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The aim of this study is to develop an automated method to objectively compare 
motion artifacts in two four-dimensional computed tomography (4D CT) image sets, 
and identify the one that would appear to human observers with fewer or smaller 
artifacts. Our proposed method is based on the difference of the normalized corre-
lation coefficients between edge slices at couch transitions, which we hypothesize 
may be a suitable metric to identify motion artifacts. We evaluated our method using 
ten pairs of 4D CT image sets that showed subtle differences in artifacts between 
images in a pair, which were identifiable by human observers. One set of 4D CT 
images was sorted using breathing traces in which our clinically implemented 4D 
CT sorting software miscalculated the respiratory phase, which expectedly led to 
artifacts in the images. The other set of images consisted of the same images; how-
ever, these were sorted using the same breathing traces but with corrected phases. 
Next we calculated the normalized correlation coefficients between edge slices at 
all couch transitions for all respiratory phases in both image sets to evaluate for 
motion artifacts. For nine image set pairs, our method identified the 4D CT sets 
sorted using the breathing traces with the corrected respiratory phase to result in 
images with fewer or smaller artifacts, whereas for one image pair, no difference 
was noted. Two observers independently assessed the accuracy of our method. Both 
observers identified 9 image sets that were sorted using the breathing traces with 
corrected respiratory phase as having fewer or smaller artifacts. In summary, using 
the 4D CT data of ten pairs of 4D CT image sets, we have demonstrated proof of 
principle that our method is able to replicate the results of two human observers 
in identifying the image set with fewer or  smaller artifacts.
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I.	 Introduction

Four-dimensional computed tomography (4D CT) imaging is an important tool in radiation 
oncology. It enables tighter margins to be used during treatment planning, and enhances ac-
curacy during treatment delivery for patients with tumor motion affected by respiration. The 
most common method to acquire a 4D CT scan of a patient is to use the CT scanner in cine 
mode.(1) The time stamps of the reconstructed CT images and the measured respiratory signal 
of the patient are retrospectively matched. The reconstructed images are sorted either by the 
phase(2) or by the displacement,(3) which are then stacked to create a three-dimensional (3D) 
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image of the patient for each image bin. A 4D image set is then reconstructed by viewing the 
3D images in sequence for each image bin. The current acquisition and sorting methods  led 
to significant motion artifacts(4-6) (artifacts in one study measured > 4 mm in 90% of scans(5)). 
The occurrence of artifacts is mainly caused by inaccurate determination of the respiratory 
phase.(4) These artifacts manifest themselves in the CT images as undefined and/or irregular 
boundaries, consequently degrading image clarity and causing errors in patient contouring and 
dose calculation.(7,8)

Strategies to reduce motion artifacts and improve 4D CT image clarity have been developed 
and investigated — for example, the use of audiovisual biofeedback to help improve the pa-
tient’s respiratory regularity,(9,10) the application of different algorithms to improve retrospective 
sorting,(11-13) and postprocessing of data to improve image reconstruction.(14) However, most 
of these strategies rely on visual evaluation of the improvements and are, therefore, prone to 
human subjectivity.

It is the aim of this study to develop an automated method to objectively compare two 4D CT 
image sets and identify the one with the fewer or smaller artifacts. Ideally, the method should 
be able to distinguish two or more 4D CT image sets based on the occurrence and severity of 
their artifacts, and should be able to replicate the findings of human observers. To best of our 
knowledge this study is the first to provide a tool for the automated and objective evaluation 
of motion artifacts in 4D CT.

Our method is based on image similarity between edge slices at adjacent couch positions, 
which is expressed by the normalized correlation coefficient (NCC) between these slices. Of 
many image similarity metrics, cross-correlation has been shown to be an effective and useful 
metric to measure image similarity between respiratory phases of the CT images.(15-17)

 
II.	 Materials and Methods

A. 	� A metric for quantifying motion artifacts based on NCC between two axial  
CT slices

The NCC CA,B between two axial CT slices A and B is given by:(18)
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are the pixel values (representing the Hounsfield 

Units) of the image slices  IA and IB, respectively; u,v,i,j,k,l∈[0,511] for standard axial CT slices 
with a field of view of 50 cm; and CA,B can be any value between -1 and +1. When two images 
are identical, CA,B equals +1.

For a set of retrospectively sorted 4D CT images I(n,s), n∈[1,N] and s∈[1,S] are the couch 
position index and the slice index within one couch position, respectively. N is the total num-
ber of couch positions. The couch transition index is the same as the couch position index, 
excluding the last couch position. Thus, the total number of couch transitions is N - 1. S is the 
total number of slices in one couch position (i.e., 8 for an 8-slice scanner). Figure 1 shows the 
notations for the edge slices I(n,8) and I(n+1,1) at the couch transition n, and their neighbors I(n,7) 
and I(n+1,2) in their respective couch positions n and n + 1.

At every couch transition n, the NCCs between the edge slices Cn ≡ C(n,8),(n+1,1) and 
the edge slices and their neighbors in their respective couch positions Cn,n ≡ C(n,7),(n,8) and  
Cn,n+1 ≡ C(n+1,1),(n+1,2) are first calculated using Eq. (1). Based on these three values, we define 
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the following quantity Db,n as a metric of similarity between the edge slices at the couch transi-
tion n for a given respiratory bin b:

 		  (2)
	

, , , 1

1
2b n n n n n n

b

D C C C

Since I(n,7) and I(n,8) are acquired at the same time within the same breathing cycle, there are 
no respiratory induced artifacts, and any deviation of Cn,n and Cn,n+1 from +1 is mainly caused 
by nonrespiratory-induced anatomical changes (e.g., the transition from the chest wall to the 
lung), which is possible if a particular couch position contains this transition. In contrast, the 
edge slices at two adjacent couch positions are acquired in different breathing cycles and can 
contain respiratory-induced artifacts, in addition to normal anatomical changes between edge 
slices. Thus Cn should be no larger than Cn,n and Cn,n+1. Figure 2(a) shows an example (50% 
phase bin for patient 10) of the NCC Cm,m+1 between all adjacent slices m and m + 1 for a scan 
with 16 couch positions, where m∈[1,127]. The figure shows the decrease of the NCC at each 
couch transition m = 8n, which is smaller than the two neighboring NCCs. However, the de-
crease of the NCC is not always the largest at the couch transitions, as shown in Fig. 2(a) for 
m = 125. This decrease in the NCC (indicated by the solid arrow line) within the same couch 
position is caused most likely by abrupt anatomical changes.

The average value of (Cn,n + Cn,n+1)/2 represents the baseline similarity in the closest vicinity 
of the edge slices I(n,8) and I(n+1,1). With the use of Db,n, we minimize the impact of nonrespiratory-
induced similarity changes in the closest vicinity of couch transitions and emphasize only on 
the changes (to first order approximation) caused by respiration between edge slices. A plot of  
Db,n  versus couch transition n for the same scan of patient 10 is shown in Fig. 2(b). As shown 
in the figure, the biggest magnitudes of Db,n correspond to couch transitions 11 and 12, which 
indicates the position of the largest similarity changes and potentially the largest artifacts.

One potential issue with Db,n is the possibility that the similarity between edge slices may 
not be fully recovered from similarities of surrounding slices, as shown in Fig. 2(a) for m = 
125. In this case, Db,n would indicate a nonmotion-related artifact. However, through further 
processing of the data, which is described further below, this effect can be subtracted out. Here 
we hypothesize that Db,n is a suitable metric for identifying severity of artifacts and can be 
used for objectively comparing motion artifacts in cine 4D CT images. We investigated our 
hypothesis by scoring the artifacts in ten pairs of 4D CT images that showed subtle differences 
in artifacts between images in a pair.

We have developed a software package with MATLAB (ver. R2011b, The MathWorks, 
Inc., Natick, MA) that requires already-sorted 4D CT images as input and then calculates the 
NCC between edge slices at every couch transition for each respiratory phase bins. The same 
routine is used for the second set of 4D CT images. Finally, a score is calculated that compares 
the two 4D CT sets based on the occurrence and severity of artifacts. These steps are fully 

Fig. 1.  Schematic representation of the couch position (transition) n, slice index s, edge slices I(n,8) and I(n+1,1) at the couch 
transition n, and their neighbors I(n,7) 

and I(n+1,2) in their respective couch positions n and n + 1.
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automated and require only the 4D CT images to be sorted and thus the clinical implementa-
tion is readily achievable.

B. 	 4D CT image acquisition and sorting
For this study, we identified ten lung cancer patients that were treated at our institution. 4D CT 
scans for these patients were acquired on a GE Discovery PET/CT Scanner (General Electric 
Medical Systems, Waukesha, WI) equipped with the real-time position management (RPM) 
system (Varian Medical Systems, Palo Alto, CA) for monitoring the patients’ breathing, using 
previously described acquisition techniques.(19) Ten reconstructed phase bins were used, yielding 
10 full-field volumetric image datasets per breathing cycle for each patient. Image processing 
was performed on an Advantage Workstation 4.2 with Advantage 4D CT software (GE Medical 
Systems, Waukesha, WI).

This patient population was chosen because each patient had a regular breathing pattern 
that resulted in a regular breathing trace. However, due to miscalculation of the phase by the 
RPM software, the corresponding 4D CT images showed substantial motion artifacts. We then 

(a)

(b)

Fig. 2.  An example (50% phase bin for patient 10) of the NCC Cm,m+1 (a) between all adjacent slices m and m + 1 for 
a scan with 16 couch positions, where m∈[1,127]. The figure shows the decrease of the NCC at each couch transition 
(indicated by the dot arrow lines). Plot (b) of Db,n versus couch transition n for this scan.
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corrected the respiratory breathing traces using the ‘Phase Recalculation Review’ function in 
the RPM software, which allowed the manual insertion and/or deletion of inhalation peaks 
that resulted in different phase values. A representative example of a patients breathing trace 
with the miscalculated phase (dotted line) due to missed detection of five inhalation peaks (in-
dicated by the long dash-dot arrows) and two improperly detected inhalation peaks (indicated 
by the short solid arrows) is shown in Fig. 3(a). After manually adding the missed inhalation 
peaks and deleting the improperly detected inhalation peaks, the RPM software recalculated 
the respiratory phase, as shown in Fig. 3(b). We then resorted the original images using this 
corrected respiratory trace that led to a second set of 4D CT images.

(a)

(b)

Fig. 3. Recorded breathing traces (a) by the RPM software (solid thick curves) with the originally calculated phase values 
(dotted lines). Five missed peaks and two improperly detected peaks of inhalation are indicated by the long dash-dot ar-
rows and the short solid arrows, respectively. Recorded breathing traces (b) with recalculated phase values after manually 
correcting the missed and improperly detected peaks of inhalation.
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C. 	� Quantitative evaluation of the 4D CT image sets and generation of the 
automated scores

To evaluate motion artifacts in the 4D CT images based on the original and corrected RPM 
traces, we first calculated Db,n at every couch transition n for each respiratory phase bin b for 
both 4D CT image sets. This resulted in two matrices {Db,n}O and {Db,n}R, where {Db,n}O is 
generated from the 4D CT images based on the original breathing trace and {Db,n}R from the 
4D CT images based on the corrected breathing trace with recalculated phase values. Each 
row of the matrix represents each respiratory phase bin b (0%–90%) and the row elements are 
the Db,n values at every couch transition n at that particular phase bin b. We then subtracted  
{Db,n}R from {Db,n}O to obtain a residual matrix {ΔDb,n} ≡ {Db,n}O – {Db,n}R. With this, a 
positive value of the matrix elements ΔDb,n would indicate a higher similarity between the 
edge slices at couch transition n and phase b in the 4D CT images that were sorted using the 
breathing trace with recalculated phase values, compared to the similarity of the edge slices 
in the 4D CT images based on the original breathing trace. A negative value would indicate 
the opposite scenario. Consequently, a value of zero would indicate no difference in similarity 
between the two 4D CT image sets. Next, we summed the row elements for each phase of the 
{ΔDb,n} matrix and assigned it a value of +1 if the sum was positive, -1 if the sum was nega-
tive, and a value of zero if the sum was zero. The overall score for each patient was generated 
by averaging the ten values assigned to each phase. With this, the overall score for each patient 
varied between -1 and +1.

D. 	 Visual comparison of the 4D CT image sets and statistical analysis
To evaluate whether our method has identified the set of 4D CT images that has fewer or smaller 
artifacts, we developed an image comparison interface that presents images in pairwise fashion 
to a human observer.(20)

Two physicists evaluated image artifacts in the 4D CT sets. For each patient, three coronal 
and two sagittal cross-sections were taken from the same locations in two image sets. The two 
image sets were then displayed side by side, and each observer independently scrolled through 
the phases of both image sets simultaneously (blinded to the selection method of each image 
set) and marked the image set that appeared to have fewer or smaller artifacts. A score of +1 was 
given if the image set sorted using the breathing trace with the recalculated phase values was 
selected, while a score of -1 was given if the image set sorted using the breathing trace with the 
originally miscalculated phase values was selected. Additionally, the observers had the option 
to select “neither” if the two image sets were comparable (score was 0). Thus the maximum 
and minimum score per patient would be +5 and -5, respectively. The final score was obtained 
by averaging the scores of the five image sets. Thus the score per patient would be between -1 
and +1. A positive score implies that the images sorted using the breathing trace with the recal-
culated values would result in 4D CT images with fewer or smaller artifacts, while a negative 
score would imply the opposite. A score of zero implies no difference between the two 4D CT 
image sets. We furthermore analyzed the interuser variability between the two observers 

The statistical analysis of the data was performed using OriginPro 8 SR0 (version 8.0, 
Northampton, MA). Based on the manual scoring systems described above, an average score 
for each patient was calculated. A Wilcoxon signed-rank test was used to determine whether 
the human average score would yield zero, since the data did not follow a normal distribu-
tion. This would indicate that the human observers could not identify any differences between 
the two 4D CT image sets. A second Wilcoxon signed-rank test was then used to determine 
whether the automated score for each patient would yield zero, which would indicate that our 
method is unable to identify differences between the two 4D CT image sets. Finally, a third 
Wilcoxon signed-rank test was used to determine whether there is any statistically significant 
difference between the scores of the automated method and the average scores determined by 
the two human observers.
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III.	Res ults 

Table 1 summarizes the scoring results of the two observers and our automated method. Listed 
are the scores from observer #1 and #2, the average score for both observers, and the score 
determined by our automated method. For nine patients, our method found the 4D CT image 
sets sorted using the breathing traces with the recalculated phase values to have fewer or smaller 
artifacts than the 4D CT image sets sorted using the breathing trace with the originally mis-
calculated phase values. For one patient (patient 5), our method found no difference between 
the two 4D CT images sets. Overall, our method consistently identified one 4D CT image set 
to be ‘better’ than the other set and, therefore, the zero hypothesis that our method is unable to 
distinguish differences between the two 4D CT image sets was rejected (p = 0.004 ). This is in 
good agreement with the results of the two observers who also consistently identified the 4D 
CT image set sorted using the breathing trace with the recalculated phase values to result in 
fewer or  smaller artifacts (p = 0.004). Both observers found only one case (patient 3) in which 
the two 4D CT image sets were not different from each other.

Next, we have assessed the interuser agreement between the two observers. The results are 
summarized in Table 2. Shown is the frequency that each observer has chosen a particular 4D 
CT image set in relation to the other observer. For example, both observers selected the 4D CT 
image set sorted using the breathing trace with the recalculated phases 29 times to have fewer 
or  smaller artifacts, while they selected the other 4D CT image set to have fewer artifacts once. 
Furthermore, there was no statistically significant difference between the average score of the 
two independent observers and the scores determined by our automated method (p = 0.43).

Table 1.  Scoring results of the manual method and automated method for ten patients. Shown are the manual scores 
by observer 1 and observer 2, the average score of both observers, and the automated score. The scores for both 
methods range from -1 and +1. 

	 Manual Score

	Patient	 Observer 1	 Observer 2	 Average	 Automated Score

	 1	 0.6	 0.6	 0.6	 0.4
	 2	 0.8	 1	 0.9	 1
	 3	 0	 0	 0	 0.4
	 4	 0.6	 0.6	 0.6	 1
	 5	 0.2	 0.8	 0.5	 0
	 6	 0.6	 1	 0.8	 0.4
	 7	 1	 1	 1	 0.6
	 8	 0.2	 0.6	 0.4	 0.4
	 9	 0.8	 1	 0.9	 1
	 10	 0.8	 0.8	 0.8	 0.4

Note: A positive score indicates that the image set sorted using the breathing trace with the recalculated phase values 
resulted in 4D CT images with fewer or smaller artifacts, whereas a negative score indicate the other image set to have 
fewer or smaller artifacts. A score of zero indicates no difference between the two image sets.

Table 2.  Summary of the image set selection results of two observers. The number represents the frequency both 
observers found one image set has fewer or smaller artifacts. Of 50 selections, there are complete agreement 40 times 
(sum of the numbers in the parentheses), partial agreement 9 times (sum of the numbers in the square brackets), and 
complete disagreement 1 time (sum of the numbers in the curly brackets).

	 Observer 2

		  Image set sorted by 		  Image set sorted
	 Observer 1	 recalculated phase	 Neither	 by original phase

	Image set sorted by recalculated phase	 (29)	 [1]	 {0}
	 Neither	 [8]	 (10)	 [0]
	 Image set sorted by original phase	 {1}	 [0]	 (1)
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Figures 4(a) and 4(b) show a representative example of the same coronal cross-section from 
the two 4D CT image sets (50% phase bin for patient 10), which were sorted using the breath-
ing traces with the originally miscalculated phase values and the recalculated phase values, 
respectively. Figure 4(a) shows motion artifacts around the dome of the diaphragm, (indicated 
by the arrows). In contrast, these artifacts around the dome of the diaphragm, as shown in 
Fig. 4(b), are less prominent.

Figure 5(a) shows the difference of the NCC at each adjacent slice between the two 4D 
CT image sets (50% phase bin for patient 10) as shown in Figs. 4(a) and 4(b), respectively. 
The figure shows little intracouch variation and the largest differences occur at slice transi-
tions 88 and 96, corresponding to couch transitions 11 and 12. Of note is that at m = 125, the 
large decrease in the maximum value of the NCC, as shown in Fig. 2(a), was subtracted out 
because it occurred intracouch and was static in both 4D CT image sets. Figure 5(b) shows the 
corresponding ΔDb,n as a function of couch transition for patient 10. According to our metric, 
the largest motion artifacts occurred at couch transition 11 and 12, which corresponds to the 
artifacts shown in Fig. 4(a).

 

(a) (b)

Fig. 4.  Coronal cross-sections of the image set of the 50% phase bin for patient 10, sorted using the originally miscalcu-
lated phase values (a), and the recalculated phase values (b). Artifacts expressed as overlapping structure in the diaphragm 
region are indicated by the arrows.
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IV.	D ISCUSSION

In this study, we developed an automated method that relies on image similarity between edge 
slices at couch transitions for the quantification of motion artifacts in cine 4D CT images. Two 
independent observers validated the proposed method using ten pairs of 4D CT images. Our 
method was designed to replicate the scoring process of the reviewer who relied on visual 
inspection of the artifacts. By summing the row elements of the residual matrix {ΔDb,n}, we 
generated a score (-1, 0, or +1) for each respiratory phase across all couch positions. This re-
sembles the process of visual inspection of a human observer who inspects the entire length of 
the scanned anatomy and then recognizes whether or not an artifact exists during a particular 
phase and compares it with the existence and/or the magnitude of the artifact in the other image 
set. We have chosen this scoring method as visual inspection will tend to identify larger rather 
than subtle artifacts, and a human observer will therefore identify the image set with the fewer 
or smaller artifacts to be the ‘better’ one. While visual inspection is inevitably subjective, our 
method is able to score the image artifacts more objectively, as it will identify any sized artifacts 
through the calculation of the NCC for edge slices of adjacent couch positions pixel by pixel.

Fig. 5.  Plot (a) of the difference of the NCC at each adjacent slice between the two 4D CT image sets in Figs. 4(a) and 
4(b). Plot (b) of ΔDb,n versus couch transition n of 50% phase bin image set for patient 10. Motion artifacts occurred at 
couch transitions 11 and 12.

(a)

(b)
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The 4D CT data of ten patients that were analyzed in the context of this study have demon-
strated proof of principle that our method is able to differentiate two 4D CT images sets based 
on their inherent motion artifacts. The fact that our method and the two observers consistently 
identified the 4D CT image sets that were sorted using the respiratory breathing trace with the 
recalculated phase values to be the better one, demonstrates that our method is able to perform 
as well as human observers. 

One drawback of our method is the lack of an absolute quantity that describes the goodness 
of a 4D CT image set. Our method relies on the comparison of two 4D CT images sets to deter-
mine the ‘better’ one. In clinical practice, however, it would be desirable to have a metric that 
will inform the physicians about the quality of the acquired 4D CT images. For example, such 
information could be used to determine the need of a repeat scan before the end of the patient’s 
simulation and/or determine the appropriate respiratory management technique. The use of Db,n 
as an overall score for the goodness of a single 4D CT scan is not viable, as is demonstrated in 
Fig. 2(b). Here the large values of Db,n do not always correspond to the occurrence of a motion 
artifact. For instance, the relatively large magnitudes of Db,n at couch transitions 1 and 2 are not 
related to motion artifacts, but are due to abrupt anatomical transitions. However, since they 
are static and occur in both 4D CT image sets, they can be subtracted out during the scoring 
process using ΔDb,n, as shown in Fig. 5.

Although our method was validated in 4D CT images that were sorted using the same re-
spiratory phase-based sorting method, it holds potential to be used as a comparison tool for 
different sorting algorithms, such as respiratory phase-based and displacement-based algorithms 
to determine the one that yields fewer or smaller artifacts.

 
V.	C onclusions

An automated method based on image dissimilarity to objectively score motion artifacts in cine 
4D CT images retrospectively sorted by respiratory phase-based sorting was developed. We 
have demonstrated proof of principle that our method is able to replicate the findings of two 
human observers in determining the 4D CT images with fewer or smaller artifacts. It holds the 
potential to be used as a comparison tool for different sorting algorithms and to identify the 
4D CT image set with the fewer or smaller artifacts.
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