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The build-up dose in the megavoltage photon beams can be a limiting factor 
in intensity-modulated radiation therapy (IMRT) treatments. Excessive surface 
dose can cause patient discomfort and treatment interruptions, while underdos-
ing may lead to tumor repopulation and local failure. Dose in the build-up region 
was investigated for IMRT delivery with solid brass compensator technique  
(compensator-based IMRT) and compared with that of multileaf collimator (MLC)-
based IMRT. A Varian Trilogy linear accelerator equipped with an MLC was used 
for beam delivery. A special solid brass step-wise compensator was designed and 
built for testing purposes. Two step-and-shoot MLC fields were programmed to 
produce a similar modulated step-wise dose profile. The MLC and compensa-
tor dose profiles were measured and adjusted to match at the isocenter depth of 
10 cm. Build-up dose in the 1–5 mm depth range was measured with an ultrathin 
window, fixed volume parallel plate ionization chamber. Monte Carlo simulations 
were used to model the brass compensator and step-and-shoot MLC fields. The 
measured and simulated profiles for the two IMRT techniques were matched at 
the isocenter depth of 10 cm. Different component contributions to the shallow 
dose, including the MLC scatter, were quantified. Mean spectral energies for the 
open and filtered beams were calculated. The compensator and MLC profiles at 
10 cm depth were matched better than ± 1.5%. The build-up dose was up to 7% 
lower for compensator IMRT compared to MLC IMRT due to beam hardening in 
the brass. Low-energy electrons contribute 22% and 15% dose at 1 mm depth for 
compensator and MLC modalities, respectively. Compensator-based IMRT deliv-
ers less dose in the build-up region than MLC-based IMRT does, even though a 
compensator is closer to the skin than the MLC.
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I.	 Introduction

Superficial dose, including the dose in the build-up region for megavoltage beams, has been an 
area of interest in clinical radiation therapy since the inception of external beam radiotherapy.(1)  
Among many treatment sites and techniques, the dose in the build-up region is of interest for 
head and neck IMRT treatments.(2) Excessive dose in the build-up region can cause erythema 
and moist desquamation. An adverse skin reaction can lead to a treatment break which multiple 
studies have shown to be associated with worse local control due to tumor cell repopulation.(3)  
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Thus a significant clinical concern is avoiding excessive surface dose to potentially ensure 
better treatment compliance and outcomes. On the other hand, physicians are concerned that 
deliberately underdosing skin to avoid an adverse reaction may result in a local failure in some 
clinical settings.

The dose in the build-up region is determined by the photon energy spectrum and the angular 
distribution of the photons and electrons. These parameters are not modeled well in commer-
cial treatment planning systems (TPS). As a result, those TPS are known to be inaccurate in 
calculating dose in the build-up region, as reported by Chung et al.(4) These authors found that 
the two commercial TPS overestimated surface dose by 7.4% to 18.5%. 

In the IMRT planning process,(5) the ideal variable fluence maps are typically determined 
first. To convert this idealized fluence into a physically deliverable one, the beam can be 
modulated by either dividing it into a series of sub-beams (segments) created by a multileaf 
collimator (MLC), or by inserting a variable-thickness solid attenuator in the path of the beam 
(compensator-based IMRT). Because of the uncertainty in the build-up region calculations by 
the model-based treatment planning systems, the differences in the superficial doses between 
the MLC-based and compensator-based IMRT cannot be accurately ascertained simply by 
comparing the treatment plans.

There are several contributing factors that can potentially cause the dose difference between 
the two techniques in the build-up region. One is the scatter from the compensator. It has been 
previously shown(6,7) that the closer the compensator is to the patient, the larger is the scatter 
contribution to the build-up region. On the other hand, the beam hardening by the compensator 
may decrease the superficial dose.    

Measuring dose in the build-up region poses unique challenges due to the lack of electronic 
(quasi)equilibrium. While parallel plate chambers are fairly well suited for dose build-up mea-
surements because of the minimal volume averaging effect, they are known to over-respond 
at shallow depths.(8) An extrapolation chamber has been known to provide better dosimetric 
results(9) when compared to the parallel plate chambers, but it is bulky and time-consuming to 
use. Velkey et al.(10) and Rawlinson et al.(11) have provided simple over-response corrections 
for the parallel plate chambers.  

Because of the challenges posed by measurements in the buildup region, Monte Carlo (MC) 
simulations are considered one of the more robust methods of determining the dose near the 
phantom surface.(12) The objective of our work was to investigate the dose differences in the 
build-up region between the MLC-based and compensator-based IMRT delivery techniques 
using a MC simulation program. The study identified and evaluated the contaminant radia-
tion(13,14) (scattered photons and electrons) within the head of a linear accelerator for the two 
delivery techniques. The effect of this contaminant radiation on the dose in the build-up region 
was investigated for varying compensator-to-surface distances (CSD), and the results were 
compared between the two techniques. Finally, energy spectra for the two delivery techniques 
were ascertained from the simulations. 

 
II.	 Materials and Methods

A. 	 Compensator and MLC fields
A solid brass step compensator (Fig. 1) was fabricated by a commercial vendor (dotDecimal 
Inc., Sanford, FL) to deliver an intensity-modulated step-wise profile at 10 cm depth in water 
in a single field. The compensator was mounted on an open port Plexiglas tray and inserted 
into the accelerator accessory tray mount. A 6MV 21 × 15 cm2 beam was delivered using a 
Trilogy linear accelerator (Varian Medical Systems, Palo Alto, CA). A Varian Millennium 120 
leaf MLC was used to dynamically generate a similar step-wise dose profile. The required 
MLC segments were created with Varian SHAPER program (v. 6.2). Due to the large field size 
exceeding the MLC leaf extension limits, the field had to be split in two to deliver the entire 
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profile. To create a step-wise profile using MLC technique that was similar to the one gener-
ated by the compensator-based technique, a ratio of the physical beam attenuation of the brass 
compensator was used to relate the amount of beam-on time per segment needed to create the 
profile. The dose index (fractional dose segment per total dose for a field) for each segment 
was estimated by using Eqs. (1) and (2).
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where BS1i is the beam-on time for segment i in the first MLC field, and BS2i is the beam-on time 
for segment i in the second MLC field. For each MLC segment in the fields, the corresponding 
brass step thickness is x1i for segment i in the first field and x2i for segment i in the second 
field. The effective linear attenuation coefficient μ for brass was determined to be 0.375 cm-1 
by substituting the measured transmission ratio for a 10 × 10 cm2  field into the exponential 
attenuation formula μ = -ln(Transmission)/x, where x is the brass thickness in cm. 

Equations (1) and (2) relate the fractional beam-on time for the MLC segments to the physical 
thickness, and therefore attenuation, of the compensator steps. In order for the two MLC fields 
to produce the same step-wise dose distribution as that of the compensator steps, we need to 
apply the segment weighting to each segment and add them together.

Fig. 1.  Brass compensator mounted on an open port Plexiglas tray inserted into upper wedge slot of an accelerator. From 
left to right side of the figure, the step thickness was 7.62, 5.08, 4.0, 0.6, 1.0, 2.0, and 3 cm. Step width varied from 2.5 to 
3.4 cm projected at the isocenter. The effective jaw setting was 21.4 × 15.4 cm2 at the isocenter.
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The segment weights SW1i and SW2i are calculated using Equations 3 and 4:
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where MU1 and MU2 are the monitor units for fields 1 and 2, respectively, which can be 
written as  
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The step-wise IMRT profiles from the compensator-based and the MLC techniques were 
measured at 10 cm depth using a commercially available linear diode array detector system, 
Profiler (Sun Nuclear Corporation, Melbourne, FL). The MLC-based step-wise profiles were 
matched to the compensator-based IMRT profiles by adjusting the dose index for each segment 
and minor adjustments to the MLC positions.

After the relative profiles were matched, the final step was to obtain the same ionization 
charge on the central axis with an ionization chamber. An ultra-thin window (0.02724 mm) 
fixed volume parallel plate ionization chamber (EXRADIN Model A10 Standard Imaging. Inc., 
Middleton, WI) was used. The chamber in the Plastic Water phantom (CIRS Inc., Norfolk VA) 
was positioned at the normalization point at isocenter at 10 cm depth (90 cm SSD). Based on 
the chamber readings, minor adjustment was made to the monitor units for the compensator 
delivery. After the absolute dose profiles were matched, chamber measurements were made in 
the build-up region.

B. 	 Chamber measurements in the build-up region 
Chamber readings for each profile step were collected at 1, 3, and 5 mm depths in Plastic 
Water. The lateral shift for each step was made by using the lateral couch position readout at 
the accelerator console. The distance for each shift was double-checked with a metal ruler. The 
chamber readings were normalized to the readings obtained during the profiles matching pro-
cedure described above. The chamber readings were corrected using the Rawlinson method(11) 
to account for geometry and wall material density: 
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where P/(d) is the corrected dose at depth d, P(d) is measured dose at d, the energy dependent 
factor C(E) is 0.27 for a 6 MV beam,(11) l is the plate separation, W is the inner wall diameter, 
ρ  is the wall material density, d is the depth to the front surface of chamber, and dmax is the 
depth of maximum dose. 
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C. 	 Monte Carlo modeling 
An EGSnrc-based(15) MC simulation package for clinical radiation treatment units, BEAMnrc(16), 
was used. 

C.1  Model validation 
The percentage depth dose curves as well as the beam profiles in a water phantom from MC 
simulations were compared with the measured data for 5, 10, 20 and 40 cm open square field 
sizes. Representative examples of these comparisons (for a 10 × 10 and a 40 × 40 cm2 field at 
dmax and at a depth of 10 cm), are shown in Fig. 2.

Fig. 2.  Comparison between measured and calculated percent depth dose curves and beam profiles for 10 × 10 cm2 (a) 
and 40 × 40 cm2 (b) fields. The profiles were compared at the depths of dmax and 10 cm in water. 

(a)

(b)
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After successful validation, phase space files for different jaw openings were generated, in 
which the physical parameters for all the particles traversing the plane of interest below the 
secondary jaws were stored. These files are then used as radiation sources for MLC and com-
pensator simulations, obviating the need to resimulate the accelerator head each time.

C.2  Geometric modeling of the compensator and MLC fields
The component module BLOCK in BEAMnrc was used for the geometric modeling of the 
measured compensator physical dimensions, including divergence. The MLC was modeled 
using the appropriate component module in BEAMnrc. The accelerator models are shown in 
Fig. 3. The nominal widths of both the compensator steps, and MLC segments were slightly 
adjusted to match the simulated profiles to the measurement at 10 cm depth. Although small (a 
fraction of a millimeter), these adjustments were instrumental to obtaining a good match.

Phase space files calculated either below the MLC or the compensator were used as radiation 
sources for phantom dose distribution calculations using DOSXYZnrc.(16) A flat water phan-
tom was set up downstream from the phase space planes at either 32.4 cm CSD (90 cm SSD), 
or 48.4 cm CSD (106 cm SSD) to calculate the central axis depth doses and contributions of 
contaminant radiation for each MLC segment and the compensator. Appropriately weighted 
contributions from each MLC segment were added together to determine the cumulative modu-
lated dose distribution under the MLC.

C.3  Segment weights
Step-wise dose profiles were calculated using MC for both the MLC and brass compensator 
techniques. The exact weights of each MLC segment and the thickness of each brass step were 
again slightly adjusted as a part of matching with the measurements. The modifications were 
small, within the expected uncertainties of MC calculations. Finally, the calculated doses for 
the MLC- and compensator-based modulation techniques were matched at 10 cm depth. The 
measured and calculated doses in the build-up region and dose profiles at 10 cm depth were 
compared for the two delivery techniques. 
   

Fig. 3.  Monte Carlo model of a Varian Trilogy accelerator head geometry. Major parts such as the target (1), primary col-
limator (2), flattening filter (3), transmission chamber (4), and jaws (5) are shown in panel (a). MLC (6), the step wedge 
(7), and the phantom top (8) are shown in panel (b).
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C.4 � Dose in the build-up region as a function of compensator-to-surface distance 
(CSD) 

MC simulations were done to approximate the build-up dose difference with the CSD changes. 
This is only an approximation of the differences one would see with a different accelerator; 
as for an accurate estimation, a complete simulation of that accelerator would be required. To 
approximate the effects due to the CSD change, but not an SSD change, all the results were 
corrected using the Mayneord’s F factor.(17)  

C.5  Depth dose and contributions of contaminant radiation
The component module (CM), CHAMBER, was used as a phantom to facilitate the depth dose, 
as well as contaminant radiation dose calculations in BEAMnrc. Total dose and contaminant 
radiation doses were calculated in water at 1.0, 3.0, 5.0, 10.0, 15.0, 53, and 100 mm depths. The 
contaminant dose contribution was from scattered photons and electrons from the accelerator 
head and the MLC.

To investigate the effect of beam hardening by the compensator, the calculated energy 
fluence distributions were compared for a 2 × 15 cm2 open field, and the same beam filtered 
by a 2 cm thick slab of brass.

 
III.	 Results 

A. 	 Model validation
The Monte Carlo model was validated by matching the calculated and measured 6 MV beam 
profiles and percent depth dose curves for the small and large open fields at several depths in 
water. The percentage depth dose curves and profiles from MC simulations matched the mea-
sured data within ± 1% for the low gradient dose region. In regions of build-up or penumbra, 
the distance between the calculated and measured profiles was within 1 mm, with an example 
shown in Fig. 2.

B. 	 Step-wise dose profile match at 10 cm depth
To collect the same ionization charge at the normalization point, a total of 729 MUs (600 MU 
for field 1 + 129 MU for field 2) were delivered with the MLC segments and 262 MUs with 
the compensator. Matched dose profiles at the isocenter (10 cm depth) are shown in Fig. 4. The 
disagreement between the measurements and calculated profiles did not exceed ± 1.5%. 

Fig. 4.  The matched step-wise profiles produced by an MLC and a solid compensator. The center of 6 MV beam traverses 
the thinnest part (0.6 cm) of the brass compensator.
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C. 	D ose comparison in the build-up region
The MC calculations and measured data agree within ± 2% for compensator thicknesses of 
1, 2, and 3 cm. The doses in the build-up region at 1, 3, and 5 mm depths are presented in  
Tables 1(a), (b), and (c). The dose was consistently lower with the compensator-based IMRT 
delivery compared to the MLC-based delivery, with the maximum difference of 7% at 5 mm 
depth under the 2 cm thick brass compensator. 

The p-values for the paired t-test between the calculated and measured doses for the compen-
sator steps were 0.11, 0.18, and 0.63 for 1, 3, and 5 mm depths, respectively. The corresponding 
p-values for the MLC steps were 0.27, 0.16, and 0.55. The difference between measured 
and calculated doses for compensator steps and MLC steps was not statistically significant  
(p > 0.05).  

The dose in the build-up region was slightly lower for the compensator compared to the 
MLC technique under the 1.0 and 3.0 cm thick steps. The t-test p-values between the calculated 
doses for compensator and MLC steps were 0.009, 0.002, and 0.012 for 1.0, 3.0, and 5.0 mm 

Table 1(a).  Doses (cGy) at 1 mm depth in Plastic Water and with the compensator and the MLC as a function of 
equivalent step thickness of the compensator. Doses were calculated with Monte Carlo and measured with parallel 
plate ionization chamber at 90 cm SSD, with the dose at isocenter being 100 cGy.

	STEP	 COMP	 MLC
	(cm)	 Calculated	 Measured	 Calculated	 Measured

	0.6	 69.0±1.0	 69.0±0.3	 71.0±1.4	 70.0±0.3
	1.0	 62.0±1.0	 64.0±0.3	 66.0±2.0	 68.0±0.3
	2.0	 44.0±1.0	 47.0±0.3	 49.0±1.5	 52.0±0.2
	3.0	 30.0±1.0	 30.0±0.2	 36.0±1.1	 34.0±0.2
	4.0	 27.0±1.0	 29.0±0.2	 29.0±1.0	 31.0±0.2
	5.08	 20.0±1.0	 21.0±0.2	 22.0±1.1	 24.0±0.2
	7.62	 13.0±1.0	 12.0±0.2	 13.0±1.0	 13.0±0.2

Table 1(b).  Doses (cGy) at 3 mm depth in Plastic Water and with the compensator and the MLC as a function of 
equivalent step thickness of the compensator. Doses were calculated with Monte Carlo and measured with parallel 
plate ionization chamber at 90 cm SSD, with a dose at isocenter being 100 cGy.

STEP	 COMP	 MLC
	(cm)	 Calculated	 Measured	 Calculated	 Measured

	0.6	 113.0±1.7	 109.0±0.3	 116.0±2.3	 113.0±0.3
	1.0	 100.0±2.0	 98.0±0.2	 104.0±2.1	 102.0±0.3
	2.0	 70.0±1.8	 71.0±0.3	 76.0±2.3	 75.0±0.2
	3.0	 50.0±1.5	 48.0±0.2	 55.0±1.7	 53.0±0.2
	4.0	 39.0±1.2	 39.0±0.2	 41.0±1.2	 43.0±0.2
	5.08	 27.0±1.1	 27.0±0.2	 31.0±1.2	 31.0±0.2
	7.62	 15.0±1.0	 15.0±0.2	 16.0±1.0	 15.0±0.2

Table 1(c).  Doses (cGy) at 5 mm depth in Plastic Water with the compensator and the MLC as a function of equivalent 
step thickness of the compensator. Doses were calculated with Monte Carlo and measured with parallel plate ionization 
chamber at 90 cm SSD, with a dose at isocenter being 100 cGy.

STEP	 COMP	 MLC
	(cm)	 Calculated	 Measured	 Calculated	 Measured

	0.6	 136.0±2.0	 133.0±0.2	 138.0±2.8	 135.0±0.2
	1.0	 118.0±1.8	 119.0±0.2	 123.0±2.8	 122.0±0.3
	2.0	 82.0±1.6	 83.0±0.2	 89.0±2.3	 90.0±0.2
	3.0	 58.0±1.5	 57.0±0.2	 62.0±1.9	 60.0±0.3
	4.0	 45.0±1.1	 46.0±0.2	 47.0±1.6	 49.0±0.2
	5.08	 32.0±1.1	 32.0±0.2	 34.0±1.4	 35.0±0.2
	7.62	 17.0±1.0	 16.0±0.2	 17.0±1.0	 16.0±0.2
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depths, respectively. The corresponding values for the measured doses were 0.003, 0.001, and 
0.009. The difference between the compensator and MLC doses corresponding to different 
steps was statistically significant (p < 0.05).

D. 	 Contribution of contaminant radiation 
Table 2 shows the contribution of contaminant radiation from the solid compensator and the 
step-and-shoot MLC calculated as a percentage of the total dose at selected depths at the cen-
tral axis.

The photon dose contribution was 78%, 91%, 95%, and 99% of the total dose for the com-
pensator and 82%, 92%, 95%, and 99% of the total dose for the MLC technique at 32.4 cm 
CSD and at 1.0, 3.0, 5.0 and 15.0 mm depths in water, respectively. At 48.4 cm CSD, the photon 
contribution was 82%, 93%, 96%, and 99% of the total dose for the compensator technique and 
83%, 92%, 95%, and 100% of the total dose for the MLC, at the same set of depths.

The contaminant electron dose contribution was 22%, 9%, 5%, and 1% of the total dose for 
the compensator technique and 15%, 6%, 3%, and 0% of the total dose for the MLC delivery, 
at 32.4 cm CSD and at 1.0, 3.0, 5.0, and 15.0 mm depths in water, respectively. At 48.4 cm 
CSD, the contaminant electron dose contribution was 18%, 7%, 4%, and 1% of the total dose 
for the compensator and 15%, 6%, 4%, and 0% of the total dose for the MLC technique at the 
same depths. 

MLC scatter dose contribution to the total dose was 3%, 2%, 2%, and 1% of the total 
dose at 32.4 cm CSD, at 1.0, 3.0, 5.0, and 15.0 mm depths in water, respectively. At 48.4 cm 

Table 2.  The total dose and percentage contribution from the photons, contaminant electrons, and MLC scatter are 
shown as a function of depth for the two IMRT techniques at (a) 32.4 cm CSD (90 cm SSD) and (b) 48.4 cm CSD 
(106 cm SSD).

	 IMRT	 Depth	 Total Dose	 Photons	 Contaminant Electrons	 MLC Component
		  (cm)	 cGy	 %	 %	 %

	 Solid 	 0.1	 69.0±2.5	 78	 22	 0
	Compensator	 0.3	 113.0±2.0	 91	 9	 0
	 (a)	 0.5	 136.0±1.8	 95	 5	 0
		  1.0	 155.0±1.7	 98	 2	 0
		  1.5	 160.0±1.6	 99	 1	 0
		  5.3	 132.0±1.0	 100	 0	 0
		  10.0	 100.0±1.0	 100	 0	 0

	Step-and-shoot 	 0.1	 71.0±2.8	 82	 15	 3
	 MLC	 0.3	 116.0±2.7	 92	 6	 2
	 (a)	 0.5	 138.0±2.5	 95	 3	 2
		  1.0	 152.0±2.2	 98	 1	 1
		  1.5	 157.0±2.2	 99	 0	 1
		  5.3	 130.0±2.0	 99	 0	 1
		  10.0	 100.0±1.0	 99	 0	 1

	 Solid	 0.1	 50.0±2.5	 82	 18	 0
	Compensator	 0.3	 79.0±2.2	 93	 7	 0
	 (b)	 0.5	 92.0±1.9	 96	 4	 0
		  1.0	 108.0±1.8	 98	 2	 0
		  1.5	 110.0±1.8	 99	 1	 0
		  5.3	 93.0±1.0	 100	 0	 0
		  10.0	 70.0±1.0	 100	 0	 0

	Step-and-shoot	 0.1	 54.0±2.9	 83	 15	 2
	 MLC	 0.3	 81.0±2.7	 92	 6	 2
	 (b)	 0.5	 96.0±2.4	 95	 4	 1
		  1.0	 108.0±.20	 98	 1	 1
		  1.5	 111.0±2.0	 99	 0	 1
		  5.3	 93.0±1.0	 100	 0	 0
		  10.0±1.0	 72.0±1.0	 100	 0	 0
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CSD, the MLC scatter dose contribution was 2%, 2%, 1%, and 1% of the total dose for the  
same depths. 

The photon beam spectra for an open beam and a beam attenuated with a 2 cm thick brass 
compensator are shown in Fig. 5. The average energy increased from 1.57 ± 0.10 MeV for the 
open beam to 2.17 ± 0.10 MeV for the beam filtered by the 2 cm of brass compensator. 

 
IV.	D ISCUSSION

This study was limited to tests conducted with a simple step-wise brass compensator and a cor-
responding MLC segment arrangement producing a similar fluence profile. This corresponds 
to fairly simple IMRT fields, and the results should not be automatically extrapolated to the 
IMRT beams with higher degree of modulation, particularly when a significant number of MLC 
segments are less than 2 cm in width.

The sources of the dosimetric differences at shallow depths between the MLC and com-
pensator modulators can be only quantified with MC calculations, where the contributions of 
the different particles can be evaluated separately. However, Monte Carlo simulations also 
have limitations. As the dose calculation grid needs to become finer to accurately calculate the 
steep dose gradients in the build-up region, the number of particles interacting in these thin 
slabs diminishes. Under these circumstances, to perform a calculation with small uncertainty 
a prohibitively large number of histories would be required to achieve the requisite statistics. 
The input file for the individual MLC segment simulations in this work was restarted 7 times 
to achieve better statistics. 

The simulation showed that the dose in the build-up region was lower under the 2 cm 
thick compensator compared to an MLC segment arrangement providing the same degree of 
modulation. This dose reduction was due to beam hardening produced by the compensator, as 
evidenced by the photon spectra comparison (Fig. 5). 

In support of having selected the 2 cm thick compensator for dose comparisons, in a sepa-
rate but related study, Opp et al.(18) have analyzed previously planned cases using IMRT with 
brass compensators. In that work, a histogram of transmission factors (plotted by compensator 
thickness) for 10 cases (with a total of 50 brass compensators) was generated. It is clear that 

Fig. 5.  Normalized planar energy fluence distribution of 6 MV beam for 2 × 15 cm2 field with and without a 2 cm  
brass slab.
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the most probable compensator thickness in the modulation region was about 2 cm, as shown 
in Fig. 6.

The closer the compensator is to the patient, the higher skin dose the patient would get, due 
to the scattered low energy photons and electrons. In all accelerator configurations, the brass 
compensator is always closer to the patient than the MLC is. However, MC simulations in this 
study indicate that for the modulation level equivalent to 2 cm of brass, the compensator dose 
was 5%, 6%, and 7% lower than the MLC dose at 1, 3, and 5 mm depths, respectively. Extended 
SSD measurements and simulations in this study suggest that the use of accelerators other than 
Varian, which can afford larger compensator to surface distance, would further reduce the dose 
in the build-up region when using compensators.

V.	 Conclusions

Low-energy scattered photons and electrons are the major contributors to dose in the build-up 
region near the surface. The dose from contaminant electrons sharply decreases in magnitude 
with depth, while the photon contribution increases with depth in the build-up region. This 
trend was similar for both 32.4 and 48.4 cm CSDs (90 and 106 cm SSDs), except the dose in 
the build-up region was reduced at extended CSD, particularly with the compensator. The beam 
hardening effect in compensator-based IMRT reduces the number of low-energy photons in 
the treatment beam which, in turn, reduces the shallow dose. Even with a smaller distance to 
patient skin compared to that of MLC-based IMRT, compensator-based IMRT still delivers lower 
build-up dose, which could be beneficial for skin sparing in certain radiotherapy treatments.
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