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Abstract

We investigated the expression of the Alzheimer’s disease-related metabolic brain pattern (ADRP) in 18F-FDG-PET scans

of 44 controls, 27 patients with mild cognitive impairment (MCI) who did not convert to Alzheimer’s disease (AD) after

five or more years of clinical follow-up, 95 MCI patients who did develop AD dementia on clinical follow-up, and 55

patients with mild-to-moderate AD. The ADRP showed good sensitivity (84%) and specificity (86%) for MCI-converters

when compared to controls, but limited specificity when compared to MCI non-converters (66%). Assessment of
18F-FDG-PET scans on a case-by-case basis using the ADRP may be useful for quantifying disease progression.
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Introduction

Mild cognitive impairment (MCI) marks the transition
between normal cognitive function and Alzheimer’s dis-
ease (AD) dementia. However, some MCI patients
remain stable throughout their entire observed clinical
course, and may even revert to normal cognition.1

Discriminating between non-converters and patients
with pre-dementia AD is important for patient manage-
ment and for future clinical trials. However, this is not
easily achieved by clinical evaluation alone.

18F-Fluoro-deoxyglucose positron emission tomog-
raphy (18F-FDG-PET) may aid in this differentiation.2
18F-FDG-PET provides an index of brain glucose
metabolism, which reflects synaptic activity and integ-
rity.3 AD pathology induces synaptic dysfunction in
specific, connected brain regions. These downstream
brain changes result in decreased 18F-FDG uptake in
posterior temporo-parietal regions.

Patterns of altered 18F-FDG uptake can be extracted
with the Scaled Subprofile Model and Principal
Component Analysis (SSM/PCA), a well-studied multi-
variate method.4 Disease-related patterns identified by
SSM/PCA not only delineate the disease topography,
but can also be used to quantify new 18F-FDG-PET
scans. For quantification, normalized scans are

projected onto a previously identified disease pattern
to calculate a subject score. The subject score reflects
the degree to which the pattern is present in a subject’s
scan. This method was previously shown to be success-
ful in the differential diagnosis of Parkinsonian dis-
orders,5,6 in predicting disease onset in prodromal
individuals with Parkinson’s disease,7 and in evaluating
disease progression and treatment effects.8–10
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In a previous study, we identified an AD-related pat-
tern (ADRP) in 15 AD patients and 18 controls studied
at the University Medical Centre Groningen using
SSM/PCA. The ADRP was characterized by relative
hypometabolism of the posterior temporo-parietal cor-
tical areas (Figure 1), and was expressed in new patients
with AD, but not in healthy elderly. In addition, ADRP
subject scores correlated significantly with neuropsy-
chological test performance.11 The ADRP has also
been identified by two other groups.12,13 It has been
shown that the ADRP is superior at identifying AD
patients compared to univariate, region-of-interest
approaches.12 Further validation of our ADRP11 in a
larger cohort is necessary. Moreover, it is unknown
whether ADRP subject scores can discriminate between
non-AD and AD at the MCI stage.

In this study, we further validate the ADRP11 by com-
puting its expression in a large cohort of healthy controls,
MCI patients with long-term clinical follow-up, and AD
patients. Our main objective was to determine whether
ADRP subject scores could discriminate between MCI-
converters and MCI non-converters at baseline.

Material and methods

Participants
18F-FDG-PET data from healthy aged subjects (NA;
n¼ 42), patients with MCI (n¼ 122), and patients

with AD dementia at the time of the PET scan
(n¼ 55) were analysed from a previous study
(Supplementary Table 1).14,15 Patients with MCI
(n¼ 122) were separated into three groups: patients
who did not progress during follow-up (non-converter
MCI; ncMCI, n¼ 27), patients who progressed to AD
after� 2 years of follow-up (early MCI; eMCI; n¼ 34),
and MCI patients who progressed to AD within two
years of follow-up (late MCI, lMCI; n¼ 61). The study
was approved by the institutional review board of the
University of Genoa, and all subjects gave written
informed consent to undergo 18F-FDG-PET in the
framework of a long-term observational study, in
accordance with the Declaration of Helsinki.

18F-FDG-PET data analysis
18F-FDG-PET data were acquired and pre-processed as
described previously.14 We calculated ADRP subject
scores in all 18F-FDG-PET scans as follows: First,
18F-FDG-PET images were masked to remove out-of-
brain voxels. Next, each image was log-transformed
and both the subject mean and reference group mean
were removed. The reference group mean was previ-
ously determined in the ADRP identification cohort.11

These operations resulted in a subject residual profile
(SRP) for each scan. Finally, a subject score (SS) for
each subject was computed based on the ADRP by
taking the inner product of the two vectors, the

Figure 1. Topography of the ADRP. The ADRP was identified in 18F-FDG-PET data (anatomically registered to an 18F-FDG-PET

template) as described previously.11 Stable voxels in the ADRP were overlaid onto a T1 MRI template to show the most salient regions

in the pattern. Stable voxels in the ADRP were determined with bootstrap resampling.12 In this procedure, the pattern identification

process (SSM/PCA) is repeated multiple times on randomly sampled data with replacement. This yields multiple slightly different

patterns and thus a distribution of weights per voxel. Using this distribution, confidence intervals (CIs) per voxel can be determined.

Voxels with CIs straddling zero can be interpreted as non-informative and are therefore excluded from the visualization. Here, we

performed 1000 repetitions and applied a one-sided CI threshold of 90% (percentile method). For a discussion of pattern topography,

we refer to a previous publication.11 L¼ Left. Relatively hypermetabolic areas are color-coded red, and relatively hypometabolic areas

are color-coded blue. ADRP: Alzheimer’s disease-related metabolic brain pattern.
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ADRP and SRP (SS¼ SRP�ADRP). For further
details, we refer to an excellent overview of the
method by Spetsieris and Eidelberg.4

The 18F-FDG-PET data investigated in this study
were acquired on a different PET system than the
cohort which was originally used for ADRP identifica-
tion.11 To account for the effect of camera differences
on ADRP expression, ADRP subject scores were
z-transformed to the NA group, such that the NA
mean was 0 with a standard deviation of 1.

In the ADRP identification cohort,11 we determined
the threshold ADRP z-score with optimum sensitivity
and specificity using a receiver-operating curve. This
threshold was determined to be z¼ 0.8 and subse-
quently applied to the new ADRP z-scores in this
study. ADRP z-scores� 0.8 were considered to be indi-
cative of AD. A visual representation of the ADRP11

that was used in this study is provided in Figure 1.

Statistical analysis

ADRP subject z-scores were compared across NA,
ncMCI, eMCI, lMCI, and AD subjects with a one-
way analysis of variance (ANOVA) with post hoc
Bonferroni corrections. With the threshold of z¼ 0.8,
we identified the number and percentage of subjects
correctly classified in each group. Sensitivity, specifi-
city, accuracy, and area under the receiver-operating
characteristic curve (AUC-ROC) were determined for
the comparisons: NA versus AD patients, NA versus
MCI-convertersþAD patients, NA versus MCI-con-
verters alone, ncMCI versus MCI-converters þ AD
patients, and finally, ncMCI versus MCI-converters alone.

Pearson’s R correlation coefficient was used to test
the correlation between the parametric variables of
ADRP z-scores and age. Correlations between ADRP
z-scores and non-parametric variables (MMSE cor-
rected for educational level and age, time to conversion,
and education) were tested for significance with a
Spearman rank correlation coefficient. All analyses
were performed using SPSS software version 23 (SPSS
Inc., Chicago, IL), and results were considered signifi-
cant when P< 0.05 (two-tailed).

Results

ADRP z-scores were significantly different between
groups (F¼ 36.33,P< 0.0001). ADRP z-scores were sig-
nificantly higher in MCI-converters and AD patients
compared with both NA and ncMCI patients
(Figure2).Table1showsthesensitivity, specificity,accur-
acy, andAUC-ROCfor thedifferent groupcomparisons.
Specificity in the ncMCI category was limited (66.66%).

Supplementary Table 1 shows the percentage of cor-
rectly classified subjects per category based on ADRP

z-scores. Nine out of 27 ncMCI had a supra-threshold
ADRP z-score. Follow-up time in these nine individ-
uals ranged from a minimum of 6.8 to a maximum of
9.8 years.

ADRP z-scores were not significantly correlated
to time-to-conversion in MCI-converters (r¼�0.05,
P¼ 0.66). A significant relationship was observed
between ADRP z-scores and MMSE (MCI-
convertersþAD patients; r¼�0.341; P< 0.0001;
Supplementary Figure 1).

In the ncMCI group, ADRP z-scores appeared
to be higher in patients with a higher education
(Supplementary Figure 2(a)), with borderline statistical
significance (r¼ 0.375, P¼ 0.054). Furthermore, a sig-
nificant relationship between age and ADRP z-scores
was only present in the ncMCI group (r¼ 0.502,
P¼ 0.008; Supplementary Figure 2(b)). ADRP
z-scores did not correlate significantly to age or educa-
tion in the other groups.

Discussion

We studied expression of the ADRP in baseline
18F-FDG-PET scans of a large cohort of MCI patients
with clinical follow-up. ADRP subject z-scores were
significantly higher in MCI patients who progressed
to AD dementia compared with both healthy elderly
and non-converting MCI patients. In line with a previ-
ous study, ADRP z-scores were significantly correlated
to disease severity in AD (measured by the MMSE
score).11 Compared to healthy elderly, we found good
sensitivity (84.2%) and specificity (85.7%) of the
ADRP for the detection of early brain dysfunction in
AD (i.e. NA versus MCI-converters).

Specificity of the ADRP was limited in the non-con-
verting MCI group (66.7%), as one-third of ncMCI
patients (9/27) had a supra-threshold ADRP z-score.
Even though clinical follow-up in these patients was
long (6.8–9.8 years), such cases cannot simply be inter-
preted as false-positives. Some may still develop AD
dementia on further follow-up. To illustrate, one late-
converting MCI patient had a baseline ADRP z-score
of 3.11 and only developed clinical AD eight
years later.

It could also be hypothesized that non-converting
MCI patients with a supra-threshold ADRP score
have a larger cognitive reserve. Such individuals are
able to maintain a certain level of cognitive functioning,
despite having temporo-parietal hypo-metabolism.16

Individuals with a higher education have a larger cog-
nitive reserve, and are thought to have the ability to
recruit compensatory networks involving the dorso-lat-
eral prefrontal cortex.17 In line with this, we found
higher ADRP z-scores in MCI non-converters with a
higher education. The non-linear relationship between
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hypo-metabolism and the clinical manifestation of the
disease may also explain why ADRP z-scores did not
correlate significantly to time-to-conversion in the pre-
dementia AD group.

An alternative explanation for the limited specificity
in the ncMCI group may be that the ADRP reflects the
underlying abnormalities in neuronal networks in AD,

but is not pathology-specific.2 MCI is a common mani-
festation in many conditions.18 The finding that ADRP
z-scores were only correlated to age in the ncMCI
group may indicate that ncMCI patients with a
supra-threshold ADRP score have a non-AD path-
ology which progresses with age, and affects cortical
areas which partially overlap with the ADRP

Figure 2. ADRP z-scores across groups. All ADRP subject scores were z-transformed to NA. Group differences were tested for

significance with a one-way ANOVA; post hoc comparisons were Bonferroni-corrected. AD: Alzheimer’s disease; ADRP: Alzheimer’s

disease-related metabolic brain pattern; MCI: mild cognitive impairment; NA: normal ageing; ncMCI: non-converting MCI; eMCI: early

MCI; lMCI: late MCI.

Table 1. Diagnostic performance of the ADRP.

NA versus

AD dementia

NA versus

MCI-converters

þ AD dementia

NA versus

MCI-converters

ncMCI versus

MCI-converters

þ AD dementia

ncMCI versus

MCI-converters

Sensitivity 90.90 86.66 84.21 84.61 84.21

Specificity 85.57 85.57 85.71 66.66 66.66

Accuracy 0.87 86.46 0.84 81.97 80.33

AUC-ROC curve 0.95 0.91 0.89 0.84 0.80

MCI: mild cognitive impairment; AD: Alzheimer’s disease; ADRP: Alzheimer’s disease-related metabolic brain pattern; ncMCI: non-converting MCI.
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topography. Although patients who met the criteria for
vascular cognitive impairment were excluded,14 mild
cerebrovascular disease in combination with other fac-
tors (drug therapy, chronic disease, and depression)
may have resulted in ADRP-like metabolic changes in
the ncMCI group.

While our main objective was to examine whether
ADRP scores could adequately differentiate between
MCI-converters and non-converters, a second objective
of this study was to validate the ADRP which was pre-
viously identified in a cohort of AD patients and con-
trols in Groningen.11 We successfully applied the
ADRP to a completely independent dataset. We note
that other multivariate approaches were also applied to
the data presented in this study,14,15 and gave similar
sensitivity and specificity for AD. An important advan-
tage of the current approach is that the ADRP could be
applied to new subjects on a single case-by-case basis,
despite these subjects having been scanned on a differ-
ent PET system.

Along with anatomical brain imaging, amyloid PET,
and cerebrospinal fluid analysis, expert visual reading
of 18F-FDG-PET scans is an accepted ancillary inves-
tigation in the diagnostic work-up of cognitive
decline.2,19 A single-case analysis in which separate
brain regions are identified where 18F-FDG uptake
levels deviate from normal can also be achieved with
univariate, semi-quantitative SPM-based methods.20 A
limitation of semi-quantitative methods is that it is dif-
ficult to objectively quantify progression of metabolic
changes. The ADRP may be especially useful to meas-
ure disease progression, and may thus provide import-
ant complementary information to a semi-quantitative
visual reading of 18F-FDG-PET in clinical practice.
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