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In most of the approaches of computer-aided detection of breast cancer, one of 
the preprocessing steps applied to the mammogram is the removal/suppression of 
pectoral muscle, as its presence within the mammogram may adversely affect the 
outcome of cancer detection processes. Through this study, we propose an efficient 
automatic method using the watershed transformation for identifying the pectoral 
muscle in mediolateral oblique view mammograms. The watershed transforma-
tion of the mammogram shows interesting properties that include the appearance 
of a unique watershed line corresponding to the pectoral muscle edge. In addition 
to this, it is observed that the pectoral muscle region is oversegmented due to the 
existence of several catchment basins within the pectoral muscle. Hence, a suit-
able merging algorithm is proposed to combine the appropriate catchment basins 
to obtain the correct pectoral muscle region. A total of 84 mammograms from the 
mammographic image analysis database were used to validate this approach. The 
mean false positive and mean false negative rates, obtained by comparing the results 
of the proposed approach with manually-identified (ground truth) pectoral muscle 
boundaries, respectively, were 0.85% and 4.88%. A comparison of the results of the 
proposed method with related state-of-the-art methods shows that the performance 
of the proposed approach is better than the existing methods in terms of the mean 
false negative rate. Using Hausdorff distance metric, the comparison of the results 
of the proposed method with ground truth shows low Hausdorff distances, the mean 
and standard deviation being 3.85 ± 1.07 mm. 

PACS numbers: 87.57.R, 87.57.nm, 87.59.ej, 87.85.Ng, 87.85.Pq
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I.	 Introduction

Due to the drastic growth in mammography, a huge number of higher quality and diverse im-
ages are available for analysis. At this juncture, usage of computer vision techniques, which 
includes artificial systems to analyze these medical images, is indispensable. Artificial systems 
should be designed to analyze medical images in a semi-automatic or even in a fully automatic 
manner. However, the usage of artificial systems for mammogram analysis is not new to this 
field. Though computer-aided detection (CAD) for breast cancer is available in the market, 
studies(1,2) demonstrate that further developments are required in this field to produce more 
effective CAD. 

A mammogram is a two-dimensional image of a three-dimensional breast. The intensity 
of each pixel of the mammogram results from the superposition of several types of tissues 
through which X-rays pass. This superposition causes several problems in identifying differ-
ent breast tissues, including the pectoral muscle.(3) In the mammogram, the pectoral muscle 

a	 Corresponding author: K. Santle Camilus, Department of Computer Science and Engineering, National Institute of 
Technology Calicut, Calicut, India; phone: 91-95271-37400; fax: 91-495-2287250; email: camilus@nitc.ac.in

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 12, NUMBER 3, summer 2011

215	     215



216    Santle Camilus et al.: Pectoral muscle identification	 216

Journal of Applied Clinical Medical Physics, Vol. 12, No. 3, Summer 2011

appears as a triangular region in one side of the image. The breasts cover the chest muscle, 
namely, the pectoralis major which is attached to the collarbone, breastbone and the cartilage 
of most of the ribs. The pectoralis minor is a triangular-shaped chest muscle that lies under 
the pectoralis major and is attached to the third, fourth, and fifth ribs. Either one of these two 
chest muscles is commonly called the pectoral muscle. In most of the breast cancer detection 
methods, removal or suppression of the pectoral muscle is a preprocessing step, as its pres-
ence within a mammogram may affect the results.(4) Also, pectoral muscle identification can 
be used in image registration for abnormality analysis like bilateral symmetry.(5) Hence, it is 
essential to pay attention to pectoral muscle identification so as to produce effective results in 
mammogram-based lesion detections using CAD.

In the literature, several methods have been proposed to identify the pectoral muscle in mam-
mograms. Suckling et al.(6) used a multiple-linked self-organizing neural network to segment 
the pectoral muscle. However, this method requires a set of good training mammograms to 
generate satisfactory results. Masek et al.(7) employed both a threshold-based algorithm and a 
straight line fitting technique to represent the pectoral muscle. The straight line representation 
by this method is not an efficient way to identify the pectoral muscle due to the existence of 
curved pectoral muscles. A method based on the estimation and refinement of the pectoral muscle 
edge was suggested by Kwok et al.(8,9) This method is weak in detecting textural and vertical 
pectoral edges. The Hough transform was first exploited by Karssemeijer(10) for identifying the 
pectoral muscle. Following this work, many authors developed several methods in which the 
Hough transform was used in part.(11,12,13) As the classical Hough transform is a straight line 
representation technique, a suitable postprocessing is essential for the precise representation of 
the pectoral muscle; failure to do so may lead to inaccurate results. Ferrari et al.(4) utilized a set 
of Gabor wavelet filters that was designed to highlight the pectoral muscle edge. To produce 
good results using this method, one must set the filter parameters appropriately. Raba et al.(14) 
combined both an adaptive histogram approach and a selective region growing algorithm for 
the pectoral muscle segmentation. The weakness of this method is segmentation leakage, in 
which dense breast tissues are included falsely in the pectoral muscle region. Bajger et al.(15) 
and Fei Ma et al.(16,17) suggested two graph-based approaches. The first approach was based on 
the minimum spanning tree (MST) method, while the second approach was based on the adap-
tive pyramid (AP) method. The MST approach failed to identify the smaller volume pectoral 
muscles.(17) Camilus et al.(18) presented an approach using a graph cut based merging method 
and a Bezier curve algorithm. The result of this approach is influenced by the order in which 
regions are merged in the graph cut based merging method. 

We propose an efficient approach using the watershed transformation(19) for pectoral muscle 
identification for following reasons. Apart from one or more of the above deficiencies in 
existing methods, the survey of pectoral muscle identification also reveals that most of these 
methods (for example, Hough transform) extract pectoral muscles as straight lines. However, 
this assumption is always not correct, as curved pectoral muscles do exist. The watershed trans-
formation is an intuitive method which enables the detection of pectoral muscle boundary as a 
curve, which is a desirable property for identifying the true boundary points of pectoral muscle. 
Furthermore, most of the methods in the literature (e.g., region growing and MST algorithm) 
give rise to incorrect results when dense tissues appear near the pectoral muscle, as they fail 
to discover boundaries between them. The primary reason for the failure is the occurrence of 
subtle low-contrast boundaries between the tissue and the muscle. On the other hand, watershed 
transformation has proved to be successful in locating the boundaries of adjacent regions even 
when images have low contrast and weak boundaries. Thus, the watershed transformation could 
be a more suitable choice for pectoral muscle identification, and it overcomes the limitations 
of existing methods. The proposed method is based on the knowledge of shape and location of 
the pectoral muscle and other image information. When a mammogram is processed with the 
watershed transformation, the results show a strong indication of the presence of the pectoral 
muscle boundary with a set of properties. However, the pectoral muscle region is oversegmented 
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(divided into many smaller regions). Hence, a novel merging algorithm, which is particularly 
more suitable for the pectoral muscle segmentation, is proposed to overcome this problem. The 
proposed merging algorithm is based on the work of Camilus et al.(20) The proposed approach 
produced better results in terms of accuracy. We also demonstrate, in Section III below, the 
improved performance of the proposed approach by comparing it’s accuracy with many related 
state-of-the-art methods. 

 
II.	 Materials and Methods

A.	D ataset
We used a dataset which consists of 84 mammograms and their ground truth, which was pro-
vided by Ferrari et al.,(4) to test the performance of the proposed approach. These mammograms 
were originally taken from the mammographic image analysis database,(21) which is a public 
database of mammograms available online. All the mammograms were 8-bit gray level images, 
digitized at 200 micron pixel edge, and of 1024 × 1024 pixel size. The manually-extracted 
pectoral muscle boundaries of the mammograms, done by an expert radiologist, were used as 
the ground truth. In fact, the same dataset and ground truth were previously used by others to 
validate their works. Hence, the results obtained for this dataset by using the proposed approach 
can be compared directly with the previous works. To minimize the time complexity, the origi-
nal size of the mammogram was reduced to 256 × 256 pixels and processed by our approach. 
Once the pectoral muscle was identified, the original size was retained by up-sampling of the 
results. The results were then analyzed. 

B.	  Overview of the proposed approach
There are two standard views for screening mammography: 1) craniocaudal (CC) view, and 
2) mediolateral oblique (MLO) view. The CC is a top-to-bottom view of a breast, while the 
MLO is a side view angled approximately between 30° to 70°. When properly taken, an MLO 
mammogram shows all breast tissues in one image.(22) The appearance of the pectoral muscle 
as a triangular region in one side of the mammogram is one of the most important features of 
the MLO view. Hence, it is required to identify the pectoral muscles in MLO mammograms, 
which is the main subject of this study.

This approach was designed to identify the pectoral muscle in left MLO mammograms. 
However, a right MLO mammogram was processed by flipping to make it look like a left MLO 
mammogram. Once the pectoral muscle was identified, its original position was resumed by 
flipping it again. This avoided the situation of designing two different methods for treating the 
left and the right MLO mammograms separately. 

In this approach, a single MLO mammogram was accepted as the input and from this, a 
region of interest (ROI), which holds the whole pectoral muscle, was extracted. It is a common 
practice to apply watershed transform to the gradient of an image instead of directly applying it 
to the image itself, as catchment basin boundaries can effectively be located at higher gradient 
points.(23) Hence, a ROI gradient was obtained and filtered using a smoothing filter. The filter-
ing step is essential to reduce the formation of several irrelevant catchment basins during the 
watershed transform. However, the resultant image of the watershed transform of the filtered 
ROI gradient was still oversegmented. Hence, the proposed merging algorithm was used to 
fuse the oversegmented pectoral muscle region to acquire the pectoral muscle boundary. An 
overview of the proposed approach is depicted in Fig. 1. 



218    Santle Camilus et al.: Pectoral muscle identification	 218

Journal of Applied Clinical Medical Physics, Vol. 12, No. 3, Summer 2011

C.	 Extraction of ROI
The left side unexposed X-ray portion of the mammogram was completely eliminated such 
that the top left most pixel is a pectoral muscle pixel. Also, the skin–air boundary was approxi-
mately determined in few upper rows of the mammogram and was utilized to select the region 
ABDCA, in Fig. 2, as ROI which includes the complete pectoral muscle.

Fig. 1.  Overview of the proposed method.
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D. 	 Watershed transformation
The Sobel operator(24) employs a pair of 3 × 3 convolution masks, as given in Fig. 3, to obtain 
the ROI gradient. The masks, Gx (Fig. 3(a)) and Gy (Fig. 3(b)), on convolving individually on 
the ROI, compute the horizontal and the vertical gradient approximations, respectively. At each 
pixel in the image, the combination of these two gradient approximations renders the gradient 
magnitude, which is given by: 

 			 
		  (1)
	

The gradient’s direction is given by: 

			 
		  (2)
	

To smoothen the ROI gradient, a mean filter of 3 × 3 was used. The mean filter smoothes 
the local variations in ROI gradient and also reduces noise.(25) The filtered ROI gradient was 
given as the input to the watershed transform. Hereafter, we call the filtered ROI gradient im-
age the “ROI gradient”.

The watershed transform was first proposed by Diagabel and Lantuejoul.(19) It is a region-
based segmentation approach from the field of mathematical morphology, and a well-organized 
survey of its different definitions and algorithms can be found in the work of Roerdink and 
Meijster.(26) The concept of watershed transform can be realized by visualizing the ROI gradient 
as a topographic surface, such that the gray value of each pixel defines its altitude. A hole is 
pierced in each regional minimum which allows water to gradually rise in catchment basins; in 
fact, each basin is evolved from a regional minimum. When any two catchment basins are about 
to merge, a dam is built between them to prevent them from merging. When water reaches the 
highest peak of the landscape, the flooding process is stopped. Finally, several catchment basins 
divided by dams (otherwise called watersheds) are evolved. In terms of image segmentation, 

Fig. 2.  Extraction of ROI.
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these catchment basins represent different regions, and watersheds are the boundaries between 
these regions. 

The ROI gradient can be viewed as a triple , where  is an undirected 
graph such that the pixels, defined in a two-dimensional space, constitute the vertices V, and 
the edges E specify the connectivity between pixels. In this work, as the eight-neighborhood 
connectivity of pixels was used, a vertex can have horizontal, vertical, and diagonal neighbors. 
In the triple, f is a function which assigns an integer value to every pixel, . Graph theory 
operations can now be applied to this graph constructed from the ROI gradient.  

D.1  Geodesic distance
Let a, b be two points in two-dimensional integer space, . The geodesic distance between 
these two points within A is the minimum length path among all possible paths between a and 
b within A. If B is a subset of A, then the geodesic distance  between a and B is
 			 
		  (3)
	

It is the minimum length path among all paths within A from the point a to every point of B.

D.2  Geodesic influence zone
Let B be contained in A and consist of “k” number of connected components, say .  
The geodesic influence zone of Bi within A is defined as: 

	 	 (4)

where “\” is the set difference operator. For a specific connected component, say Bi, the geo-
desic influence zone is a set of points of A which are closer to Bi than any other connected 
components of B. The union of geodesic influence zones of all connected components of B is 
represented by a set  as:

 			 
		  (5)
	

D.3	Threshold set
Let h be a gray level between hmin and hmax such that
		    	
		  (6)
	

Fig. 3.  The Sobel operator: (a) Gx, (b) Gy.
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		  (7)
	

The threshold set of f at level h, which is defined as the set of vertices whose gray values 
are less than or equal to h, can be represented as:

 	 	 (8)
	

D.4  Watershed transform
Let Xh be the union of the collection of catchment basins at level h, and MINh denote the union 
of all regional minima at level h. The immersion based watershed transform, as defined by 
Vincent and Soille,(27) is a recursive step, as follows:

		  (9)
		
	

In the first iteration, catchment basins are formed out of the vertices having the lowest gray 
value. In the successive iterations (say at level h+1), either one or both of the following events 
occur:

(i)	 creation of a new set of regional minima, and/or
(ii)	 expansion of catchment basins of level h.

D.5  Watersheds
The watersheds are the vertices that divide the whole ROI gradient into several catchment 
basins. These vertices are given by:

	 	 (10)

	
In another words, the watersheds are the collection of vertices of the graph that excludes the 

vertices included in Xh computed at hmax. In a practical sense, the watershed transformation is a 
process that assigns a unique label to each catchment basin and a special label to watersheds.(26)

E.  The proposed merging algorithm
When the gradient of the ROI of a mammogram was treated with the watershed transform, 
the results, given in Fig. 4, showed a strong indication of the presence of the pectoral muscle 
boundary with a set of following properties: 

(i)	 There is a unique continuous watershed line (hereafter it is called the watershed line of 
interest) which starts from the top and ends at the left of the image. The width, extending 
from the left-most pixel of each row (starting from the top row) to its current position, is 
gradually decreasing and becomes zero when it reaches the left-most position at the end.

(ii)	 The watershed line of interest encloses a triangular region covering the left top region of 
the image. It has a curved shape.

(iii)	The pectoral muscle is oversegmented; this is caused by several irrelevant regional minima 
within the pectoral muscle. The irrelevant regional minima may appear due to noise, local 
variations, etc.
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Properties (i) and (ii) seem to match the pectoral muscle attributes as reported in the literature. 
To summarize, a few attributes of the pectoral muscle in the ROI are: 

•	 the pectoral muscle occupies the left top corner of the image(8,17,18)

•	 the pectoral muscle forms a roughly triangular shaped region(8,17,18)

•	 from top to bottom, there is a gradual decrease in the pectoral muscle width(17,18)

•	 the pectoral muscle edge may be approximated by a curve(8,9)

From these observations, one can conclude that the watershed line of interest represents the 
pectoral muscle edge. In addition, the property (iii) establishes that by employing a suitable 
merging mechanism, the irrelevant regions (catchment basins) could be united to obtain the 
pectoral muscle region. Hence, a novel merging algorithm, which is more suitable for the pectoral 
muscle edge extraction, is proposed. The proposed merging algorithm is presented as pseudocode 
in Algorithm 1 which unifies the oversegmented catchment basins of pectoral muscle. 

E.1  Algorithm 1: Algorithm for identifying the pectoral muscle from an 
oversegmented image
1.	 Procedure: merging-algorithm
2.	 INPUT: oversegmented image
3.	 OUTPUT: segmented image: seed → pectoral muscle, and complement of  

seed → background
4.	 seed ← catchment basin which has a point at location (1,1) /* initial value of seed*/
5.	 merge ← 1 
6.	 while merge, do:
7.	 for i = 1 to n do
8.	  /* Ni is the ith neighborhood basin*/
9.	 	            

Fig. 4.  The watershed transformation of ROI gradients: (a) mdb043 (b) mdb099 (c) mdb119 (d) mdb129. For clarity, the 
watershed lines of interest are shown using arrows. Different colored regions represent various catchment basins. The 
white lines are watersheds. 
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10.	 end for
11.	 merge ← 0
12.	 for i = 1 to n do 
13.	 if  then
14.	 	              	    
15.	 merge ← 1
16.	 end if
17.	 end for
18.	 end while 

In this algorithm, the top-left most catchment basin, which owns the point at location  
(1, 1), is opted as the initial seed region. The catchment basins sharing watersheds with the seed 
are regarded as the seed’s neighborhood regions. The resultant image of watershed transform 
can not effectively be used for computing a merge criterion (here, if ), as most of 
the information is essentially lost in the oversegmented image. Therefore, catchment basins’ 
information is referred from this image, but the merge criterion is examined using the data that 
is accessible from the original ROI. As a first step, a weighted graph  is constructed 
from the ROI, such that the ROI pixels are the vertices V and the edges E are defined between 
neighborhood pixels. The weight of an edge w(vi,vj) is a measure of dissimilarity between vi  
and vj. Assume there are n neighbors for the seed, say . The intra-region 
edge average (IRA) of the seed can be calculated as: 

			 
		  (11)

	

where

	 	 (12)

	
The IRA of each of the seed’s neighborhood is estimated in a similar fashion as it is done 

for the seed. The inter-region edge mean (IRM) between the seed and any one of its neighbors 
 is calculated as:

  
			 
		  (13)

	

	
where

 			 
	 	 (14)
	

The dynamic threshold (DT) is computed as:

 			 
	 	 (15)
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where

			 
		  (16)
	

 		
		  (17)
	

Here,  denotes the total number of catchment basins;  is a positive constant and is set 
to 1 for the experimental study;  is the number of points in the seed;  is the 
number of points in the seed’s neighborhood. For each neighborhood of the seed, the DT and 
IRM are estimated and, using this, the merge criterion is examined. If the merge criterion is 
met, then the two catchment basins (seed and its corresponding neighborhood) are united in the 
oversegmented image. In practice, merging (MERGE function as in the stated algorithm) can 
be attained by assigning the label of the seed to the label of its neighborhood catchment basin. 
If at least one merge occurs in the iteration, then the process is repeated with the updated seed. 
In the final result, the seed stands for the pectoral muscle and its complement over the final 
image constitutes the background (regions other than the pectoral muscle in the ROI). 

 
III.	Res ults & DISCUSSION 

For testing, the weight of an edge was assigned the value of the absolute difference of the 
vertices that are connected by the edge. The standard validation criterion, the area normalized 
error,(4,17,18) was used to analyze and compare the results obtained by this approach. This criterion 
involves the calculation of two error terms: false positive (FP) and false negative (FN). A pixel 
is assigned to FP when it is present in the algorithm-identified pectoral muscle but not in the 
ground truth, and the pixel is considered as FN when it is present in the ground truth but not in 
the algorithm-identified pectoral muscle. Mathematical representations of these two error terms, 
normalized by the area of the pectoral muscle, for a left MLO mammogram, are given by:

			 
		  (18)
	

 			 
		  (19)
	

where A is the area of the pectoral muscle in the ground truth and p is the number of rows of the 
pectoral muscle in the mammogram; Balg (i) is the horizontal coordinate of the pectoral muscle 
boundary point in the ith row as identified by the algorithm; Bgro (i) is the horizontal coordinate 
of the pectoral muscle boundary point in the ith row of the ground truth. If there is an exact 
match between the ground truth and the algorithm identified pectoral muscle, then the value of 
FP and FN is zero. The mean of the error terms over “n” images can be calculated as:  

 			 
		  (20)
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		  (21)
	

In addition to FP and FN, the performance of the proposed method was also analyzed using 
the Hausdorff distance.(28) The Hausdorff distance between a set of pixels in the ground truth 
(A) and a set of pixels of the algorithm identified pectoral muscle boundary (B) is defined as:
 			 
	 	 (22)

	
where

		  (23)
	

 represents the Euclidean distance between the two points, p and q.
We processed a total of 84 mammograms and the performance of the proposed approach was 

evaluated. The proposed method took approximately 5 seconds to run in a computer featuring 
a Pentium IV, 3 GHz processor and 512 MB random access memory, with MATLAB 7.0 (The 
MathWorks, Natick, MA) computing environment. A few results are provided in Figs. 5, 6 and 7. 

Fig. 5.  Results obtained for the image mdb004: (a) original mammogram, (b) ROI image, (c) ROI gradient, (d) watershed 
transformation of the ROI gradient, (e) identified pectoral muscle by the proposed merging algorithm, (f) identified pectoral 
muscle embedded over the original mammogram, (g) ground truth (pectoral muscle is marked white).
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Figure 8 illustrates an example of underestimation of the longer pectoral muscle by the proposed 
method. The reason for underestimation is due to the drastic intensity discontinuity within the 
pectoral muscle in the image. However, in other mammograms, where the longer pectoral muscle 
regions are seen, the proposed method produced satisfactory results. An example of this can be 
seen in Fig. 9. It is important to note that other methods such as the Hough transform, Gabor 
wavelets, and the graph cut based merging method underestimated the pectoral muscle in both 
these mammograms (mdb075 and mdb112), which is evident from the Figs. 8 and 9.  

The summary of the results obtained for the proposed approach, and for other state-of-the-
art methods, is given in Table 1. The widely accepted error measurement criterion (FP and 
FN) in the field of medicine was used to compare all the reported methods. For the Hough 
transform,(11)  the mean false positive is considerably closer to the lowest value. But the mean 
false negative is higher than all other methods. Also, the anticipated accuracy, in terms of the 
number of results with smaller errors, is not attained; approximately 79% of results lie in the 
greatest error range. For Gabor wavelets,(4) the mean false negative is better than all of the 
compared methods. The mean false negative is also considerably good. It gained higher-quality 
results holding smaller errors in about 54% of the mammograms. At the same time, in many 

Fig. 6.  Results obtained for the image mdb037 where dense tissues appear near the pectoral muscle: (a) original mam-
mogram, (b) ROI image, (c) ROI gradient, (d) watershed transformation of the ROI gradient, (e) identified pectoral 
muscle by the proposed merging algorithm, (f) identified pectoral muscle embedded over the original mammogram,  
(g) ground truth.
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Fig. 7.  Results obtained for the image mdb125 where the multilayered pectoral muscle appears: (a) original mammogram, 
(b) ROI image, (c) ROI gradient, (d) watershed transformation of the ROI gradient, (e) identified pectoral muscle by the 
proposed merging algorithm, (f) identified pectoral muscle embedded over the original mammogram, (g) ground truth.

Fig. 8.  The longer pectoral muscle in the image mdb075 was underestimated by the proposed method: (a) original mam-
mogram, (b) ground truth, and  pectoral muscle boundary identified by the Hough transform (c), Gabor wavelets (d), the 
graph cut based merging method (e), and the proposed method (f).
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other mammograms, the expected accuracy is not reached. For the AP algorithm,(17) the mean 
false negative is comparable to the mean false negative of many other methods. The method 
resulted in smaller errors in a higher percent of the mammograms, while the method produced 
poor quality results in approximately 6% of the mammograms. A good distribution of the error 
terms can be noticed for the MST algorithm;(17) apart from this, the results are not as good as 

Fig. 9.  The longer pectoral muscle in the image mdb112 was correctly identified by the proposed method: (a) original 
mammogram, (b) ground truth, and pectoral muscle boundary identified by the Hough transform (c), Gabor wavelets (d), 
the graph cut based merging method (e), and the proposed method (f).

Table 1.  Segmentation performance analysis by area normalized error. The first two rows represent the mean false 
positive and mean false negative values. The remaining rows report the distribution of the false positive and false 
negative values. For all the methods except the MST algorithm, the values reported are based on 84 mammograms. For 
the MST algorithm, the values reported are based on 82 mammograms (as the method failed to identify the pectoral 
muscle in two mammograms).

	 Hough	 Gabor	 Adaptive	 Minimum	 Graph Cut	 Proposed
	 Transform	 Wavelets 	 Pyramid 	 Spanning Tree	 Based Merging	 Approach

FPm	 0.0198	 0.0058	 0.0371	 0.0255	 0.0064	 0.0085

FNm	 0.2519	 0.0577	 0.0595	 0.1168	 0.0558	 0.0488

FP<0.05 &
FN<0.05	 10	 45	 50	 40	 43	 46

min(FP, FN)<0.05 &
0.05< max(FP, FN)<0.10	 0	 0	 18	 20	 19	 25

min(FP, FN)<0.05 &
max(FP, FN)>0.10	 0	 0	 11	 18	 22	 13

0.05<FP<0.10 &
0.05<FN<0.10	 8	 22	 0	 0	 0	 0

0.05<min(FP, FN)<0.10 
& max(FP, FN)>0.10	 0	 0	 0	 1	 0	 0

FP>0.10 & FN>0.10	 66	 17	 5	 3	 0	 0
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many other methods. The mean false positive, mean false negative, and the distribution of error 
terms are in an acceptable range for the graph cut based merging method.(18) 

The mean false negative of the proposed approach is better than all of the compared methods. 
At the same time, its mean false positive is closer to the lowest one. The error terms’ distribu-
tion is also satisfactory. The segmentation results are of higher quality in about 55% of the 
mammograms as both the error terms are less than 0.05. In about 30% of the mammograms, 
any one of the error terms is less than 0.05, while the other term has the error value between 
0.05 and 0.10. One of the error terms is less than 0.05, while the other error term’s value is 
greater than 0.10 in approximately 15% of the mammograms. Moreover, the fact that zero 
values populated for the number of images at higher error ranges clearly shows the acceptable 
precision of the proposed approach.

The mean and standard deviation of the Hausdorff distance for the proposed method over 84 
mammograms were determined as 3.85 ± 1.07 mm. For the same dataset, the mean and standard 
deviation for the Hough transform and Gabor wavelets were previously reported by Ferrari et 
al.(4) as 7.08 ± 5.26 mm and 3.84 ± 1.73 mm, respectively. The mean of the proposed method 
and the mean of Gabor wavelets are, respectively, approximately equal and considerably less 
than the mean of the Hough transform. However, with respect to the standard deviation, it is 
evident that the consistency of the proposed method is better than the Hough transform and 
Gabor wavelets.

 
IV.	C onclusions

The method described here for pectoral muscle identification in MLO mammograms uses wa-
tershed transformation and the proposed merging algorithm. When mammograms were treated 
with the watershed transformation, they exhibited some important properties that were used 
to identify the pectoral muscle in mammograms. One of these properties is the existence of a 
unique watershed line corresponding to the pectoral muscle boundary. If a few points lying on 
this watershed line are known, either automatically or semi-automatically, then the complete 
pectoral muscle could be traced by proper traversing of the line. The proposed merging algo-
rithm was used to obtain the actual pectoral muscle boundary by uniting irrelevant catchment 
basins of the oversegmented pectoral muscle region. This new merging algorithm chooses a 
pectoral muscle region as the initial seed by using one of the attributes of the pectoral muscle. 
The neighbors of the seed are merged with the seed, if their homogeneity is comparable to the 
seed. Finally, the pectoral muscle boundary is inferred from the seed. The validation results 
clearly demonstrate the improved performance of the proposed approach in terms of accuracy. 
The mean false positive of the proposed approach is comparable to that of the state-of-the-art 
methods. At the same time, the obtained mean false negative is better than that for the existing 
methods. The consistency of the proposed method is also satisfactory, which is apparent from 
the measured low Hausdorff distance. These results clearly demonstrate that this approach can 
be effectively used as a preprocessing step in the detection of breast cancers in CAD.
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