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Deformable registration has migrated from a research topic to a widely used clinical 
tool that can improve radiotherapeutic treatment accuracy by tracking anatomical 
changes. Although various mathematical formulations have been reported in the 
literature and implemented in commercial software, we lack a straightforward 
method to verify a given solution in routine clinical use. We propose a metric using 
concepts derived from vector analysis that complements the standard evaluation 
tools to identify unrealistic wrappings in a displacement field. At the heart of the 
proposed procedure is identification of vortexes in the displacement field that do 
not correspond to underlying anatomical changes. Vortexes are detected and their 
intensity quantified using the CURL operator and presented as a vortex map overlaid 
on the original anatomy for rapid identification of problematic regions. We show 
application of the proposed metric on clinical scenarios of adaptive radiotherapy and 
treatment response assessment, where the CURL operator quantitatively detected 
errors in the displacement field and identified problematic regions that were invis-
ible to classical voxel-based evaluation methods. Unrealistic warping not visible to 
standard voxel-based solution assessment can produce erroneous results when the 
deformable solution is applied on a secondary dataset, such as dose matrix in adap-
tive therapy or PET data for treatment response assessment. The proposed metric 
for evaluating deformable registration provides increased usability and accuracy of 
detecting unrealistic deformable registration solutions when compared to standard 
intensity-based approaches. It is computationally efficient and provides a valuable 
platform for the clinical acceptance of image-guided radiotherapy.

PACS numbers: 87.57.nj; 87.55.Qr; 87.57.cp
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I.	 Introduction

Image-guided radiation therapy (IGRT) improves treatment accuracy by taking into account 
anatomical changes occurring during the course of treatment as visualized through repeated 
imaging. In this approach, a deformable registration algorithm is a key piece of technology 
that automatically identifies and quantifies changes within the images, with major applications 
in contouring using atlas segmentation,(1-6) adaptive radiotherapy,(7-13) and treatment assess-
ment. Due to its wide applicability, significant improvements in targeting accuracy and, with 
vendors offering deformable registration algorithms as part of their software solutions, the 
procedure is expected to be adopted by clinicians as part of standard treatment practice. We 
contend that for a successful migration of deformable registration algorithms from academic 
to clinical environments, it is important to establish evaluation guidelines and tools to ensure 
the procedure can be safely applied without harming the patient.  
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A deformable registration is in essence an optimization procedure trying to mimic anatomical 
changes by various mathematical models. In reality, organs in a patient’s body will deform under 
forces exercised between them and from the surrounding medium. Although these forces cannot 
be measured in vivo and are thus unknown, their effect, such as organ compression, inflation, 
and displacement, can be visualized using different imaging techniques. A deformable registra-
tion algorithm estimates the magnitude of these forces by comparing images acquired before 
and after the deformation. Proposed deformable registration models make various assumptions 
to solve the problem at hand, being, in essence, synthetic models not necessarily based on un-
derlying anatomy. For example, voxel-based algorithms(14,15) assign a vector to each voxel in 
the input images, and iteratively vary magnitude until the predeformed image — warped with 
the deformation — matches the postdeformation image. Custom-made deformable registration 
models that incorporate anatomical information are possible through the finite element model 
(FEM) approach.(16) In practice, general settings and assumptions are preferred over highly 
customized models, but a quality assurance procedure must be in place to ensure that the solu-
tion estimated by an algorithm conforms to the expected anatomical forces.

Accuracy assessment depends on the clinical application of the deformable registration algo-
rithm. If the deformation algorithm is used for atlas-based contouring, voxel motion inside an 
organ is irrelevant to the algorithm application, with the aim being to correctly match structures 
borders. A valid approach for this application is to mathematically quantify registration errors 
by distances between the automated and user-delineated contours through Haunsdorf or Dice 
measures.(3,12,13,17-25) However, for other applications when the resulting displacement field is 
used to warp supplementary information such as a dose matrix or a PET dataset, it is crucial that 
the displacement field inside a structure of constant intensity follows real anatomical changes. 
Voxels in such regions of constant intensity are indiscernible to most deformable registration 
algorithms,(25) and thus there is little information for the algorithm to build a displacement 
field that accurately mimics anatomical changes. This is especially important as deformable 
registration is an ill-posed inverse problem that does not fulfill Hadamard’s postulate on well-
posedness, and since a solution may not exist or may not be unique, it is important to verify 
if the displacement field solution obtained by a deformable registration algorithm correctly 
models voxel movement.

Indeed, as opposed to rigid registration where only one valid solution is attainable, deform-
able registration problems might not have a solution in the strict sense, and a solution might 
not be unique, making their verification problematic. One approach to evaluate a deformable 
registration technology is to measure accuracy by using markers or clearly visible anatomical 
locations similar to concepts developed for rigid registration.(8,12,18,26-30) Such methods are te-
dious in clinical practice and incomplete when applied to deformable registration because the 
methods do not validate how the deformation field models voxels movement inside structures 
of uniform contrast.(31) For either rigid or deformable registration, visual inspection is still 
the norm, with tools such as the checkerboard or lens used to identify regions of anatomical 
mismatch. These standard evaluation methods give important visual feedback, but fail to dif-
ferentiate voxels, and thus do not directly quantify displacement field properties. One academic 
technique is to warp images with known displacement fields and then inspect the algorithm’s 
ability to recover the deformations.(32,33) Although this is a rigorous evaluation method, it is 
a time-consuming approach, as daily clinical practice lacks the tools and human resources to 
induce and compare deformations. 

We propose, in the following, a metric to complement existing evaluation tools to better 
understand displacement field properties when correct modeling of anatomical changes is 
important. At the heart of the proposed procedure is identification of vortexes in the displace-
ment field. Vortexes are a spinning, often turbulent, flow that may develop in fluid mediums. 
However, patient organs are rather solid and deform smoothly, and as a result, irregular motion 
descriptors that produce vortexes probably won’t truthfully portray the underlying anatomical 
motion. Vortexes in a displacement field can be identified and characterized using concepts 
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derived from vector analysis and will be used in the following to scan a solution produced by 
a deformable registration procedure for regions where the displacement is unsmooth. This in-
formation is presented to the user as a color-coded map overlaid on the input images for quick 
characterization of simulated anatomical behavior. 

An overview of the theoretical framework is presented and illustrated with clinical examples 
where the technique was instrumental in extracting complimentary information from the defor-
mation field. The protocol is easy to implement and use in clinical practice as it does not require 
phantom measurements, and is applicable to any type of deformable registration algorithm.

 
II.	 Materials and Methods

A.	D eformable registration algorithm output
Technically, deformable registration is an optimization problem that searches for a point-wise 
transformation minimizing discrepancies between the two datasets to be matched using global 
voxel-based similarity metrics. The optimization strategy varies based on the representation of 
the transformation and the number of variables, being either parametric or nonparametric. In 
the case of a parametric representation, a finite number of parameters allow representation of 
nonrigid transformations with realistic complexity. The most common approach in this category 
is the B-Spline model where the deformation is defined only on a sparse lattice of nodes over-
laid on the image, and the displacement at any voxel is obtained by interpolation from closest 
lattice nodes. In nonparametric approaches, displacement vectors at any voxel are considered 
separately to define a dense mapping, with the disadvantage that the optimization space tends 
to be very large, such that a variational method must replace the optimization.

All deformable registration algorithms use a form of regularization that ensures the resulting 
displacement field is smooth to correctly describe intra- or interfractional anatomical changes. 
Simply stated, the purpose of the regularization is to ensure that neighboring voxels are mapped 
to similar location by the displacement field. Without regularization, each voxel is allowed to 
map freely to any location, a situation that may lead to the case when neighboring voxels are 
mapped to a completely different location. Such displacement field applied on tissue would 
create unrealistic folding and tearing. In the case of the B-Spline approach, this is accomplished 
by the interpolation between the control nodes. In the case of demons algorithms, an optional 
smoothing of the current displacement field is performed after each iteration.

Independent of a particular implementation of a deformable registration algorithm, its result 
is, in essence, a vector field that maps voxels between two images. This displacement field 
can be visualized as a set of vectors positioned at regular grid points as shown in Fig. 1, with
arrow direction and length proportional with vector direction and magnitude. Each point in the
displacement field has associated a vector 

^^^
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B.	 Vortexes
A vector field’s rate of rotation in a particular point, sometimes called vorticity, can be math-
ematically detected by the CURL operator. For a vector field, the operator is associated with 
the microscopic circulation at a point and is defined as:

		  (1)
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Technically speaking, the operator measures changes in directions between two neigh
boring vectors in the displacement field. If the displacement field is smooth and consistent 
with expected anatomical motion inside an organ, changes between neighboring vectors are 
minimal and CURL values are low. If the displacement field is fragmented with neighboring 
vectors mapping in different directions, values of the CURL operator are high.

This concept as applied in radiotherapy is illustrated visually in Fig. 1, where the operator 
identifies discontinuities in the displacement field on a registration between inhale and exhale 
of 4D datasets. The displacement field in the liver regions is highlighted in Fig. 1(b) as a vector 
map. The regions marked with white arrows mark displacement field inconsistencies. At arrow 
#1, vectors engage in a circular motion. In reality, applying such a field on the organ would 
produce a vortex of its voxels. At arrow #2, for example, some vectors are directed toward the 
liver center, while neighboring arrows point outward. In reality, applying such a field on a solid 
organ such as the liver would produce organ disruption. 

Vortexes in the displacement field detected by the CURL operator and characterizing such 
unnatural behavior are shown in Fig. 1(c) as a color-coded map placed in the same coordinate 
system with the vector field visualization. Vortex intensity is color-coded from blue, correspond-
ing to small intensities, to the highest intensities shown in red. Inaccuracies observed in the 
visual inspection of this particular solution are automatically marked by the CURL operator. 

 

Fig. 1.  Vortex map used to identify unrealistic motion. Displacement field when mapping exhale and inhale datasets of 
a 4D CT scan (a) is represented in (b) with yellow arrows, their direction and intensity proportional with displacement 
and describing motion during the breathing cycle. At region #1, voxels engage in a circular motion, while in region #2 
voxels inside the liver suddenly change direction. Neither displacement represents expected anatomical motion and both 
are identified as unnatural by the vortex map (c). 
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III.	Res ults 

A.	 Phantom case
To exemplify and verify the proposed QA metrics, we constructed a synthetic phantom with 
known characteristics modeled after a Quasar Body phantom (Modus Medical Devices, London, 
ON),(34) a Lucite phantom designed for nondosimetric quality assurance. CT images of the 
phantom were obtained using a GE LightSpeed scanner (GE Medical Systems, Milwaukee, 
WI) with a 2.5 mm slice thickness. Various phantom inserts consisting of standard cylinders 
and cubes were segmented, and synthetic CT datasets were created by warping these segmenta-
tions with known deformations and defects, followed by conversion of segmentations to voxels 
of constant HU units. As depicted in Figs. 2(a) and 2(d), structures marked with 1 and 2 were 
expanded to mimic tumor shrinkage. The figure shows the fixed dataset superimposed on the 
moving dataset, where synthetic differences are marked with arrows and can be observed as 
gray regions. Figure 2(d) illustrates in a similar display mimicking artifacts occurring in typical 
clinical CBCT datasets. The defects are a crosshair-like streak artifact marked with arrow #4 
and an inaccurate HU artifact marked with arrow #5. Registration of the original and modified 
datasets was performed using a diffeomorphic demons-type(35) algorithm and the displacement 
field was analyzed using the proposed metrics.

As shown in Figs. 2(c)–2(f), the CURL operator gives a better understanding of deformation 
field characteristics that complement the simple image-based assessment by quantifying the 
behavior of the displacement field. In the standard evaluation method showing target and result 
(Figs. 2(b) and 2(d), 2(c) and 2(f)) images are almost identical, with few visible differences, as 

Fig. 2.  Standard versus displacement field-based measures for the phantom experiment for phantom inserts mimicking 
tumor shrinkage (upper row) or artifacts (lower row). Superimposed images of the input datasets are shown in (a) and (d), 
while results assessed with standard evaluation tools are shown in (b) and (e). Complementing the standard image-based 
assessment, measures derived from the displacement field provide additional information on the nature of the resulting 
solution. Discontinuities in the displacement field are identified by the CURL operator in (c) and (f). See Figure 3 for a 
detailed comparison of field and measure features.
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the algorithm was able to mimic structure shrinkage. Contractions are observed in structures 1 
and 2, as the deformation field tries to inflate the voxels in the small initial volume to match its 
larger size in the target image. At the same time, the field must preserve shape number 3, creat-
ing a compression as the deformation is stopped from expansion in this structure’s vicinity. The 
vortex map ranges from 0 to 5.1 and is shown in Fig. 2(e), with strong hot spots in structures 
4 and 5, where the induced artifacts are present. For a better understanding of these measures, 
the displacement field on these structures is shown as arrows in Fig. 3, with arrow direction 
and color according to displacement field intensity and direction. On structure 1 (Fig. 3(a)), 
arrows point to the center, indicating a constant field compression. For comparison, compres-
sion on structure 2 is nonuniform. For structure 3 (Fig. 3(b)) large changes in the displacement 
field are observed due to the small round artifacts in its middle that must be created by the 
deformation field from the neighboring voxels. These discrepancies are detected and marked 
by the CURL operator. As is obvious in this figure, visually inspecting the deformation field 
using arrows to mimic displacements would be tedious, because too many vectors are present, 
but the proposed operators automatically detect characteristics and provide a useful tool to 
quantify the displacement field behavior.

B.	D eformable registration for adaptive radiotherapy
Integration of CBCT imaging data and dose tracking for radiation therapy has drawn the in-
terest of many clinicians because of its compelling advantages in defining tumor volume and 
designing treatment plans that better spare critical structures. In this approach, information 
obtained from online cone-beam CT (CBCT) scans probe patient anatomy that can be used 
to assess the dose delivered to date and make plan adaptations, if needed. Deformable image 
registration is used to map daily dose distributions to a common coordinate system, typically 
the original treatment plan, to create a cumulative dose distribution. The approach can be used 
to estimate the difference between the planned and delivered doses(36) or to study the need for 
re-planning.(37,38)

We mapped the dose to the CBCT datasets using two algorithms, a diffeomorphic demons 
algorithm(36) and a B-Spline(15) algorithm, both implemented in the ITK library,(39) for a case of 
a large tumor in the pelvis expected to change in size and shape during treatment, treated to an 
initial dose of 45 Gy. The diffeomorphic demons algorithm is a monomodality algorithm that 
implicitly assumes a structure is represented by voxels of the same intensity in both datasets. 

Fig. 3.  Details of different inserts in the phantom experiment, comparing the displacement field, shown as scaled vec-
tors, with the vortex map, shown as a color-coded overlay in the background. The vortex map correctly identifies sudden 
changes in the displacement field.
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This is not necessarily valid, as various artifacts and an increased level of noise are present in 
the CBCT dataset due to acquisition geometry. As compared with the standard multidetector 
CT, images acquired on a cone-beam CT (CBCT) dataset have increased scatter incoming on 
the detector that implicitly produces artifacts, decreased contrast-to-noise, and inaccuracies in 
CT number calculations in the reconstructed images. In addition, high density materials in the 
field of view that highly attenuate the X-ray beam making the attenuation, values of objects 
behind the object are incorrectly high causing streak artifacts.

A simple visual comparison of the original CT and CBCT datasets presented in Fig. 4, upper 
row, illustrates a visible hot spot in the bladder and a darker region in the soft muscle. For the 
demons diffeomorphic algorithm, these artifacts, combined with the low parameter of the regu-
larization term in the algorithm’s mathematics, produced the result shown in Fig. 4(c), which 
is correct from the viewpoint of metrics because previously mentioned hot and cold spots are 
mimicked in the resulting transform by warping voxels from bone or air. However, this is an 
unrealistic solution from a clinical point of view. For comparison, a multimodality B-Spline 
algorithm with a few control nodes to provide strong regularization is shown in Fig. 4(d). In this 
solution, although the displacement field is uniform, small changes in bladder shape (marked 
with arrow) are not necessarily modeled. The vortex map, presented in the third row of Fig. 4 
for both algorithms, identifies many vortexes with high intensity in the demons solution, rang-
ing from 0 to 67.34, while the B-Spline solution has only a few small vortexes with values 
ranging from 0 to 6.86 in soft tissue and away from the target. When applying these solutions 
on the dose matrix, the dose mapped through the B-Spline (Fig. 4(e)) appears smooth, while 
the dose mapped with the demons algorithm appears jagged and unrealistic (Fig. 4(d)). The 
bad solution presented in Fig. 4(c) is an extreme case, easily identifiable by visual inspection; 
however, most solutions we encountered in clinical practice have some unrealistic warping on 
local voxels that are not easily identifiable by visual inspection. For most clinical solutions, 
the vortex map was helpful in automatically identifying regions of nonsmooth displacements. 
Figure 5 illustrates such a case when warping of similar magnitude is not identifiable by visual 
inspection only.

Similar to IMRT QA, where the gamma index is used to measure discrepancies (medical 
physicist decides whether high values may influence treatment based on their locations and 
intensities), in the proposed evaluation method, the physician decides if vortexes are clinically 
relevant or justified. For example in Fig. 1, vortexes describing irregular motion are justifiable 
on the lung–diaphragm interface, as these organs move independently, but are not clinically 
justifiable inside the liver. Vortexes far away from regions of clinical interest, such as tumor 
or critical organs, may be acceptable, as long as the dose or other measures are not computed 
in the affected area.
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Fig. 4.  Evaluation of deformable registration as applied in adaptive radiotherapy. The CT dataset (a) was warped to the 
CBCT dataset (b) using a monomodality diffeomorphic demons algorithm (c), (left column in results section) and a mul-
timodality B-Spline algorithm (d), (right column in results section). In (c), HU calibrations and various artifacts present 
in the CBCT dataset violated the monomodality assumption of the first algorithm, leading to unrealistic warping. In (d), 
the solution provided by algorithm 2 interpolates artifacts but is not able to model small local organ changes. The vortex 
map easily catches these characteristics of the displacement fields (e) and (f). When warping the dose distribution from 
the planning to the CBCT dataset, the distribution warped by algorithm 1 looks unnatural and unrealistic (g), while the 
dose distribution warped by algorithm 2 looks natural (h).
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Fig. 5.  Evaluation of deformable registration as applied to response assessment. The CT component of pre- and post-
treatment PET scans is used for the registration and the resulting transform is applied on the SUV values for response 
assessment. Although algorithm 1, depicted in the left column, provides the best match voxel-wise, clinically, algorithm 
3 is more suitable to describe anatomical changes. Pre- and post datasets are shown in (a) and (b), while each column in 
the results section illustrates a different deformable registration algorithm. 
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C.	D eformable registration for treatment assessment
In Figure 5,  we show usage of the vortex map to identify errors when deformable registration 
is used in treatment response assessment to compare pre- and post-treatment positron emission 
(PET) datasets.(40,41) In this approach, the baseline PET/CT scan is acquired up to a week before 
the start of the chemotherapeutic or radiotherapeutic treatment. The follow-up PET/CT scan 
is acquired in the first half of therapy, typically after 1 to 2 weeks of chemotherapy. Treatment 
efficiency is then assessed by comparing changes between the two datasets.(42,43) As changes in 
SUV intensities are used to monitor treatment process, it is essential to discern changes induced 
by the treatment itself from any other nontreatment-related factors. Deformable registration is 
needed to account for organ displacements and posture changes. 

Application of the QA procedure when deformable registration was used for treatment assess-
ment is presented in Fig. 5. Deformable registration input included CT attenuation components 
of the PET scans containing clearly visible anatomical information, but registration result was 
further applied on the PET component for SUV comparison. Input datasets are in Figs. 5(a) and 
(b), with an arrow marking the original tumor location, visible in the pretreatment dataset, but 
significantly reduced on the aftertreatment scan. Three solutions spanning the trade-off between 
smoothness of the deformation field and ability to model small changes are compared for this 
task: a diffeomorphic demons(44) algorithm with the smoothing displacement field option turned 
off (left column), the same algorithm with the same option turned on (middle panel), and a 
B-Spline algorithm(15) (right panel) using just seven grid nodes per dimension.

Solutions obtained by the three algorithms are presented in Figs. 5(c), (d), and (e). In a 
standard visual evaluation comparing the result with the target (post-treatment scan), the first 
algorithm is highly successful in modeling changes as the two compared images are almost 
alike (Fig. 5(c)). The smooth version of the same algorithm obtains a good result, with a small 
discrepancy marked with an arrow (Fig. 5(d)), while the B-Spline algorithm provides the worst 
result as it is not able to match tumor changes (Fig. 5(e)).

When turning the vortex map on, the first two solutions present high-intensity vortexes near 
the tumor location (26.92 and 26.64 for each solution), while last solution presents just a few 
vortexes ranging from 0 to 0.65 (Fig. 5(f), (g), (h)). The SUV values warped with these three 
solutions are presented in the lower row of Fig. 5. Although solutions 1 and 2 are very similar 
in terms of warping the CT scan, when applied to the PET component, the SUV intensity is 
visibly different (Figs. 5(i), (j)). Clinically, the solution provided by the third algorithm is the 
worst in terms of registration metric, but in a visual inspection of the vortex field it appears as 
the most accurate for treatment response assessment. The first two solutions warp the tumor 
to the healthy esophagus wall. However, cells in the tumor are destroyed by radiation and 
eliminated from the patient’s body. Thus the high-intensity SUV values should not be mapped 
to the healthy esophagus, but rather kept at their original coordinates.

 
IV.	D ISCUSSION

We show that for adaptive radiotherapy mapping additional datasets such as dose or PET data-
sets, careful case-by-case inspection of algorithm accuracy in describing anatomical changes 
is essential to assure safe and accurate practice of radiotherapy, by identifying in a specific 
solution, regions where the deformation field is unrealistic. Deformation field can be scanned 
to find vortexes in the displacement field. These regions should match clinical expectations. 
Measures proposed in this work can be used in conjunction with standard visualization tools to 
qualitatively characterize the deformation field for a specific solution obtained on real patient 
images. While not sufficient by themselves in detecting deformable registration errors, the tool 
presented in this report helps identify suspicious locations where the displacement field may 
not properly describe the expected anatomical change.
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In clinical practice, there isn’t any circular soft-tissue rotation expected and therefore the 
CURL values should be ideally zero. In our examples, we noticed that clinically valid solutions 
have CURL values ranging from 0 to 5 mm, while nonphysical solutions had CURL values from 
5 to 10, with lower values recorded in regions of smooth transitions and voided of artifacts, and 
values above 3 observed in regions where the algorithm struggled to match the image datasets. 
However, a larger study on datasets from different anatomical sites is needed to validate clini-
cally these initial findings. In the cases presented, the operator was useful in detecting regions 
where the displacement field had high values as compared with other regions in the solution. 
These regions of high CURL values should be far away from clinically important structures, 
with both their number and intensity being associated with nonphysical solutions.

Previous reports show that registration errors are prone to emerge in regions with uniform 
image intensity and low-intensity gradient regions and are not visible with standard voxel-based 
methods.(45) Although it is hard to identify differences by inspecting the images directly, analy-
sis of the deformation field through the CURL operator provides complementary information 
that better identifies and characterizes tissue warping. As shown in Figs. 4 and 5, a vortex map 
leads to a better understanding of solution properties when compared to standard voxel-based 
methods because the displacement field is directly evaluated. 

Phantom measurements that mimic patient anatomy can be used to assess deformable reg-
istration accuracy in specific conditions,(31,45-48) but are time-consuming and not well-suited 
for routine evaluation, as algorithm settings are usually tailored to image quality,(49,50) levels 
of noise,(51) or partial volume effects, with estimations obtained on phantom studies overesti-
mating accuracy if images of lesser quality are used as input. Furthermore, accuracy depends 
on parameter selection, which is closely associated with intensity gradients of the underlying 
image,(45) or are site-specific. For example, the number of iterations or the number of nodes in 
the B-Spline model have been found to be site-specific,(45) with a different number of nodes 
needed to accurately register the rectum or lung. For a casual user, the evaluation metric 
presented here provides a tool that quickly analyzes and quantifies a solution obtained under 
specific settings, and visually guides the user in selecting parameters that work best with the 
input datasets, as the vortexes map calculation takes less than one second and is easily displayed 
as a 3D volume or a color-wash superimposed on the CT dataset (as illustrated in Fig. 6). As 
a software procedure that extracts relevant clinical information from the displacement field, 
it is ideally suited for a daily clinical operations where the plausibility of a solution should be 
verified, reducing the time spent by physics staff on verifications.

This study does not endorse a particular deformable registration algorithm, but rather high-
lights the need for evaluating, solution-by-solution, the results of such an algorithm to gauge if 
the displacement map provided by a deformable algorithm is plausible from a clinical perspec-
tive. In a comprehensive publication, Kashani et al.(31) reported interalgorithm comparison at 
different institutions and noted that “no algorithm was uniformly accurate across all regions 
in a phantom”, with larger errors seen in regions of significant shape changes and in areas of 
uniform contrast. As noted by Zhong et al.,(45) performance in regions with low-intensity gra-
dients is difficult to assess. This study highlights the need for a direct measure derived from the 
displacement field when assessing accuracy of deformable warping for clinical applications.

Similar to established IMRT QA procedures that verify leaf position accuracy with devices 
or back-up software that is independent of the treatment planning optimization algorithm, the 
proposed deformable registration QA approach constitutes an independent check that quantifies 
errors by measures obtained on a specific result, independent of its generating algorithm. The 
proposed measure is also useful in discarding solutions that are mathematically valid by the 
metric function, but produce clinically unrealistic warping.
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V.	C onclusions

There is a lack of efficient evaluation tools to aid the casual user to identify unrealistic warping 
within a deformable registration solution. Such a tool should be simple to use in clinical practice, 
preferably without the use of markers and phantoms, and should be algorithm-independent. 
Our proposed metric fulfills these requirements. The procedure relies on extracting displace-
ment field characteristics that are overlaid on the original anatomy for quick identification of 
problematic regions. Analysis of a displacement field through the CURL operator is ideally 
suited to evaluate the deformable registration when accuracy of its resulting displacement field 
inside a structure is vital, as the operator identifies nonrealistic displacement that is invisible in 
standard voxel-based approaches, providing an important tool to successful implementation of 
adaptive radiotherapy in clinical practice.
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