently suggested to 

serve as a sensitivity biomarker for mitotic poison drugs such as vinorelbine [72]. Another 
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notable example is that of BRCA-associated signatures [73], where tumors (such as breast, 

ovarian or prostate tumors among others [66, 73]) sharing similar molecular signatures to 

BRCA-mutant tumors may also respond to similar therapeutic approaches, even when 

lacking specific BRCA mutations [73–75]. Fourth, transcriptomes, by contrast to DNA, are 

tissue- and cell-type specific [65]; this is often considered a disadvantage for RNA analysis 

of bulk tumor samples because in samples with a high proportion of stromal cells, massive 

computational deconvolution is necessary to extract the transcriptional profile of interest, as 

all cells within the biopsy contribute to the RNA pool [65]. However, tissue specificity can 

provide important clinical information about tumor histology and tumor origin, which is of 

high relevance in patients with cancer of unknown primary tumors [37]. Additionally, cell-

type specific transcriptomes can reveal certain aspects of the immune status of tumor 

samples that may be of therapeutic relevance [76, 77]. High overall mutational load within 

tumors (e.g. highly mutated human tumors such as melanoma, lung cancer or mismatch-

repair deficient colon cancer) has been reported to correlate with therapeutic responses to 

immune-checkpoint inhibitors (e.g. drugs targeting CTLA-4 or the PD1/PDL1 axis) [76, 

77]; however, these factors have not been strictly linked, and long-term responses to 

checkpoint inhibition have been observed for a broad mutational spectrum of cancers [76, 

77]. Notably, integrating genomic and transcriptomic data holds promise for the 

identification of patients that can benefit from immune-checkpoint inhibitors. For example, 

the transcriptomic analysis of responders to CTLA-4-blockade (ipilimumab) has revealed 

that the expression of cytolytic effector genes (e.g. granzyme A and perforin) positively 

correlate with patient response (complete or partial response to ipilimumab, or stable disease 

with overall survival > 1 year by RECIST criteria) [76]. Furthermore, the expression of 

immune checkpoint regulators have correlated with increased patient survival [76]. In 

addition, transcriptomic signatures that significantly correlate with resistance to anti-PD1 

therapy in melanoma have also been identified [77].

Although the practical utility of RNA-seq in the clinic has been challenging, technological 

advances allowing the application of RNA-seq to clinically-relevant specimens (including 

formalin-fixed, paraffin-embedded tissues), along with efforts to benchmark data analysis 

pipelines (ICGC-TCGA DREAM Somatic Mutation Calling Challenge – RNA) [78], 

have set the basis to move RNA-seq into routine clinical practice. Valuable transcriptomic 

information can thus be combined with genomic data to establish new blueprints that 

provide multidimensional insight into the characteristics of a given tumor biopsy. Such 

combinations can benefit from innovative computational approaches which may identify 

novel master regulators, not seen in either analysis alone.

Analysis Approaches to Determine Molecular Subtypes and Cancer 

Vulnerabilities

To overcome the challenges of inter-tumor heterogeneity in determining molecular-guided 

therapy, the identification and characterization of molecular subtypes of cancer and the 

mutations that drive cancer have been an urgent priority. The promise of characterization of 

tumors with molecular subtypes or biomarkers is two-fold. The first major goal is to find 

molecular biomarkers of patient prognosis or of effective drug treatments. The second major 
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goal is to develop a better mechanistic model for understanding the role of the tumor’s 

genome, transcriptome, methylome, epigenome and environmental alterations in driving its 

initiation and evolution. Extensive clinical efforts now provide us with an unprecedented 

view on the genomic (and transcriptomic) landscape of all advanced cancer types [79], in 

addition to the datasets provided by the TCGA and ICGC, which have focused on the 

sequencing of common cancer types early in disease progression. The following sections 

describe related computational approaches, and for an expanded summary of references on 

these and additional topics (intra-tumor heterogeneity and single cell analysis approaches) 

the reader is referred to supplementary tables S1–S3.

Approaches for Tumor Subclassification

Methods for identifying molecular subtypes generally fall into two categories, based on 

whether data from a single platform or multiple platforms is being used. For single platform 

data (e.g. gene expression), any off-the-shelf clustering algorithms can be used, though 

choosing the method depends on the type of data being clustered. The more challenging case 

is clustering patients with data from multiple platforms, especially because there is often a 

data type that is missing, as not all measurements are performed in every patient. 

Researchers have taken multiple approaches (see references in Table S2A). Some methods 

search for a “consensus” after clustering patients by each platform separately [37], or cluster 

with protein-protein interactions [29], or patient similarity networks [80, 81]. Other methods 

formulate the problem as a “multi-view” matrix factorization and dimension reduction, 

or as a probabilistic model (reviewed in [82]). In all cases, a key challenge is the selection of 

features from each platform as inputs to the clustering algorithms; for example, it is possible 

to summarize mutations, gene expression, and DNA methylation events as binary 
alterations [80], and then treat any missing data as a non-alteration event. We anticipate that 

recent advances in methods for learning low-dimensional representations of multiple data 

types such as deep neural nets [83] will soon be applied in molecular classification of 

tumors, given the amount of molecular cancer data being produced and the successful 

application of deep neural nets in areas of computer vision, natural language processing, and 

biology [84]. Initial molecular subtype studies have often focused on clustering samples into 

subtypes based on gene expression in a single cancer type, which have provided robust 

biomarkers and subgroups, coherent with patient survival profiles (e.g, in breast cancer [85] 

or colorectal cancer (CRC) [86]). These studies typically reveal a more refined set of clusters 

than those defined by known histopathological markers, with more coherent survival profiles 

of the samples/patients composing them. While some of the molecular clusters strongly 

overlap with known histologically-based clusters, others are surprisingly composed of 

samples with distinct histopathological markers, but with similar transcriptomic profiles and 

survival rates. More recent analyses have clustered multiple platforms across multiple cancer 

types, and, as outlined before, identified molecular similarities between tumors of different 

tissue-of-origin. For example, one study analyzed TCGA data from >3000 samples across 12 

cancer types, and found that while most cancers could be classified based on their histology, 

~10% could be classified as belonging to an “integrated” subtype, i.e. including cancers 

from multiple tissues-of-origin in the same subtype [37]. Furthermore, grouping samples 

from different tissue types yielded improved predictive power for patient prognosis, 

potentially reflecting the value of molecular features (such as common mutations) for 
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predicting survival [37]. The FDA recently approved the drug pembrolizumab (immune-

checkpoint PD-1 blockade), used across many cancer types – with demonstrated 

effectiveness in colorectal, endometrial, pancreas, thyroid, and eight other cancer types-- 

based on the presence of a specific (mismatch repair deficiency) signature [87]. These 

studies demonstrate the promise of classifying tumors using molecular features, which can 

give additional insights into prognosis and treatment beyond tissue-of-origin.

Approaches to Identifying Genetic Drivers

While as few as 3–8 somatic mutations are required to drive cancer [36], identifying the 

entire set of driver mutations in any given tumor is a difficult biological and computational 

problem. The observation that relatively few mutations occur in a significantly recurrent 

manner across tumors, holds, despite the development of sophisticated statistical tools for 

evaluating the significance of mutations. Researchers have developed multiple different 

classes of tools that consider different information about somatic mutations, including the 

predicted functional impact [88] or conservation across populations [89]. Other methods 

attempt to classify driver mutations by identifying hotspots in the protein sequence or 

structure [90–92], or targets of recurrent copy number aberrations [93]. Some methods also 

consider side information such as a gene’s replication timing and expression [94] [95], or 

per patient, and/or per gene mutation rates [96] (see references summarized in Table S2B).

Despite these advances, in most cancer datasets there is a “long tail” of genes with 

infrequent mutations, where the drivers are statistically indistinguishable from passenger 
mutations [32]. One report illustrated the depth of this problem by estimating the number of 

samples required to detect driver mutations with a given frequency in a given cancer type 

through saturation analysis [34]. The cancer type in question was critical because of the 

high variance in background mutation rates in different cancers (e.g. breast cancer, prostate 

cancer, etc.). For example, they showed that up to 5300 samples would need to be sequenced 

to detect drivers occurring at 2% above the high background mutation rate in melanoma 

[34]. This presents a particular challenge for rare cancer types, especially since cancer types 

continue to be divided into different subtypes [34].

The observed inter-tumor mutational heterogeneity is widely believed to be due, in part, to 

mutations targeting pathways or “cancer hallmarks” [26], where each pathway includes 

multiple genes such that many different combinations of aberrations can affect hallmark 

pathways and drive cancer. Thus, by uncovering the genes in these pathways, it may be 

possible to identify “hidden” driver mutations in the “long tail”, i.e. the set of mutations that 

are indistinguishable from passengers without considering prior knowledge such as 

pathways. To date, researchers have developed multiple classes of methods that use different 

side information to identify the pathways/hallmarks targeted in cancer (see Table S2B). One 

group of methods searches for significantly mutated groups of genes in known pathway 

databases [97] and protein interaction networks [35, 93, 98–100]. Other methods search for 

functional mutations that co-occur with sample-level events [101, 102], which can be 

viewed as a supervised learning task. These approaches have been used on cancer cell line 

drug sensitivity and gene dependency/addiction (i.e. conditional essentiality) data to 

generate testable hypotheses, but are less well-suited for predicting coarse measurements 
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with many factors such as overall survival. Another promising approach has been to search 

for groups of genes with mutually exclusive mutations [103–107]. However, these 

approaches also require large sample sizes through saturation analysis [108], and, 

depending on the relative rate of driver/passenger mutations, such sample sizes can be even 

larger than those required by the recurrent mutation detection methods described above. 

Finally, going beyond coding region mutations, researchers are beginning to uncover 

recurrent and functional mutations in non-coding regions of the genome that might play a 

role in dysregulated gene expression, as is the case of the TERT promoter, shown to be 

mutated for the first time in melanoma [109], and more recently, in 43 tumor types [79], 

with significant association to poor survival in cutaneous melanoma, bladder urothelial 

carcinoma, and papillary thyroid cancer [79]. Larger whole-genome sequencing efforts such 

as those from the ICGC are likely to uncover more of these non-coding mutations due to 

increased statistical power.

Integrating Genomic and Clinical Data

Current efforts linking genomic mutation data with clinical data to assist in therapeutic 

decisions build and use knowledge banks (see Table S3). These include web tools that 

provide data and text summaries of the frequency, mechanisms, and druggable targets of 

known driver mutations [110]. Multiple tools now include “interpretations” or summaries of 

the driver mutations written by clinicians – including the Precision Medicine 

Knowledgebase (at Weill Cornell) and the Personalized Cancer Therapy knowledge base (at 

MD Anderson) – or by the “crowd” [111, 112] (see list of references in Table S2C). A 

related approach recently explored leveraging existing ‘omics datasets for the interpretation 

of variants in newly sequenced samples, in acute myeloid leukemia[113]. For example, one 

study recently demonstrated the use of this approach by building survival models that linked 

genomic and clinical data, and then using these models to choose treatment(s) and predict 

survival for new acute myeloid leukemia patients [113]. Regularized regression on both 

genomic and clinical features was performed on these models to predict overall survival; the 

authors used these to identify additional interventions that could potentially increase overall 

survival, and extraneous interventions that could be removed for some patients without 

decreasing overall survival [113]. However, effectively integrating annotations and clinical 

knowledge of known variants with ‘omic databases in an automated manner for the 

interpretation of patient molecular data, and creating features from molecular data for input 

into survival models, remains a key challenge. This appears to be largely due to the fact that 

most clinical data still need to be extracted from free text, and the pertaining electronic 

medical record (EMR) systems are mostly not standardized.

Identifying Cancer Vulnerabilities on the Basis of Genetic Interactions

Another way to guide precision therapy is based on identifying and utilizing genetic 

interactions, in particular, by harnessing the concept of Synthetic Lethal interactions (SLi). 

SLi describe the relationship between two genes where an individual inactivation of either 

gene results in a viable phenotype, while their combined inactivation is lethal for the cancer 

cell [114, 115]. SLi have long been considered a foundation for the development of selective 

anticancer therapies [64, 114, 115], which aim to inhibit the Synthetic Lethal (SL) partner of 

a gene that is inactivated de novo in cancer cells. As this SLi partner gene is most likely to 
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be inhibited only in the tumor, this treatment will thus primarily kill these cancer cells but 

not healthy ones. Thus, this offers a complementary approach for predicting patient drug 

responses to sequence-based cancer precision medicine strategies. This might be achieced by 

(i) going beyond existing precision oncology approaches based on actionable mutations (i.e. 

mutation that can be targeted by specific small molecule inhibitors) in a few hundred cancer 

driver genes, and examining the whole genome, thereby covering all possible changes that 

might have occurred in a tumor. These might uncover many more treatment options for 

patients whose tumors do not bear actionable mutations. (ii) SLi are well poised to offer 

effective options for potentially treating heterogeneous tumors, presumably impacting 

differenting subclones, and overall resulting in more effective tumor eradication with 

reduced likelihood of drug resistance.

Given this promising potential, extensive experimental efforts have aimed to tease out the 

wiring of genetic interactions in cancer cells based on single (isogenic) cell lines [116–121] 

or on large-scale genetic knockout-based screens [122–126]. However, due to the large 

combinatorial space of pairwise interactions that need to be surveyed, these screens have 

probed only a small fraction of the coverage offered by SLi: each screen typically scans a 

few thousand candidate SL partners of just one “anchor” cancer driver gene of interest (e.g., 

KRAS or VHL), altogether covering a mere fraction of the 500 million gene pairings in the 

human genome. Yet, with these screens, several SL interactions have been successfully 

uncovered to date; apart from examining the effect of PARP inhibitors in patients with 

BRCA-mutated breast and pancreatic tumors, a growing number of other treatments 

targeting SL-based cancer specific vulnerabilities are currently being clinically investigated 

[127].

Aiming to bypass the limitations of current experimental techniques in probing the vast 

space of potential SLi, various computational approaches have been developed to identify 

such candidate SLi (see references in Table S2D). These include applying various machine 

learning methodologies to predict genetic interactions in different species [128–131], and in 

cancer (employing yeast SLi) [119, 132], utilizing metabolic modeling [133, 134], 

evolutionary characteristics [119, 129], transcriptomic profiles [101, 135], and more 

recently, by mining cancer patient data [136–138] (Table S2D). One recent study evaluated 

the TCGA copy number and transcriptomics data to identify, as candidate SLis, gene pairs 

that are almost never found inactivated in the same tumors [136]. The study demonstrated 

that gene pair interactions (a subset of which was validated in experimental screens) could 

be successfully used to predict the survival of breast cancer patients in an independent 

dataset [136]. The pair was also used to predict in vitro drug responses in order to identify 

novel drug repurposing indications for potentially treating renal cancer [136]. Unlike the 

approach of using expression and copy number data ([136]), an algorithm was recently 

developed to mine pan-cancer human tumor data and define mutation-specific SL 

interactions for specific cancers [139]. Its SL predictions were validated against published 

SL screens and one specific SL gene pair interaction between mutated IDH1 and acetyl-CoA 

carboxylase 1 (ACACA) in leukemia was experimentally validated; this interaction 

attenuating tumor growth in patient-derived xenografts (PDX) [139]. Finally, certain 

predicted SL interactions where shown to successfully predict drug sensitivity, thus serving 
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as biologically interpretable biomarkers of the latter [139]. Overall, while these studies have 

laid a solid basis for some of these genome-wide approaches, extensive research is 

warranted to further elucidate the potential of SLi based approaches in precision oncology. 

Moroever, for clinical trials, there is an important unmet need to specifically design and test 

SLi-based approaches that may uncover a wide range of tumor-specific vulnerabilities.

The Use of In Vitro and In Vivo Models for Guiding Precision Therapy

The increased functional annotation of genetic variants of unknown significance [140], along 

with systematic high throughput drug screens in 1000 cancer cell lines [141] or 1000 PDX 

models [142] has significantly increased our understanding of the relationship between 

genotype and drug sensitivity. We are beginning to understand the molecular profiles of 

patients responding to conventional chemotherapy, such as to temozolomide [143] and other 

DNA-damaging agents [144]. Due to their well-characterized clinical benefit in unstratified 

patient cohorts, these remain equally valuable therapy choices in addition to targeted 

therapies. With this ever-increasing number of validated biomarkers and available drugs, it is 

expected that molecular profiling will reveal multiple potentially actionable alterations, 

which may be treated with a multitude of drugs/drug combinations. Prioritizing predicted 

treatments requires functional testing, especially in cases where the drug-biomarker 

association has not been clinically validated. Undoubtedly, there will still be patients whose 

molecular analysis is either not feasible or does not reveal targetable alterations, for which 

alternate routes to inform therapy are necessary. For this purpose, several in vitro or in vivo 
patient-derived functional platforms (e.g. PDX or organoid models) have been developed 

that mimic the native features of tumors more closely than conventional cell culture drug 

screening platforms [145].

PDX models offer one attractive approach, as tumor heterogeneity is maintained in these 

models at least in early passages (for comprehensive review see [146]). In addition, clinical 

studies have demonstrated remarkable correlations between drug activity in the PDX model 

and a patient’s clinical outcome [146–149]. However, not all human tumor samples grow in 

mice following subcutaneous or orthotopic implantation , and the long time span needed 

for tumor development and expansion to test multiple drugs/drug regimens restricts this 

approach to patients with a less aggressive disease course [146]. Serial passaging is not 

only accompanied by the substitution of human stroma with murine components, eventually 

affecting clonal evolution [146], but also results in extensive mouse colonies and hence, 

logistical difficulties and rapidly expanding costs. Finally, although humanized mouse 

models with a (partially) competent “human” immune system have been developed, the 

remaining technical and biological difficulties of generating these mice, restrict the use of 

PDX models in studying immunotherapeutic approaches as well as the effects of immunity 

on the efficacy of other drugs in pre-clinical models [146]. Nonetheless, alternate, in vitro or 

ex vivo models may substitute the extensive use of PDX.

Patient-derived 3D organoids provide a practical alternative (see other models in Box 2). 

Organoids are established by dissociating and embedding tissue in an cell-free extracellular 

matrix (matrigel or collagen), which can be expanded in a growth factor-enriched medium 

[150]. Organoids from pancreatic [151], colon [152–154], gastric [155], prostate cancer 
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[156] and brain tumors/metastasis [157] have been established, and have the advantage of 

3D growth of normal and cancer tissue, recapitulating copy number and mutation spectra, as 

well as other physiologically relevant aspects of disease progression in vitro [150–158]. 

Organoids can be established in culture from needle biopsies within a relative short time 

period, and have also been generated from circulating tumor cells [156]. Organoids can 

serve as a model system to perform high-throughput screens within a clinically relevant time 

frame: in a larger precision oncology study, organoids were established from fresh tissue 

available from 38% of 145 patients [158]. In addition, PDX models were successfully 

established from these organoids in 19 of 22 attempts [158]. High-throughput drug screens 

were performed (160 drugs, including chemotherapy and targeted therapy) in 2D cultures 

from 4 patients, and the best “hits” (drugs that most effectively decreased cell viability in 
vitro) were verified in 3D organoid cultures. Selected treatments were then tested in 

combination, to identify effective combination therapies. The best hits of single and 

combination therapies from 2 patients were further tested in 3D organoids and in PDX 

models, validating tumor responses in vivo, and compared to the efficacy of current patient 

treatments [158]. In addition, potential drug toxicities were evaluated (e.g. trametinib and 

afatinib led to significant weight loss in mice) [158]. For both cases, the combination of 

targeted therapies was superior over standard chemotherapy [158]. This study underscores 

the potential use of functional screens in patients where no targeted therapies are available, 

and the possibility of identifying effective drugs/ drug combinations [158]. The study further 

demonstrated that therapy recommendations could be retrieved within a clinically relevant 

time frame (between 7 and 13 weeks) [158], highlighting the importance of defining 

regulatory routes that might simplify off-label drug access for late-stage patients, often not 

eligible for clinical trial enrollment (see Outstanding Questions). Therefore, the combination 

of molecular profiling (genomics and transcriptomics) and functional testing holds promise 

for determining effective combination therapies for individual cancer patients.

Box 2

Valuable Models for Guiding Precision Therapy

In addition to PDX and organoids, conditional reprogramming (CR) of patient-derived 

primary epithelial tumor cells or organotypic cultures are among the possibilities to test 

selected treatments. Patient-derived cell lines via CR can be rapidly established [203] and 

are suitable to screen large drug libraries [204, 205], or to test drug combinations to 

overcome acquired resistance to targeted therapy [206]. While phenotypic features and 

the genetic heterogeneity of the original tumor are retained in short term CR cultures, the 

enrichment of specific cell populations, including non-transformed epithelial cells in this 

model, requires cross-verification of pheno- and genotypic features of donor tissues and 

CR cells. The lack of a 3D environment may be partially overcome by culturing CR cells 

in sophisticated 3D artificial organotypic cultures [207], of which fully automated 1,536-

well high throughput screening platforms have recently been described [208]. Although 

these artificial microenvironments lack the heterogeneity observed in patient tumors, they 

may allow testing tumor cell behaviors in the context of different organ 

microenvironments shown to influence drug responses [208].
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In organotypic slice cultures [209] or organ explants [210], either thin slices of the tumor 

sample or minced tumor tissues are maintained in culture. The biggest advantage of these 

culture types is that they retain cancer associated stromal cells, preserve tumor–stroma 

interactions, signaling pathways and gene expression profiles [211]. Improvements 

include the use of autologous serum and patient-specific stromal-matrix proteins to more 

closely resemble individual microenvironmental conditions [212], aiming to accurately 

predict responses to anticancer drugs.

However, not all tissues are suitable to generating thin slices (e.g. soft, mucinous or fatty 

tissue), where firm tissue consistency is required [213, 214]. Another drawback of slice 

cultures is the loss of viability within 5 to 7 days [211]. As the median time frame for 

molecular profiling and data processing in precision oncology trials is 2–4 weeks, the 

method is not suitable for testing genomics-guided therapies derived from the same 

biopsy, unless combined with other models. Recently, organotypic slice cultures 

established from pancreatic ductal adenocarcinoma PDX models were used to screen 

against clinically relevant drug regimens in a 96-well format, demonstrating consistency 

between sensitivity of organotypic cultures and the clinical responses of donor patients 

[215].

Outstanding Questions Box

• Can the integration of transcriptomic information in clinical decision-making 

improve patient outcomes? There is a strong biological rationale to support 

this hypothesis. However, the necessary steps to enable integration of distinct 

data platforms and to rigorously test the clinical value of transcriptomics 

remain to be assessed.

• How many platforms within the tumor microenvironment (immune, 

microbiome, metabolome) need to be integrated to provide a multi-

dimensional map of the complex tumor landscape? Will it allow a more 

accurate prediction of regulatory nodes and possible therapeutic modalities?

• Preclinical patient-derived models (PDX and/or organoids) demonstrate a 

strong correlation with patient outcomes. Can regulatory guidelines be 

defined to render an easier use of off-label drugs in the clinic when based on 

positive outcomes taken from such models?

• How many single cells (and from how many tumors) will we need to 

sequence to accurately depict the complex heterogeneity observed within 

patients? Can machine-learning approaches be used to predict a tumor’s 

behavior?

• Are CTCs a reliable source to comprehensively map tumor heterogeneity and 

do they accurately define phenotypic heterogeneity of advanced disease? How 

can we improve the isolation of these valuable cells?

• How can intra-tumor heterogeneity be exploited therapeutically?
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Clinical Management of Therapy Resistance in the Precision Oncology Era

Although genomics-guided therapy is associated with prolonged progression-free survival, 

cancer patients can generally develop resistance to drugs within 6–12 months, even when 

trunk mutations are targeted (Figure 2). Such acquired resistance to targeted drugs may be 

explained by the selection of resistant cancer cells that are present prior to therapy or that are 

generated de novo as a result of genomic instability. Sequential therapy of 2nd, 3rd and even 

4th generation inhibitors that specifically address emerging mutations within the original 

target (i.e. EGFR inhibitors [159–163]) or drugs targeting newly established driver 

mutations (e.g. MET amplification in EGFR inhibitor -resistant colorectal cancers [164]) 

have been used to overcome resistance. Alternatively, combined inhibition of multiple 

pathways [165] or vertical pathway inhibition (targeting multiple proteins within one 

pathway) have been suggested to prolong progression-free survival by pre-empting 

resistance in a pro-active manner and inhibiting the selection of resistant clones [166]. As 

ana example, targeted therapy has been used against BRAF and MEK in melanoma to 

counteract feedback regulatory loops and achieve efficient pathway inhibition [18]. 

Although these approaches are suitable to prolong progression-free survival, management of 

resistant disease remains dismal/short-lived, partly because multiple resistance mutations (in 

addition to other mechanisms) can occur simultaneously. This heterogeneity was recently 

demonstrated in a colorectal cancer patient, where a MEK1 mutation was detected in a liver 

metastasis biopsy, conferring resistance to cetuximab [167]. Treatment of this patient with 

the combination of panitumumab and trametinib resulted in regression of the biopsied 

liver metastasis; however, other liver metastases progressed while on treatment. Analysis of 

circulating tumor DNA (ctDNA) revealed a previously unrecognized KRAS mutation, 

which was later found in a biopsy from a progressing liver metastasis, highlighting the 

challenges of combating polyclonal resistance [167]. To address these issues, more general 

approaches have been suggested, such as interfering with tumor evolutionary programs, for 

instance, by increasing genomic instability to lethal levels (e.g. PARP inhibitors in tumors 

with homologous recombination deficit) [25]. These have been promising strategies to 

exploit genome instability - as one driving force of heterogeneity -- therapeutically [25]. 

However, even this approach is accompanied by resistance [25]. Finally, there is growing 

interest in applying intermittent treatment doses, or adjusting drug doses to limit the 

evolutionary pressure imposed by a given drug [25]. Such adaptive therapy may serve to 

maintain a drug-sensitive population, with the goal of stabilizing the tumor size rather than 

eliminating the tumor. Preliminary evidence for the putative benefit of such drug “holidays” 

comes from colorectal cancer patients receiving EGFR therapy [168], also suggested for 

melanoma [169, 170] and recently, breast cancer models [171]. Advances in the 

characterization of ctDNA now make it possible to carefully evaluate these different 

methods to combat genetic resistance to targeted drugs in the clinical setting [167, 168, 172–

175]. Furthermore, the reappearance of the driver mutation or the appearance of previously 

undetected mutations associated with resistance to targeted therapy in the blood can enable 

early detection of therapy failure (before tumor imaging indicates relapse [173, 174]), and 

might also identify new potential drivers suitable for guiding second-line therapy [167, 168, 

172–175], a promising approach for the management of resistant disease.
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In addition to the Darwinian-like evolution of genomic alterations in resistant clones under 

therapeutic pressure, tumors evolve resistance to therapy by adaptively rewiring transduction 

networks to support the signaling processes required for survival/tumor maintenance in a 

post-genomic, transient and dynamic manner [176] (Figure 2; Table S2F; S3). One such 

example is the ability of BRAF-inhibitor sensitive MITFhigh/AXLlow melanoma cell 

populations to readily switch into a MITFlow/AXLhigh drug resistant population [177, 178]; 

these cells have been shown to pre-exist in treatment-naïve samples by single-cell RNA-seq 

[179]. Another example of such phenotypic plasticity has been recently reported in 

ER+HER2− breast cancers [180]. Following multiple courses of therapy, HER2+ cells 

lacking gene amplification have been found to emerge in addition to HER2− cells in patient 

tumors, and among circulating tumor cells (CTCs); this may be indicative of non-genetic 

mechanisms involved in HER2 upregulation [180]. Furthermore, characterization of patient-

derived CTCs revealed that although both, HER2+ and HER2− CTCs maintained tumor-

initiating potential in ortothopic xenograft experiments, HER2+ cells were highly 

proliferative and sensitive to chemotherapy, whereas HER2− CTCs exhibited a slow 

proliferation rate, upregulated NOTCH signaling, and were chemoresistant [180]. Of note, 

cells could interconvert between a HER2+ chemosensitive, and a HER2− chemoresistant 

state, and with chemotherapy a HER2+ population could shift towards a HER2− phenotype 

[180]. Accordingly, targeting NOTCH in combination with chemotherapy (paclitaxel) 
suppressed tumor growth in mice, whereas either treatment alone was inefficient in limiting 

tumor growth [180]. Therefore, rapid interconversion of CTCs between distinct functional 

states may contribute to acquired resistance to therapy; consequently, it is possible that 

combination therapy might improve therapeutic responses and delay the onset of resistance. 

Other non-genetic routes to escape targeted therapy can include the epithelial to 

mesenchymal transition (EMT), a developmental program that is often hijacked by cancer 

cells [181]. Preclinical models have associated the EMT program with chemoresistance 

[182, 183] and a subset of non small cell lung cancer (NSCLC) patients resistant to EGFR-

targeted therapy were shown to display an increase in “mesenchymal” cancer cells [184]. 

Additionally, tumors can also undergo “histological transformations” – as shown for EGFR 

inhibitor-resistant NSCLC patients whose tumors converted to a small cell lung cancer 

(SCLC) phenotype, escape therapy [184]. Finally, vascular mimicry, a phenomenon where 

tumor cells transdifferentiate into endothelial-like cells that can form matrix-rich, vascular-

like, perfused channels, have also been proposed to contribute to resistance to anti-

angiogenic therapy, but further testing of this mechanism will be required to better 

understand its role in resistance [185].

Multiple resistance mechanisms (genetic and non-genetic) can act in concert to confer 

resistance to targeted therapy (Figure 2). Indeed, in a recent melanoma study [186], analysis 

of patient-matched melanoma tumors biopsied before therapy and during disease 

progression demonstrated that, in contrast to heterogeneous genetic mechanisms that could 

result in acquired resistance, transcriptomic signatures were highly recurrent in serial 

biopsies; these indicated that a multitude of genetic and epigenetic events within the tumor 

compartment converged on specific genes (c-MET,LEF1,YAP1) and pathways to mediate 

resistance, consistent with a canalization evolutionary process [186]. Additionally, this 

acquired resistance signature correlated with changes in the tumor immune 
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microenvironment, including depletion of intratumoral CD8+ T cells, exhaustion of tumor-

reactive CD8+ T cells, and loss of antigen presentation; these have been previously linked to 

resistance to anti-PD-1 salvage therapy in melanoma patient biopsies, in support of the 

presumed role of CD8+ T cell exhaustion in the development of resistance [77, 186]. 

Furthermore, these findings suggest that first-line therapy with immune-checkpoint 

inhibitors followed by BRAF targeted therapy upon relapse in BRAF-mutant melanomas, 

may be superior over BRAF-inhbitor frontline therapy, a hypothesis that is currently being 

tested in a clinical trial (NCT02224781).

The mere follow-up of genomic alterations in ctDNA will unlikely result in satisfactory 

management of resistant disease as adaptive mechanisms on transcriptional and signaling 

levels can be missed by genomic analysis alone (Figure 2). The use of CTCs may be 

preferred to monitor resistant disease, as they have a better overall prognostic value, provide 

an additional opportunity to characterizing genetic and non-genetic intratumor heterogeneity 

(ITH), and are suitable for functional studies [187]. The previously described in vitro/ex 
vivo models may serve to detect relevant signaling nodes and counteract adaptive signaling 

by combinatorial therapy to delay onset of resistance. As suggested for the selection of first 

line therapies, a comprehensive genomic, transcriptomic and functional analysis of resistant 

disease is required to overcome these challenges. In that case, it may be possible to mine the 

increasingly available ‘omics data from large cohorts of patients and identify genetic 

interactions that mediate network-wide signaling alterations conferring resistance. Such an 

approach could exploit the much less studied type of genetic interactions, termed synthetic 
rescues (SRs), also known as suppression interactions [188–192]. Such SRs denote a 

functional interaction between two genes where the targeting of one gene is compensated by 

the altered activity of another gene (termed the rescuer gene); this can restore and rescue cell 

fitness, leading to drug resistance. Like SLs, SR interactions could in principle be identified 

by mining omics data from large cohorts of pretreated tumor samples, taking into 

consideration that functional alterations might already be occurring during the natural 

evolution of tumorigenic populations.

Concluding Remarks

The Road Ahead

Despite the limitations of genomics-driven cancer therapy, current efforts have demonstrated 

that this approach has the potential to improve clinical outcomes – although at this time, 

only for a minority of patients. In addition, it has laid the basis for the necessary 

infrastructure to expand on the concept. Future precision oncology treatment will need to 

evolve to consider the broader landscape of genetic and epigenetic changes that take place in 

a tumor, as in its microenvironment, which comprises metabolic as well as immunologic 

changes, in addition to the influence exerted by the microbiome. Consequently, we must 

understand that targeting a single pathway in a tumor is in most cases, not sufficient to 

achieve a sustained response, and we must enforce this principle. We have outlined how the 

inclusion of transcriptomic data could serve to stratify patients, suggest combination 

therapies, or define novel vulnerabilities to improve upon current precision oncology trials 

(Figure 3 and Box 3). Patient-derived ex vivo/ in vivo models can serve to identify the 
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toxicity and efficacy of combination therapies, link genomics to drug responses, and when 

such information is included in a mineable database, can potentially serve to inform 

therapeutic decision-making. The limiting factor in performing multiple omics approaches 

and functional testing, aside from cost, is tissue availability, and one important future step 

will be to improve the methods to retrieve sufficient tumor material. As such, the use of 

CTCs is especially appealing, as theses can be non-invasively isolated and may better reflect 

the prevailing ITH (see Outstanding Questions).

Box 3

Clinicians’ Corner

• Targeted drugs are largely based on defined drugs (small molecules or 

biologic antibodies) designed to inhibit specific oncogenic mutations or target 

key regulatory nodes that drive tumorignesis or underlie cancer 

vulnerabilities. Usually, the presence of drug-specific biomarkers enables 

stratification of patients for therapy and monitoring drug effectiveness. Given 

the success of targeted therapies, together with the recognition that different 

tumor types share driver / master regulators, the use of drugs that target 

common regulatory nodes in a histology-agnostic manner is being evaluated 

in clinical trials.

• Clinical experience with genomics-guided cancer therapy supports the notion 

that genomic profiling can improve patient outcomes. The degree of success 

can be associated with the ability to verify the role of a targeted mutation/

alteration in tumor development, or vice versa, that is, whether the drug can 

efficiently attenuate the tumorigenic effects orchestrated by the genetic 

alteration.

• Precision oncology cannot be limited to genetics to predict responses to 

therapy, nor can it be limited to a single “omics” based approach. Multiple 

drivers can underlie tumor heterogeneity, which in turn can confer resistance, 

metastasis and dormancy. It also requires the targeting of master regulators 

that are influenced by epigenetic and microenvironmental-based pathways. 

The inclusion of additional platforms, of which at this time, the most suitable 

appears to be transcriptomics, (with future inclusion of metabolome and 

microbiome analysis) is highly desirable to identifying such master regulators 

and designing more precise putative therapeutic modalities.

• Advances in computational approaches to mine and integrate the multitude of 

datasets that become available to us are expected to allow better sub-

classification of patient cohorts into subpopulations able to respond to a given 

therapy. In addition, integration of multiple data platforms is expected to drive 

the identification of novel vulnerabilities, which will further add to the 

armamentarium of current anticancer therapies. This may likely result in 

newer stratification methods to identify patients that might benefit from a 

given precision oncology approach.
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• The implementation of powerful ex vivo or improved in vivo PDX models in 

the planning of clinical practice is encouraged. By using these models, a 

multitude of available drugs and predictive biomarkers might be assessed to 

evaluate therapeutic options, as well as their combinations and delivery 

sequence / approaches.

ITH is clearly the biggest obstacle we need to overcome in order to achieve a sustained 

therapeutic response. With rapid technological advances, we are acquiring the toolbox to 

comprehensively characterize the complex heterogeneity of tumors at the single cell level 

(Box 4). However, computing the data from different platforms of 1000 cells remains a 

challenge. Among the questions that emerge is whether it will be possible to develop 

multiplex-based approaches, or use machine-learning techniques to compute tumor trends in 

order to predict sub-cluster and clonal behaviors, and this may be potentially addressed in 

the near future (see Outstanding Questions).

Box 4

Available tools to decipher Intra-Tumor-Heterogeneity

ITH manifests as differences in genetic, epigenetic and signaling networks of individual 

tumor cells coupled with heterogeneity within the stromal compartment [25, 27]. While 

ITH is influenced by the inherent tumor genetic makeup, epigenetic states (influenced by 

the location of tumor cells), as well as microenvironmental factors have been recognized 

as being equally important in dictating the diverse cellular states that drive the primary 

tumor or its metastatic lesions. Those include the proximity to endothelial cells, cancer 

associated fibroblasts, immune cells, as well as the nutrient and oxygen availability and 

biophysical properties of the extracellular matrix [28, 200]. The development of single 

cell separation and analysis methods, has provided critical insights into the complex 

heterogeneity of tumors, where multiple clusters of genetically [216] and phenotypically 

(more so) distinct populations exist. The resulting cell-to-cell variability in stemness and 

differentiation programs, proliferation and quiescence markers, as well as in the 

expression of predictive biomarkers [179, 180, 217, 218] define a tumor’s propensity for 

therapeutic resistance, metastasis and dormancy.

Active research is being undertaken to overcome limitations in single cell methods, 

including single-cell DNA [219–221] and single cell RNA-seq [222–224] throughput 

methods, as well as sampling bias. These limitations might be partially resolved by using 

liquid biopsies [187], and by performing tissue dissociation and dissection of spatial 

information [225], methods which are currently underway.

Among the first series of steps needed to provide important insights into the complex nature 

of malignanices, the inclusion of technological and computational advances in clinical trials 

stands out. These should aim to map and analyze the impact of complex genetic and non-

genetic heterogeneity during cancer progression and therapy regimens to help pave the way 

towards the next generation of cancer therapeutics, capable of overcoming the challenges 

imposed by the defying intratumor heterogeneity of cancers.
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Glossary Box

Actionable mutations
gene alterations that can be specifically targeted with an approved or investigational drug. 

The term does not provide information about drug efficacy.

Acquired resistance
(or secondary resistance), indicates that a tumor which initially responded to therapy 

becomes resistant to this treatment during the course of therapy. In contrast, in intrinsic 

(primary) resistance, no responses agiansta tumor are noted upon initiation of therapy.

Afatinib
tyrosine kinase inhibitor of EGFR (ErbB1), HER2 (ErbB2) and HER4 (ErbB4).

Angiogenesis
blood vessel formation.

Basket trial
histology-agnostic trial design allowing to test the efficacy of specific drug(s) in 

molecularly-stratified patients. It evaluates whether a biomarker (signature) is predictive for 

drug response irrespective of tumor histology.

Binary alterations
binary classification of a molecular event, such as somatic mutations (present or absent), 

gene expression (upregulated or downregulated), or DNA methylation (hypo- or hyper-

methylated).

Biomarker
a molecular characteristic with a correlative or functional association with disease risk, 

prognosis (prognostic biomarker) or response to treatment (predictive biomarker).

Canalization evolutionary process
describes the stability of a phenotype despite variation in the genotype.

Cancer hallmarks
cellular and molecular functions required for cancer development and progression. 

Hallmarks are sometimes described by a set of genes that perform a specific function.

Clone
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one or more cells derived from and genetically identical to a single ancestor cell. 

Accordingly, subclones share many of the genetic features of the initial ancestor cell, but 

contain additional genetic alterations.

Conditional reprogramming
technique used to establish patient-derived cell cultures from healthy or diseased (e.g. 

tumor) tissue.

Copy number profiling
the genome-wide screening for gene copy number variations (gains or losses).

Circulating tumor cells (CTCs)
tumor cells that can be found in and isolated from the circulation of blood and/or lymphatic 

system of cancer patients.

Circulating tumor DNA (ctDNA)
circulating, cell-free tumor DNA that can be isolated from whole blood of cancer patients.

Cetuximab
anti-EGFR monoclonal antibody that binds to the extracellular domain of EGFR and 

prevents its dimerization.

Differentiation hierarchies
relates to differences in the impact of phenotype seen in an isogenic population of cancer 

cells; e.g. in their ability to metastasize or form tumors upon serial transplantation on 

immunodeficient mice (i.e. cancer stem cells).

Deep neural nets
neural network of multiple layers often used for supervised learning; at each layer, a 

function is applied to the input from the previous layer.

Dimension reduction
selecting a subset of features, or combining features, from a dataset (e.g. principal 

component analysis).

DNA methylation profiling
genome-wide screening for variations in DNA methylation status (hyper- or 

hypomethylation).

Driver
usually refers to a genetic event that is shown to elicit phenotypic changes associated with 

tumor initiation and progression (see oncogenic drivers). In a broader definition, the term 

can also be used to describe non-genetic and/or non-cell autonomous alterations that can 

alter certain aspects of disease progression.

Epigenetic alterations
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heritable trait not explained by changes in DNA sequence but by changes in gene 

expression. Common examples often observed in cancer cells include promoter 

hypermethylation or aberrant histone modifications (e.g. acetylation).

Evolutionary pressure
(or selection pressure); any change in the microenvironment (e.g. cancer therapies) that leads 

to a selection of clones that have a growth advantage under these new conditions.

Functional mutations
somatic mutations that change the phenotype of a cancer cell or tumor.

Gene fusions
hybrid genes that combine parts of two or more original genes. Fusion genes originate from 

chromosomal rearrangements (i.e. deletions, translocations, tandem duplications, 

inversions).

Genetic interaction
functional interplay between multiple genes and their corresponding gene products that has 

an impact on the cellular phenotype.

Genotype-matched trials
when a clinical trial is selected for a patient based on his/her genotype. This can be a study 

that only accepts patients with a given mutation, but also any study that either analyses a 

drug that is likely to be effective in the context of a given genotype, or inhibits a pathway 

that is directly linked to a mutation identified in the patient considered to be genotype-

matched.

HDAC (histone deacetylases) inhibitors
HDACs remove acetyl groups from histone lysine residues of but also from non-histone 

substrates. HDAC inhibitors can have transcription-dependent effects (e.g. relief of 

transcriptional repression of tumor suppressor genes) but also transcription-independent 

effects due to altered acetylation (and activity) of non-histone substrates, e.g. involved in cell 

proliferation or cell death.

Homologous recombination deficiency
defect in double-strand break repair by homologous recombination repair associated with 

high levels of genomic instability. These defects were originally identified in BRCA1/2-

deficient tumors, but can be observed in the absence of BRCA-mutations, a phenomenon 

generally referred to as ‘BRCA-ness’.

ICGC
International Cancer Genome Consortium (ICGC) has the goal to generate comprehensive 

catalogues of genomic abnormalities (somatic mutations, abnormal expression of genes, 

epigenetic modifications) in tumors from 50 different cancer types and/or subtypes and 

make the data available to the entire research community to accelerate research into the 

causes and control of cancer.

ICGC-TCGA DREAM Somatic Mutation Calling Challenge – RNA
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The DREAM Challenges are crowdsourcing (open science efforts) challenges examining 

questions in biology and medicine. In the RNA-Challenge“, leaders from ICGC and The 

Cancer Genome Atlas (TCGA) have come together to develop a Challenge to assess the 

accuracy of methods to work with cancer RNA Sequencing data.

Immune-checkpoint inhibitors
drugs that block immune-inhibitory signals (such as PD1, PD-L1 or CTLA4) expressed 

on/by tumor or immune cells. Inhibition of these factors can unleash, in some cases, a robust 

and durable antitumor immune response.

“Integrated” subtype
a subtype of cancer that includes patients with tumors from multiple tissues-of-origin.

Inter-tumor heterogeneity
differences in the molecular makeup of tumor cells between patients.

Intra-tumor heterogeneity
differences in the molecular makeup of tumor cells within individual patients.

Match-rate
frequency by which genomic alterations detected in a patient cohort can be matched to 

targeted therapies.

Methylome
collection of all DNA methylation markers in a single cell or a population of cells.

MOSCATO 01
prospective clinical trial evaluating whether high-throughput genomic analyses can improve 

patient outcomes.

“multi-view” matrix factorization
factorization of multiple data matrices into a lower-dimensional space, where each data 

matrix gives a different “view” of the data (e.g. gene expression and DNA methylation 

views).

Off-label drug use
a drug is used for a purpose not specified in the marketing authorization determined by a 

licensing body such as the FDA (e.g. drug used for a different type of cancer than the one it 

is approved to treat).

Oncogenic drivers
genetic events associated with tumor initiation and progression, including metastasis and 

therapy resistance.

Orthotopic implantation
a form of xenograft experiment where (patient-derived) tumor cells are implanted into the 

organ of origin to maintain the tissue-specific environment.
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Paclitaxel
chemotherapeutic drug that binds tubulin and inhibits the disassembly of microtubules, 

thereby resulting in the inhibition of cell division.

Panitumumab
monoclonal antibody that binds to and inhibits (autocrine) stimulation of the epidermal 

growth factor receptor (EGFR)

Passenger mutations
somatic mutations with no obvious role (owing to their inability to cause phenotypic 

changes) in cancer.

Patient-derived xenograft (PDX)
xenograft model wheretumor cells (derived from a biopsy or bodily fluids) are 

subcutaneously or orthotopically engrafted into immune-incompetent mice, without any 

intermediate growth or modification in culture.

Phenotypic heterogeneity
differences in phenotypic characteristics (e.g. potential to form metastasis or resist therapy) 

of genetically diverse but also isogenic tumor cells.

Rare variants
genetic variations (i.e. mutations) within a particular gene that occur in less than 1% of 

patients.

Recurrent mutation
somatic mutation that occurs in a statistically significant number of times in a cohort of 

sequenced tumors.

Sample-level events
measurements of individual tumors, patients, or cancer cell lines (e.g. drug sensitivity).

Saturation analysis
modeling of sample complexity to determine the number of samples required to detect some 

event as statistically significant.

Sequencing depth
reflects the average number of times a given region has been sequenced by independent 

reads.

Serial passaging
serial transplantation of tumors (usually in the flank of nude mice) for tumor expansion.

SHIVA study; the first randomized
open-label, controlled phase II study that evaluated whether targeted treatment based on 

molecular testing improved patient outcomes as compared to conventional treatments across 

all tumor types.
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Somatic variation
genetic mutations occuring in a somatic (body) cell.

Splice variants
transcripts (mRNAs) resulting from the alternative splicing of different exons in genes.

Synthetic rescue
type of genetic interaction where the mutation/deletion of one gene rescues the lethality or 

growth defect of a cell mutated/deleted for another gene.

Suppression interactions
phenotypic defects caused by a mutation in a particular gene are rescued by a mutation/

deregulation in a second gene

Targeted therapies
drugs that either target molecular alterations specific to cancer cells (e.g. mutated, amplified 

or epigenetically up/downregulated signaling proteins), or target immune cells to increase 

anti-cancer immunity.

TCGA
The Cancer Genome Atlas (TCGA) collaboration between the National Cancer Institute 

(NCI) and the National Human Genome Research Institute (NHGRI); it has generated 

comprehensive, multi-dimensional maps of key genomic changes in 33 types of cancer.

Temozolomide
chemotherapeutic drug in the class of alkylating agents exerting cytotoxicity by inhibiting 

DNA replication.

Trametinib
targeted therapy that specifically binds and inhibits MEK1/2.

Trunk mutations
genetic variations occurring in early tumor evolution and common to most clones.

Umbrella trial
study design evaluating the efficacy of multiple drugs within a biomarker-stratified single 

cancer type. They allow the evaluate of multiple biomarker-drug combinations in a 

histology-dependent manner.
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TRENDS BOX

• Genomics-driven cancer therapy benefits a subset of patients, although, there 

are clear shortcomings to this approach

• Using genomics as a single “biomarker” to inform therapy is insufficient to 

comprehensively predict efficient therapeutic approaches. By providing 

information about active pathways, the inclusion of transcriptomic data 

reveals a more comprehensive and thus accurate, molecular profile, which 

likely improves the choice therapy.

• Available patient-derived functional models (e.g. organoids or PDX) are 

promising for testing multiple drugs/drug combinations in a clinically-

relevant time frame.

• Mining available datasets can allow to comprehensively map the processes 

that drive cancer and reveal novel vulnerabilities.

• Intra-tumor heterogeneity remains one of the biggest challenges in reaching 

sustained therapeutic responses to cancer treatment. Inclusion of additional 

factors (immune, metabolome, microbiome) could pinpoint novel putative 

therapeutic approaches and combinational drug therapies, in an effort to 

overcome tumor heterogeneity.
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Figure 1, Key Figure. 
Determinants of Tumor Pathogenesis and Measures to Inform Precision Therapy

The genetic and phenotypic characteristics of a patient’s tumor are influenced by tissue/cell 

type specific factors, germline genetic background, lifestyle factors, as well as the number 

and type of previous anticancer drugs received [25, 27, 28]. Each individual cell is further 

influenced by, first, the proximity to and the integrity of the tumor vasculature; second, the 

biochemical and biophysical properties of the surrounding extracellular matrix (ECM); third, 

competing/cooperating interactions between individual tumor cells or tumor and stromal 

cells (among which are cancer associated fibroblaststs (CAFs), endothelial cells (ECs), and 

bone marrow-derived cells (BM-DCs)); and fourth, anti-tumor immunity. These factors 

further shape the geno- and phenotypic properties of a tumor in a spatial and temporal 

manner. While the genomic analysis of a tumor biopsy at the time of diagnosis identifies 

genetic vulnerabilities, the inclusion of transcriptomic data holds the additional potential of 

identifying non-genetic vulnerabilities by considering pathway activity and the composition 

of the tumor microenvironment. The integrated analysis of genomic and transcriptomic data 

is therefore a valuable tool to inform precision therapy.

Senft et al. Page 38

Trends Mol Med. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Targeted Therapy and Mechanisms of Acquired Resistance
Major classes of current FDA-approved targeted therapies include a. drugs targeting 

oncogenic drivers or drugs targeting other genetic vulnerabilities, e.g. PARP inhibitors in 

tumors with HR deficiency; b. drugs that aim to increase the anti-tumor immune-response or 

c. inhibit neo-angiogenesis. Numerous genetic as well as non-genetic mechanisms (green 

boxes) of acquired resistance to targeted therapeutics are known, which likely act in concert 

to mediate the largely short-lived response to these drugs. d. Routes to monitor emerging 

resistance as well as the suitability of liquid biopsies as compared to tumor biopsies to 

inform second-line therapy are displayed. Abbreviations: APC, antigen presenting cell; 

CAFs, cancer associated fibroblasts; ctDNA, circulating tumor DNA; CTC, circulating 

tumor cell; EMT, epithelial-mesenchymal transition; HR, homologous recombination; 

NSCLC, non small cell lung cancer; RTK, receptor tyrosin kinase; SCLC, small cell lung 

cancer;
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Figure 3. Precision Oncology Workflow
In this proposed precision oncology workflow, patient molecular profiles are used to suggest 

first-line (combination) therapies. Functional models serve to test safety and efficacy of 

selected drugs or screen for drugs in cases when molecular profiling is not informative. 

Patients are closely monitored during the course of therapy to detect resistance. Molecular 

profiling, computational analysis and functional testing of resistant tumors are repeated upon 

onset of resistance to determine second-line therapy options.
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