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Dynamic brain glucose
metabolism identifies anti-correlated
cortical-cerebellar networks at rest
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Abstract

It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with

underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[18F]fluoroglucose (FDG) positron emission

tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI

patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component

analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel

correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal

regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the

precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the

metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain

tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or

differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns com-

puted as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured

with PET-FDG and brain activation as measured with rfMRI.
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Introduction

‘Resting-state’ functional magnetic resonance imaging
(rfMRI), a simple non-invasive technique to study
brain functional connectivity at rest,1 has attracted
the attention of the neuroimaging community in
recent years.2–4 However, rfMRI is far from being con-
sidered the ‘gold standard’ technique to study brain
connectivity because the blood-oxygenation level
dependent- (BOLD) signals only indirectly reflect neur-
onal activity and are prone to the ‘draining/pial vein
problem’ that limits the spatial localization of the
neural activation.5 On the other hand, the measures
of metabolic rate of glucose (MRGlu) as assessed
with positron emission tomography (PET) and 2-

deoxy-2-[18F]fluoroglucose (FDG) provide an indica-
tion of the rate of glucose utilization by neuronal
tissue that directly reflects neuronal and glial activity.6

Metabolic connectivity (MC)7–11 has emerged as an
alternative approach to map brain connectivity. MC
has shown promise as a biomarker for certain
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neuropsychiatric diseases, their progression and treat-
ment response.7,12,13 However, because PET measures
of MRGlu are stationary and restricted by their poor
temporal resolution (average measure over 20–30-min
period), the correlational analyses between different
brain regions needed to map MC have been carried
across subjects.14–19 Recently, Passow et al.20 studied
for the first time the slow temporal fluctuations in glu-
cose uptake measured with a dynamic PET acquisition
and reported within-subject (across time) temporal MC
(i.e. t-MC) between cortical regions using similar meth-
odology to that used in rfMRI studies.

rfMRI and t-MC may complement each other,
which may lead to a better understanding of disorders
that target energy-demanding hubs in the human brain
and to biomarkers of clinical utility.21–26 However, the
findings by Passow et al.20 could reflect regional differ-
ences in the very slow pharmacokinetics associated with
FDG uptake in the brain (> 10min) rather than the
relatively faster fluctuations in glucose phosphorylation
associated with the energy cost of information process-
ing as captured by rfMRI. Furthermore, since t-MC
requires global signal normalization, a procedure that
could introduce anti-correlations among regions,27,28

we expected t-MC patterns to be predominantly
driven by regional-differences in the pharmacokinetics
of FDG rather than by functional interactions between
remote brain regions. We studied temporal functional
connectivity (t-FC) and t-MC at rest in 53 healthy
participants to test these hypotheses. Seed-voxel correl-
ations and group independent component analysis
(gICA) were used to assess the t-MC and spatial
correlation was used to assess the associations between
t-MC, MRGlu and t-FC.

Materials and methods

Participants

Non-smoking subjects older than 18 years of age were
recruited and screened to exclude ferromagnetic
implants, psychoactive medications and major medical
problems, past or present history of drug abuse, and
neurological or psychiatric disorders (including eating
disorders such as binge eating) as assessed by an abbre-
viated Structured Clinical Interview for the Diagnostic
and Statistical Manual of Mental Disorders (DSM-IV).
Women were studied in the mid follicular phase and
were neither pregnant nor breastfeeding. The 53
healthy right-handed subjects provided informed con-
sent to participate in the study and were naturally split
into two groups due to changes in the MRI acquisition
methods (blinding was not possible). Participants which
were scanned between March and December 2015 were

assigned to the ‘‘Discovery’’ group (N¼ 28; 37� 13
years old, mean� sd., 11 females) and those that were
scanned between January and July 2016 were assigned
to the ‘‘Validation’’ group (N¼ 25; 46� 15 years old,
13 females).

The study was approved by the Ethics Committee of
the National Institutes of Health (Combined
Neurosciences White Panel) and was in accordance with
the Declaration of Helsinki. All subjects gave informed
written consent before participating in the study.

PET imaging

Both subject groups (discovery and validation) under-
went the same PET imaging protocol. Specifically, they
were asked to fast (except water) for at least 4 h prior to
the PET imaging session, which was performed using a
high-resolution research tomography (HRRT) scanner
(Siemens AG; Germany). Venous catheters were placed
in the antecubital vein for radiotracer injection, and in
the dorsal hand vein (arterialization was achieved by
warming the hand to 44–50�C) to measure the concen-
tration of radioactivity in plasma (every minute from 1
to 10min and then at 15, 20, 30, 40, 50, 60 and 75min
after FDG injection). After the patient was positioned
in the scanner, a transmission scan was obtained with a
137 Cesium rotating pin source to correct emission
images for attenuation. Commercially manufactured
FDG (8mCi) was injected intravenously over a period
of approximately 1min. Then a PET emission scan of
the brain with �1.23mm isotropic resolution was
obtained using 3D list mode starting immediately after
FDG injection for up to 75min. Fasting glucose levels
were measured prior to FDG injection, 30min after
injection, and at the end of the PET scan. During the
PET imaging procedures, the subjects rested quietly
under dim illumination and minimal acoustic noise.
To ensure that subjects did not fall asleep they were
monitored throughout the procedure and were asked
to keep their eyes open. During the PET scan, a cap
with small light reflectors was placed on the subject’s
head to monitor head position with a Polaris Vicra
head tracking system (Northern Digital Inc., ON,
Canada). Information about head movement was used
in the PET image reconstruction process to minimize
motion-related image blurring. The raw data were
reconstructed into 45 timeframes of 100 s duration.

Standardized uptake values (SUVs) for FDG were
calculated after normalization of focal FDG uptake for
body weight and injected dose. MRGlu was computed
at each voxel using Patlak analysis.29 For Freesurfer’s
anatomical ROIs, MRGlu was computed using
Sokoloff’s model6 with a 2-tissue compartment model
neglecting FDG-6-PO dephosphorylation (i.e. k4¼ 0).
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Specifically, we assumed a blood volume fraction,30

� ¼ 4%, and that the activity at each voxel, A(t)

AðtÞ ¼ ð1� �ÞðC1ðtÞ þ C2ðtÞÞ þ �CpðtÞ ð1Þ

reflects the concentrations of FDG in arterial plasma,
Cp(t), and in the reversible, C1(t), and irreversible,
C2(t), compartments which are given by the system of
differential equations

dC1ðtÞ

dt
¼ k1CpðtÞ � ðk2 þ k3ÞC1ðtÞ

dC2ðtÞ

dt
¼ k3C1ðtÞ

ð2Þ

The Livermore solver for ordinary differential equa-
tions31 was used to solve equation (1) and compute
C1(t) and C2(t). The Levenberg–Marquardt algorithm
for non-linear least squares fitting32 was used to fit
equation (1) to the experimental data (Cp and A) with
three adjustable parameters (k1, k2, and k3). The inter-
active data language (IDL, ITT Visual Information
Solutions, Boulder, CO) was used for the 2-tissue com-
partment modeling described above. The lumped con-
stant (LC¼ 0.52) and the plasma glucose concentration
(PG (mmol/l)) were used to validate the MRGlu from
Patlak analysis

MRGlu ¼
PG

LC

k1k3
k2 þ k3

ð3Þ

The MRGlu map and the dynamic FDG scans were
aligned to the subject’s structural MRI image and then
normalized to the MNI template with 2mm isotropic
resolution using FLIRT, the Linear Image Registration
Tool of the FSL Software Library (version 5.0; http://
www.fmrib.ox.ac.uk/fsl).33,34 Relative FDG time series
were computed in IDL to account for the time-varying
activity due to inflow and uptake of FDG.20

Specifically, for each time frame, the average activity
hA(t)i was computed across voxels with an inten-
sity> 75% of the whole-brain mean, and this value
was used as a rescaling factor 104/hA(t)i. In addition,
relative FDG time series using the cerebellum as a ref-
erence region were computed to address potential con-
founds arising from the selection of the reference
region.

MRI acquisition

All subjects underwent MRI on a 3.0 T Magnetom
Prisma scanner (Siemens Medical Solutions USA,
Inc., Malvern, PA). For the Discovery group, a
20-channel head coil and a single-shot gradient

echo-planar imaging (EPI) sequence (repetition time/
echo time, TR/TE¼ 1500/30ms; flip angle, FA¼ 70�;
matrix¼ 64, 36 axial slices; 4mm thickness; interleaved
acquisition; no gap between slices; 3mm in-plane reso-
lution) covering the whole brain were used to acquire
rfMRI time series with 600 time points, while the par-
ticipants relaxed with their eyes open during the 15-min
rfMRI scan. A fixation cross was presented on a black
background under dimmed room lighting using MRI-
compatible goggles (Resonance Technology Inc.,
Northridge, CA). T1-weighted 3D magnetization-pre-
pared gradient-echo image35 (MP-RAGE)(TR/
TE¼ 2200/4.25ms; FA¼ 9�, 1mm isotropic resolution)
and T2-weighted spin-echo multi-slice (TR/TE¼ 8000/
72ms; 1.1mm in-plane resolution; 94 slices, 1.7mm
slice thickness; matrix¼ 192) pulse sequences were
used to acquire high-resolution anatomical brain
images. For the Validation group, a 32-channel head
coil and a multiplexed EPI sequence36 with multiband
factor¼ 8, anterior-posterior phase encoding, TR/
TE¼ 720/37ms, FA¼ 52�, matrix¼ 104, 72 slices
were used to acquire rfMRI time series with 2mm iso-
tropic voxels and 1238 time points, while the partici-
pant relaxed with their eyes open. A fixation cross was
presented on a black background under dimmed room
lighting using a liquid-crystal display screen
(BOLDscreen 32, Cambridge Research Systems; UK).
The 3D MP-RAGE (TR/TE¼ 2400/2.24ms,
FA¼ 8 deg) and variable flip angle turbo spin-echo37

(Siemens SPACE; TR/TE¼ 3200/564ms) pulse
sequences were used to acquire high-resolution
anatomical brain images with 0.8mm isotropic voxels,
field-of-view (FOV)¼ 240� 256mm, matrix¼ 300�
320, and 208 sagittal slices.

We used the minimal preprocessing pipelines38 of the
Human Connectome Project (HCP) for the spatial nor-
malization of the structural and functional scans.
Specifically, FreeSurfer version 5.3.0 (http://surfer.nmr.
mgh.harvard.edu) was used to automatically segment
the anatomical MRI scans into cortical and subcortical
gray matter ROIs39 and for spatial normalization to the
stereotactic space of the Montreal Neurological Institute
(MNI).

rfMRI preprocessing

For rfMRI time series, the HCP functional pipeline was
used for gradient distortion correction, rigid body
realignment, field map processing, and spatial normal-
ization to the stereotactic MNI space. Global scaling
was used to compute relative rfMRI time series in ana-
logy that used to compute the relative FDG time series.
Specifically, for each time frame, the average MRI
signal hS(t)i was computed across brain voxels and
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this value was used as a rescaling factor 104/hS(t)i;
0.1Hz low-pass filtering was used to assess the low-
frequency fluctuations in the rfMRI data.

Framewise displacements (FDs) were computed
from head translations and rotations using a 50mm
radius to convert angle rotations to displacements.
Scrubbing, implemented in IDL, was used to remove
time points excessively contaminated with motion.
Specifically, time points were excluded if the root
mean square change in the BOLD signal (DVARS)
from volume to volume met the following criteria:
DVARS> 0.5% and FD> 0.5.40

Group ICA

Probabilistic independent component analysis41 was
carried with FSL’s multivariate exploratory linear
decomposition into independent components
(MELODIC). Specifically, the relative FDG and
rfMRI time series underwent temporal concatenation,
masking of non-brain voxels, voxel-wise de-meaning,
normalization of the voxel-wise variance, whitening
and projection into a 40-dimensional subspace.

Seed-voxel correlations

The coordinates of the ventral precuneus (11mm,
�66mm, 25mm), which correspond to the location of
the strongest rfMRI hub in the brain,42 and the
cerebellar vermis, which emerged as one of the stron-
gest t-MC hubs in the brain (1mm, �60mm, �15mm),
were used for seed-voxel correlations (cubic seed
regions; 125 voxels; 1ml). Specifically, the Pearson
correlation was used to compute the strengths of the
t-FC and the t-MC between time-varying signals at
the seed location and those in other brain voxels.
The Fisher’s z-transformation was used to normalize
the step-distributed correlation coefficients.

Across-subjects MC and local MC hubs

The MRGlu maps corresponding to each subject
were concatenated to form a 4D subject series; then
seed-voxel correlation and group ICA patterns were
computed across subjects as described above. In
addition, local metabolic connectivity density (lMCD)
was computed at every voxel as the number of elements
in the local connectivity cluster using a ‘‘growing’’ algo-
rithm, in analogy to the local functional connectivity
density.42 Pearson correlation was used to assess the
strength of the connectivity, Rij, between voxels i and
j in the brain, and a correlation threshold Rij> 0.6 was
selected to ensure significant correlations between
signal fluctuations across subjects at PFWE< 0.05, cor-
rected for multiple comparisons with family-wise error

(FWE) correction. A voxel (xj) was added to the list of
voxels metabolically connected with x0 only if it was
adjacent to a voxel that was linked to x0 by a continu-
ous path of connected voxels and R0j> 0.6. This calcu-
lation was repeated for all brain voxels that were
adjacent to those that belonged to the list of voxel
metabolically connected to x0 in an iterative manner
until no new voxels could be added to the list.

Statistical methods

We used one-sample and paired t-tests in the statistical
parametric mapping (SPM8; Wellcome Trust Centre
for Neuroimaging, London, UK) to assess the
statistical significance of the t-MC, t-FC and lMCD
patterns. Conservative voxelwise inference based on a
familywise error (FWE) rate was implemented to con-
trol for false positives.43 Specifically, voxels were con-
sidered statistically significant if they had PFWE< 0.05,
corrected for multiple comparisons with the random
field theory. Assuming 5% Type I error rate and 20%
Type II error rate, a sample size of 26 subjects would
allow us to detect effect sizes of 0.57 or better. A less
stringent cluster-level correction for multiple compari-
sons based on a cluster-defining threshold (CDT)
P¼ 0.001 (two-sided) and a minimum cluster size of
100 voxels was used to rule out potential weaker effects.

Results

rfMRI networks

Group ICA on the rfMRI data identified 22 different
subnetwork components that integrate major networks
such as the cerebellar (CBN), visual (VN), motor (MN),
language (LGN), dorsal attention (DAN) and
default-mode (DMN) networks (Figure 1(a) and
Supplementary material), which is consistent with the
emergence of multiple ‘‘temporal functional modes,’’
that subdivide the traditional resting state networks.44

This rich array of networks was not reproduced in the
FDG discovery dataset. Specifically, group ICA on the
relative FDG discovery datasets identified only two
meaningful networks that were anti-correlated.

Network #1 included the cerebellum, pons, anterior
thalamus and regions of the medial temporal cortex
(hippocampus, parahippocampus, amygdala/temporal;
Figure 1(b); orange); the synchrony of the relative
glucose metabolism was maximal for cerebellar vermis
(z-score¼ 5.82). Network #2 included cortical regions
that encompassed dorsolateral prefrontal and parietal
regions (including precuneus, angular gyrus and supra-
marginal gyrus), and the superior and middle temporal
cortices (Figure 1(b); blue). The anti-correlatedmetabolic
networks were reproduced by gICA in the validation
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dataset (Figure 1(b), bottom panel). Group ICA on the
relative FDG datasets that used the cerebellum as a ref-
erence region did not identify meaningful networks.

The analysis of t-MC with the cerebellar vermis seed,
the t-MC hub that emerged from group ICA, also
demonstrated the synchrony of a large fraction of the
cerebellar gray matter, that was anti-correlated with cor-
tical gray matter regions including the LGN and poster-
ior DMN (Figure 2). The precuneus seed revealed the
opposite t-MC pattern to that of the cerebellar vermis
seed (Figure 2). These t-MC patterns were strikingly
similar for the discovery and validation cohorts.

Brain glucose metabolism

Amygdala, hippocampus, enthorinal cortex, parahip-
pocampus, ventral diencephalon (ventralDC, i.e.

midbrain), and temporal pole were the brain regions
with the lowest MRGlu (Figure 3). Cerebellum, thal-
amus, caudate, nucleus accumbens (ventral striatum)
and globus pallidum demonstrated intermediate
MRGlu levels. Putamen and the other cortical regions
showed the highest MRGlu.

t-MC versus MRGlu

A negative linear association between absolute metab-
olism and network synchrony emerged from the spatial
correlation (across voxels) between cerebellar t-MC
and the average MRGlu (Figure 4(a) and (b)).
Specifically, the higher the MRGlu in the cortex and
the striatum, the higher the negative t-MC of these
regions with the cerebellar vermis seed. The reverse pat-
tern emerged for the linear association between MRGlu

Figure 1. Network synchrony. (a) Thirteen of the 22 networks identified by gICA in the Discovery rfMRI datasets were recognized

as sub components of six major networks: cerebellum (CBN) language (LNG), motor (MN), visual (VN), dorsal attention (DAN) and

default-mode (DMN). Different colors indicate different independent components within each of the major network. gICA repro-

duced successfully these synchronous networks in the Validation rfMRI datasets. (b) gICA on the FDG-PET Discovery datasets

(N¼ 28) identified two anti-correlated networks, a pattern that was reproduced in the Validation datasets (N¼ 25).

Figure 2. Seed-voxel correlations. Metabolic (t-MC) and functional (t-FC) connectivities for the cerebellar vermis (CB) and precuneus

(PreCUN) seed regions in the Discovery cohort (N¼ 28). t-MC and t-FC patterns were reproduced in the Validation cohort (N¼ 25).
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and the t-MC for the precuneus seed (Figure 4(c)). Note
2D plots in Figure 4(a) and (c) differentiate voxels in
the CB (green) from those in the cortex, thalamus and
basal ganglia. These findings were validated across the
84 gray matter ROIs (Figure 4(b) and (d)). The slope of
the linear regression between MRGlu and t-MC varied
significantly across regions and was statistically signifi-
cant (P< 0.01) in all anatomical regions-of-interest
(ROIs) except for the t-MC of the cerebellar vermis
and the pericalcarine cortex (Figure 4(e)).

Tracer delivery and t-MC

The pharmacokinetics of FDG was strikingly different
for the cerebellum compared to the rest of the brain.
Specifically, the average parameters of the 2-tissue com-
partment model k1 and k3 were lower, and those of
k2 were higher for the cerebellum (k1¼ 0.062�
0.004min�1; k2¼ 0.159� 0.016min�1; k3¼ 0.027�
0.001min�1) than for the cortex, thalamus and basal
ganglia (k1¼ 0.082� 0.005min�1; k2¼ 0.133�
0.005min�1; k3¼ 0.049� 0.009min�1; P< 0.005).

Figure 3. Absolute glucose metabolism. (a) Spatial distribution of the metabolic rate of glucose (MRGlu) overlaid on three

orthogonal views of the brain for a randomly selected subject. (b) Average MRGlu across subjects superimposed on dorsal (top) and

medial (right bottom) surface views of the cerebrum and a dorsal view of the cerebellum (left bottom). (c) FreeSurfer-based ROI

analysis reflecting the average MRGlu within 40 bilateral cortical and subcortical anatomical regions and across 28 healthy subjects

(Discovery sample). Patlak analysis was used to quantify MRGlu.
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Similarly, the average ratio k1/k2 was lower for the cere-
bellum (k1/k2¼ 0.39� 0.04) than for the cerebrum
(k1/k2¼ 0.63� 0.04; P< 0.001), suggesting lower
tracer delivery for the cerebellum than for the cere-
brum. In order to assess potential effects of tracer deliv-
ery on t-MC, we segmented the 75-min long FDG time
series into three periods (0–25min; 25–50min;
50–75min). The positive and negative t-MC patterns
of the cerebellar vermis seed were stronger when we
computed t-MC from the 0 to 25-min datasets than
when we computed t-MC from 25 to 50 or 50 to 75-
min datasets (Figure 5).

MC across subjects

In addition to the within-subject temporal correlation
analyses described above, we also studied the MC
across subjects using ICA, seed-voxel correlations and
lMCD, which is a novel voxelwise metric that quantifies
the hubness of the MC (Figure 6). Four bilateral meta-
bolic networks emerged from ICA (P< 0.001, cluster
volume 200 voxels). The cerebellar network (IC#1)
comprised the cerebellar cortex, thalamus and caudate.
The putamen network (IC#3) included the lentiform
nucleus (putamen and globus pallidus) and the
orbitofrontal cortex. The precuneus/posterior cingulum
network (IC#5) comprised posterior DMN regions

(including the angular gyrus). The calcarine network
(IC#6) included the primary visual cortex and the
thalamus. Figure 6 additionally shows MC patterns
emerging from the cerebellar vermis seed that encom-
passed the cerebellar gray matter and anterior thalamus
(P< 0.001, cluster volume 200 voxels), and lMCD
patterns highlighting strong metabolic hubs in the cere-
bellum (lMCD> 500), thalamus, globus pallidus and in
the calcarine cortex (500> lMCD> 200).

Discussion

This study is the first to quantify the linear association
between t-MC and MRGlu in the brain. In contrast to
previous t-MC studies that did not quantify the
parameters for the absolute glucose metabolic rate,20

the present study quantifies MRGlu, and the rates of
phosphorylation (k3) and glucose transport (k1 and k2).
Whereas a constellation of 22 independent networks
emerged from rfMRI time series, consistent with the
subdivision of the traditional resting state networks,44

only two anti-correlated networks emerged from
time-varying relative metabolic activity. The cerebel-
lum, pons, medial temporal lobe (hippocampus, para-
hippocampus, amygdala/temporal pole) and anterior
thalamus showed synchronous fluctuations in glucose
uptake that were in phase opposition to those in the

Figure 4. Absolute metabolism and network synchrony. Linear regression across voxels (a and c) and across ROI measures (b and d)

between the average MRGlu and the average MC for the cerebellum (CB, top left) and precuneus (PreCUN, bottom left). Colors in (a)

and (c) distinguish voxels in different ROIs (b and d). The green dots highlight voxels in the cerebellum. (e) Linear regression slope for

40 bilateral cortical and subcortical anatomical regions. Error bars are standard errors. Discovery sample (N¼ 28).
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cerebral cortex and basal ganglia. The t-MC pattern
emerging from these fluctuations was positive and
stronger in cortical regions with higher MRGlu,
whereas it was negative in the cerebellum. The anti-
correlated networks revealed by the temporal analysis
of the dynamic FDG-PET data from the Discovery
cohort was reproduced in the validation cohort.

The brain is the most metabolically active organ in
the body and derives most of its energy requirements
through oxidative metabolism of glucose.45,46 The ratio
between oxygen consumption and glucose utilization at
rest (�5.5) suggests a close ‘‘coupling’’ between the

blood-oxygenation-level-dependent (BOLD) contrast
used in rfMRI studies and MRGlu in the brain. The
synchrony in the delivery of oxygen/glucose as a func-
tion of time among brain regions gives rise to t-FC/t-
MC. However, glucose delivery and oxygen delivery
have different time scales. Whereas the slow rates of
the pharmacokinetics of FDG (k1, k2, and k3) limit
the temporal resolution of t-MC to �t> 1min, the
faster response of the neurovascular coupling that
reflects the BOLD signal limits the temporal resolution
of t-FC to �t> 1 s. Thus, the very different patterns
emerging from t-FC and t-MC suggest that t-MC

Figure 5. Tracer delivery and t-MC. Statistical significance for the t-MC of the cerebellum computed for three different periods of

25 min (0–25 min; 25–50 min, and 50–75 min; (a), and statistical differences in cerebellar t-MC between the first two periods (b)

superimposed on three orthogonal views of the human brain. The anti-correlated t-MC patterns emerged during the first 25 min after

tracer injection, likely from pronounced tissue-differences in tracer delivery. Discovery cohort (N¼ 28).
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networks were driven by regional differences in FDG
pharmacokinetics rather than by functional inter-
actions between remote brain regions.

The anti-correlated t-MC patterns could reflect dif-
ferences in tissue composition between the cerebellum
and the cerebral cortex. Whereas the cerebellum con-
tains �80% of brain neurons and �20% of other brain
cells, in the cerebral cortex the ratio of neurons to glia is
much lower being estimated to be between 20% and
50% of other brain cells.47,48 Different from the neo-
cortex, which contains six layers and is the most recent
part of the cerebral cortex to develop in evolutionary
terms,49 the medial temporal lobe, the more ancient
part of the cerebral cortex,50 and the cerebellar cortex
have only three neuronal layers.51 In the cerebellum,
the granular and molecular layers have characteristic
architectures that match vascular densities and energy
consumption.52

Here we document lower MRGlu levels in cerebel-
lum and medial temporal regions (amygdala, hippo-
campus, parahippocampal gyrus, temporal pole and
the entorhinal cortex) than other cortical and subcor-
tical regions. Interestingly, previous studies reported
marked regional differences in the rate of aerobic gly-
colysis in the human brain that was lower in the cere-
bellum and medial temporal cortex than in most
cortical regions,53 which for the most part did not
differ significantly from one another.54 Thus, the anti-
correlation patterns between cortex and cerebellum
could emerge from anatomical differences between the
cerebellum and the cerebral cortex on the relative rate
of glucose that is metabolized via aerobic glycolysis

versus that metabolized via oxidative phosphorylation.
However, we cannot rule out the possibility that the
anti-correlated activity between cortical regions and
cerebellum could also reflect counter regulation of
activity between these two networks.55 Indeed, the
negative association between t-MC in cerebellum and
MRGlu in cortical regions could reflect a compensatory
interplay between these two networks such that higher
cerebellar t-MC might enhance the efficiency of cortical
regions with a concomitant decrease in MRGlu.

It is nonetheless noteworthy that the two anti-corre-
lated networks correspond well with the territories of
perfusion of the anterior artery (internal carotids)
versus those of the posterior (basilar) artery. Thus,
the anti-correlated activity could also reflect differential
regulation of the posterior and the anterior vascular
territories,56,57 including differences in glucose trans-
porter density between the cerebellum and the
cortex.58 The predominance of t-MC during the first
25min after tracer injection (Figure 5) and the differ-
ences in glucose transport rates (k1 and k2) further sup-
port a role of tissue differences in tracer delivery in the
strength of the t-MC. Thus, the emergence of t-MC
from dynamic FDG data could reflect synchronous glu-
cose utilization or, more likely, similar tissue properties
in these regions (glucose transport, phosphorylation,
clearance or the ratio of aerobic glycolysis to oxidative
phosphorylation).

Different from previous studies that reported signifi-
cant spatial overlap between seed-voxel correlations
patterns emerging from rfMRI and relative FDG time
series,20 we observed overlapping patterns in the

Figure 6. MC across subjects. The MRGlu maps from all 53 subjects were concatenated and used to extract the connectivity

patterns across subjects. ICA (left panel) revealed four networks comprising: cerebellum (IC#1), putamen/pallidum (IC#3), precuneus/

posterior cingulum (IC#5) and calcarine cortex (IC#6). IC#1 is consistent with the seed-voxel correlation pattern for the cerebellum

(MC; right upper panel) and IC#1, IC#3 and IC#6, combined, are consistent with the distribution of local hubs of metabolic

connectivity (lMCD; right bottom panel).
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vicinity of the seeds only. We found, however, a linear
relationship between MRGlu and t-MC, which is
consistent with the metabolic cost of brain connectiv-
ity.20,23,24 Specifically, previously we showed an associ-
ation between higher MRGlu and higher degree of
connectivity, which is consistent with the energy-
efficiency of the cerebellum.23 The relatively lower
levels of MRGlu in the cerebellum likely reflect metab-
olism of glucose via oxidative phosphorylation, which
is more efficient than aerobic glycolysis. This energy-
efficiency might render the cerebellum less sensitive to
metabolic disorders such as Alzheimer’s disease,59,60

which contrast with the high metabolic demand of cor-
tical hubs such as the precuneus, which make them
prone to neurodegenerative disorders.23,61 On the
other hand, the ability of the cerebellum to rely on
alternative substrates (i.e. acetate) for energy utiliza-
tion, as occurs during alcohol intoxication,62 may
render the cerebellum more sensitive to the adverse
effects of alcoholism.

In contrast to the uniformity of the time-varying
metabolic networks (two networks in phase opposition
were found in this study), four major metabolic net-
works were identified by spatial ICA across-subjects
(Figure 6), consistent with previous studies.14–19 These
networks were also consistent with some of the net-
works detected in larger MC studies of clinical rele-
vance.18,19 In particular, the cerebellar metabolic
network had previously been reported to discriminate
amyotrophic lateral sclerosis patients from controls
with 96% accuracy or better.18 The cerebellar network
also showed hypo MC in dementia with Lewy bodies63

and hyper MC in psychogenic non-epileptic seizures.64

Dysfunctions in the MC of anterior default mode net-
work (including the orbitofrontal cortex) were asso-
ciated with early onset Alzheimer’s disease.65 Whereas
the slow rates of FDG’s PK (k1, k2, and k3) limit the
temporal resolution of t-MC to 1min, the faster
response of the neurovascular coupling that reflects
the BOLD signal limits the temporal resolution
of t-FC to 1 s. Additionally, the temporal resolution
of the PET measures is also restricted by the number
of counts that are required to obtain a good signal-to-
noise ratio, which limited our ability to use shorter time
windows in the dynamic images. Thus, t-MC and t-FC
take advantage of different temporal dynamics and
measure functional connectivity at different time
scales in the brain. The different structures of the func-
tional brain networks emerging from the different time
scales of dynamic PET-FDG and BOLD-fMRI likely
reflect differences in the delivery of oxygen and glucose
across brain regions as well as differences in the tem-
poral resolution of PET and fMRI. The exact mechan-
isms driving t-FC and t-MC are unclear because they
depend on parameters that exhibit temporal covariance

(BOLD contrast reflects oxygen extraction fraction,
blood flow and blood volume, whereas glucose metab-
olism reflects glucose phosphorylation and transport
rates). Our results identify distinct patterns for t-MC
than for t-FC. In contrast, MC patterns obtained
across subjects were consistent with those previously
reported to have overlap with the t-FC patterns, which
are likely to reflect distinct glucose metabolic costs
reflective of their coordinated neuronal activities.
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