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Abstract

Objective—We have previously demonstrated a brain-machine interface (BMI) neuroprosthetic 

system that provided continuous control of functional electrical stimulation (FES) and restoration 

of grasp in a primate model of spinal cord injury (SCI). Predicting intended EMG directly from 

cortical recordings provides a flexible high-dimensional control signal for FES. However, no 

peripheral signal such as force or EMG is available for training EMG decoders in paralyzed 

individuals.

Approach—Here we present a method for training an EMG decoder in the absence of muscle 

activity recordings; the decoder relies on mapping behaviorally-relevant cortical activity to the 

inferred EMG activity underlying an intended action. Monkeys were trained at a 2D isometric 

wrist force task to control a computer cursor by applying force in the flexion, extension, ulnar, and 

radial directions and execute a center-out task. We used a generic muscle-to-force model based on 

muscle pulling directions to relate each target force to an optimal EMG pattern that attained the 

target force while minimizing overall muscle activity. We trained EMG decoders during the target 

hold periods using a gradient descent algorithm that compared EMG predictions to optimal EMG 

patterns.

Main results—We tested this method both offline and online. We quantified both the accuracy of 

offline force predictions and the ability of a monkey to use these real-time force predictions for 

closed-loop brain-control. We compared both offline and online results to those obtained with 

several other force decoders, including an optimal decoder computed from concurrently measured 

neural and force signals.

Significance—This novel approach to training an adaptive EMG decoder could make a brain-

control FES neuroprosthesis an effective tool to restore the hand function of paralyzed individuals. 

Clinical implementation would make use of individualized muscle-to-force models. Broad 
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generalization could be achieved by including data from multiple grasping tasks in the training of 

the neuron-to-muscle decoder. Our approach would make it possible for persons with SCI to grasp 

objects with their own hands, using near-normal motor intent.
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INTRODUCTION

With relatively few exceptions, Brain-Machine Interface (BMI) research involves the 

development of decoders that use signals recorded from the brain to predict the kinematics 

of movements attempted by intact subjects [2–12]. In the earliest experiments, decoders 

were trained by computing a map from brain activity to actual movement, an approach that 

cannot be implemented for a paralyzed individual. For BMIs to be useful clinically, it is 

important to develop techniques to compute decoders without relying on the user’s ability to 

make actual movements. To solve this problem, several groups have developed “observation-

based” decoders with intact monkey subjects [13, 14] as well as paralyzed people [15–19]. 

In this approach, maps relate neural activity not to actual limb movement but rather to the 

observed trajectory of a cursor or robot arm that the subject attempts to mimic. By this 

means, any of a wide variety of supervised learning algorithms can be used to compute a 

decoder without requiring actual limb movement.

While brain control of a robotic limb would clearly provide significant benefit to individuals 

paralyzed by SCI, restored control of their own muscles would undoubtedly have even 

greater impact on their overall physiological and psychological well-being [20, 21]. Among 

those people with tetraplegia, the great majority identifies the return of hand function as 

their most critical need [22, 23]. Muscles can be made to contract through electric 

stimulation, a clinically used procedure referred to as functional electrical stimulation (FES) 

[20, 24]. However, people with high level SCI have very few available options to provide 

voluntary control of this electrical stimulation. One successful approach is to use the 

remaining control of proximal limb muscles as a trigger for patterned FES [25]. A limited 

number persons have used EEG to control FES using implanted [26] or surface electrodes 

[27]. Quite recently, another group used intracortical signals recorded from an implanted 

microelectrode array to control FES in a human with a C5-C6 spinal cord lesion [28]. The 

system enabled six different attempted movements, each detected from the cortical 

recordings with a different decoder, and effected by a set of surface electrodes that were 

selected and calibrated at the beginning of each session. Although the surface stimulation 

significantly limited its performance, it was a dramatic demonstration of the potential of this 

technology.

We recently demonstrated a novel BMI that controls multi-channel FES by continuously 

predicting the intended activity (EMG) of each of several muscles temporarily paralyzed by 

peripheral nerve block [29, 30]. In those proof-of-concept experiments, the decoders were 

trained using both neural and EMG signals collected concurrently prior to the paralysis. 

Training an EMG decoder without access to actual EMG signals is more challenging than 
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training an observation-based kinematic decoder. The mapping of the high-dimensional 

EMG activity to movement is redundant, and any particular pattern of EMG activity cannot 

be explicitly presented to subjects in any meaningful way for them to observe and imitate.

Fortunately, the relationship between endpoint forces and patterns of EMG activity is 

reliably predictable, particularly for simple, well-constrained tasks [31, 32]. Here, we have 

investigated whether it is possible to train a decoder by inferring the level of muscle activity 

that a monkey is likely to be using as it attempts simple isometric contractions. We have 

adopted a 2D isometric wrist task similar to that used in a variety of motor control studies 

[33–35]. During this highly stereotypical task, the patterns of muscle activity corresponding 

to any given target force are approximately similar, even across monkeys. We tested if, by 

mapping neural data recordings to these inferred patterns of muscle activity, we could train a 

decoder capable of extracting useful muscle activation signals from neural data.

Unfortunately, the large amount of covariation among muscles in such a simple isometric 

task implies that generalization to other tasks is likely to be quite poor. Our ultimate strategy 

is to use a robust training scenario that includes a wide range of simple tasks, each involving 

a different muscles-to-force map, with the goal of developing a single M1 to EMG decoder 

that remains accurate across a wide range of tasks. In this study, we have shown that it is 

possible to train an EMG decoder through a combination of behavioral cues and inferred 

patterns of EMG activity. We have successfully tested this method offline by measuring the 

accuracy of force predictions obtained from a generic EMG-to-force model based on muscle 

pulling directions. We have also verified a monkey’s ability to use this EMG decoder online 

by controlling a computer cursor using the same EMG-to-force transformation, and found 

that his performance was as good as that achieved with a linear decoder trained using actual 

muscle signals.

METHODS

Overview

Our overall goal was to develop a method that would be applicable to paralyzed individuals 

for training neural decoders to predict intended muscle activation. In this scenario the 

calculation of the decoder parameters could not involve measurement of any output related 

information such as EMG, force, or movement. We relied instead on an isometric force task 

that allowed us to infer the motor intent, in terms of spatiotemporal EMG patterns, from the 

behavioral cues provided to the monkeys. Specifically, we associated an optimal spatial 

pattern of wrist muscle activity with each presented force target. We used a gradient descent 

learning algorithm to identify the decoder parameters that led to a map from neural 

recordings to these inferred optimal EMG patterns. We tested the performance of the 

resulting decoders both offline and online, by transforming the predicted patterns of muscle 

activity into force through an additional static muscle-to-force map based on muscle pulling 

directions. In a clinical application, the same EMG predictions could instead be used to drive 

FES.
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Behavioral task

Two monkeys were trained at a 2D isometric wrist force task (figure 1(a)) for which the 

relationship between muscle activity and force is relatively simple and well characterized. 

Each monkey’s left arm was positioned in a splint so as to immobilize the forearm in an 

orientation midway between supination and pronation (with the thumb upwards). A small 

box was placed around the monkey’s open left hand, incorporating a 6 DOF load cell 

(20E12, 100N, JR3 Inc., CA) aligned with the wrist joint. The box was padded to 

comfortably constrain the monkey’s hand and minimize its movement within the box. The 

monkeys controlled the position of a cursor displayed on a monitor by the force they exerted 

on the box. Flexion /extension force moved the cursor right and left, respectively, while 

forces along the radial /ulnar deviation axis moved the cursor up and down. Prior to placing 

the monkey’s hand in the box, the force was nulled in order to place the cursor in the center 

target. Being supported at the wrist, the weight of the monkey’s hand alone did not 

significantly move the cursor when the monkey was at rest. The gain of the system was 

calibrated so that a 1N force applied to the wrist device would move the cursor by 1cm. 

Targets were displayed either at the center of the screen (zero force), or equally-spaced along 

a ring around the center target. All targets were squares with 4cm sides (figure 1(b)).

The monkeys performed a center-out task that began with the appearance of a center target 

(figure 1(c)). They were allowed two seconds to move to the center target, which they were 

required to hold for a time randomly chosen from a uniform distribution between 0.2s and 

1.0s. A successful center hold triggered the appearance of one of eight possible outer targets, 

chosen in a block-randomized fashion. The monkeys were allowed another two seconds after 

target onset to move the cursor to the outer target. The required hold time for the outer target 

was 0.8s. Successful trials ended with the delivery of a liquid reward. Failure to reach a 

target within the allowed two seconds or to remain within a target as required resulted in an 

aborted (center target) or failed (outer target) trial. Successive trials were separated by a two-

second inter-trial interval.

During collection of the data used for decoder adaptation and offline prediction, the outer 

targets were located 10cm from the center, thus requiring a 10N force to be attained. For all 

data used to compute online behavioral performance (hand control, brain-control with the 

optimal decoder, brain-control with the adapted decoder), the distance from center to outer 

targets was reduced to 8cm and the target hold time to 0.2s. These parameters were chosen 

to allow the monkeys to receive sufficient rewards to remain motivated, while avoiding 

performance saturation effects.

Cortical implant

In each monkey, we implanted arrays composed of 96, 1.5 mm microelectrodes in a 10 by 

10 grid (Blackrock Microsystems) in the wrist /hand area of the primary motor cortex (M1) 

contralateral to the hand used for the task. We determined the implant site with reference to 

sulcal patterns and by using intraoperative surface cortical stimulation to evoke hand and 

wrist muscle contractions.
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All surgeries were performed under isoflurane gas anesthesia (1–2%) except during cortical 

stimulation, for which the monkeys were transitioned to reduced isoflurane (0.25%) in 

combination with remifentanil (0.25 μg/kg bolus + 0.25 to 0.4 μg/kg/min continuous 

infusion). The monkeys were administered antibiotics, anti-inflammatories, and analgesics 

for several days after surgery. All surgical and experimental procedures were consistent with 

the guide for the care and use of laboratory animals and approved by the institutional animal 

care and use committee of Northwestern University.

Data collection

We recorded force and neural signals using the Cerebus system (Blackrock Microsystems, 

Inc.). We did not attempt to identify spikes belonging to individual neurons, but instead used 

a simple multi-unit signal, registering a spike whenever an electrode signal exceeded -5 

times the RMS amplitude for that electrode, as calculated at the beginning of every session. 

We computed firing rates as the number of spikes detected in each electrode during each 

time bin, divided by the 50ms bin duration. We excluded neural channels for which the 

firing rate, averaged over the entire training dataset, fell below 0.5 Hz. The mean number of 

remaining channels was 78±8 (mean±1SD).

We fitted an exponential sinusoidal tuning curve to the firing rate data, and identified a 

preferred direction (PD) for each of the multi-unit signals included in our analyses by 

assuming a lag of 150ms between neural activity and force. We used bootstrapping with 100 

repetitions and a generalized linear model with a Poisson noise model [36] to compute the 

statistics leading to the identification of the PD.

Neuron-to-muscle decoder

The decoder we used to map neural activity into muscle activity was a Wiener cascade, 

consisting of a dynamic linear stage followed by a fixed static nonlinearity, as we have done 

in previous studies [37]. The linear portion of the decoder was parameterized by a set of 

weights w that mapped N neural inputs {nk}, 1 ≤ k ≤ N into EMG predictions {Em}, 1 ≤ m ≤ 

M for each of the M=5 muscles included in our muscle-to-force model. The decoder used 

500ms of neural firing rate history divided into L=10 time bins. Unlike previous our 

implementations, in this case we computed the weights of the linear decoder adaptively, 

using gradient descent; these methods are described in greater detail below. The resulting 

Wiener cascade model is:

Eq. 1

where wm0 is a bias term for muscle m, l is the time lag, nk,t is the firing rate of neuron k at 

time bin t , and wmk,l is the weight that quantifies the effect of the firing activity of neuron k 
at time (t − l) on the EMG signal of muscle m at time (t) . The sigmoidal nonlinearity is:

Ethier et al. Page 5

J Neural Eng. Author manuscript; available in PMC 2017 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Eq. 2

Sigmoid curves are known to provide a good fit to the relation between cortical activation 

and muscle recruitment levels [38]. In addition, a sigmoidal nonlinearity constrains the 

predicted output to the range from 0 to 1. The outputs of the neuron-to-muscle Wiener 

cascade thus corresponded to the normalized amplitude of the predicted muscle activity.

Muscle-to-force model

In clinical applications, the pulling directions and maximal forces of available muscles could 

be obtained empirically for each person. This individual characterization is particularly 

important, given the expected variability due to specific nature of each person’s injury. For 

simplicity, in our monkey experiments we relied on published values of the pulling 

directions for the five major wrist muscles, obtained from electrical stimulation in monkeys 

[39], to develop a generic muscle-to-force model (figure 2(a)). These pulling directions are 

similar those reported for humans with an isometric force device [32]. Considering the 0˚ 

direction to the right (flexion for left hand), with angles increasing counterclockwise, these 

directions were 15˚, 103˚, 128˚, 235˚, and 307˚ for flexor carpi radialis (FCR), extensor carpi 

radialis longus and brevis (ECRl, ECRb), extensor carpi ulnaris (ECU), and flexor carpi 

ulnaris (FCU), respectively (figure 2(a)). We assigned each muscle a maximal force 

magnitude of 15N; a normalized maximal EMG prediction of 1 thus corresponds to a 15N 

force output. These virtual muscle properties ensured that there existed a combination of 

muscle activation to produce each target force (figure 2(b)). In a clinical setting the maximal 

force would be measured empirically by stimulating each muscle. See the discussion for 

more details.

This model is similar in concept to the virtual biomechanical model presented by de Rugy et 

al. to reconstruct force from EMG [1]. The predicted force, F̂, can be determined by adding 

the force vectors of figure 2(a), each scaled by the corresponding predicted EMG, namely:

Eq. 3

where H is the 5x2 matrix of the x and y components of each of the pulling vectors (figure 

2a) that map EMG to force, HT is its 2x5 transpose, and E is a pattern of activation of the 

five muscles. Given this muscle-to-force model, we determined optimal patterns of muscle 

activity for each force target included in the decoder training procedure. We used the 

MATLAB optimization routine fmincon to solve the underdetermined force-to-muscle 

relationship by minimizing a regularized cost function in the M-dimensional space of 

muscle activities E = {Em}, 1 ≤ m ≤ M . Each component of the M -dimensional EMG 

vector E was constrained to the interval between 0 and 1. The cost function C(E) minimizes 

the force error (figure 2(b)) while also minimizing the sum squared EMG activity:
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Eq. 4

Here, C(E) is the cost, E is the M = 5 dimensional vector of normalized EMG amplitudes, 

FT is the target force, and  penalizes large values of EMG. The performance of the 

adaptive decoders discussed below and summarized in figure 3 was insensitive over several 

orders of magnitude to the specific value of the multiplier λ used to infer target EMG 

patterns. We therefore chose to use λ =1 in all experiments with the adaptive decoder 

reported here. The optimal EMG patterns that resulted from solving equation 4 were 

constrained to values between 0 and 1 and then processed through the inverse of the sigmoid 

of equation 2, to obtain target EMG patterns for training the linear stage of the neuron-to-

muscle decoder.

The muscle-to-force model described in equation 3, in combination with the minimization of 

the cost function in equation 4, allowed us to identify optimal EMG patterns for each force 

target that served as a supervisory learning signal in the training of the neuron-to-muscle 

decoder. The muscle-to-force model was also used as a surrogate to FES, to compute the 

force that would be generated by the predicted EMG (figure 3, top of diagram). This 

transformation allowed us to evaluate the accuracy of the adaptive EMG decoder in terms of 

force output.

Adaptive decoder training and evaluation

The training of the weights w that parameterize the decoder was accomplished using 

stochastic gradient descent; weights were updated only once per trial. The optimal EMG 

patterns associated with each target (including a zero EMG activity pattern for the center 

target) were used as the supervisory signal (figure 3, dashed rectangle). In order to improve 

the search and avoid local minima traps, on each trial we added ±5% noise from a uniform 

distribution to the amplitude of each component of the optimal EMG vector. Weights were 

initialized with normally distributed random values with a mean of 0 and a standard 

deviation of 10−4. This range was chosen to approximately match the weight values obtained 

through regression of neural firing rates to actual EMG activity.

It is important to note that the adaptation process used data only from a limited time window 

beginning shortly after the target appearance, when we could reasonably infer that the motor 

intent of the monkey corresponded to the instructed target force (pink rectangles in figure 

1(c)). This “adaptation onset delay” was one of the training parameters that we optimized 

across all datasets. Although the full training datasets included 20 minutes of data each, the 

data actually used for adaptation, limited to the target presentation period shifted by the 

delay, averaged only 4.5±0.5min for the 10 datasets.

The decoder adaptation process was developed offline but designed to be applicable to 

online decoder training. All calculations and decoder updates were causal, and could thus be 

performed in real-time while a subject performs or attempts to perform the task. To this end, 

our approach was to “play back” previously recorded neural and force data. We updated the 
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neuron-to-EMG decoder weights once per trial, according to equation 5. A learning rate η = 

5x10−7 was selected through a systematic parameter search. The equations for the update of 

the weights at each trial follow from using backpropagation through time [40]:

Eq. 5

After training the decoder, we evaluated its performance by testing its predictions on novel 

test data recorded immediately after the data used for training. We computed the mean 

square Euclidean error (MSE) between the actual and predicted two dimensional force 

signals as a measure of accuracy.

Comparison with neuron-to-force decoders

Our adaptive EMG decoder was trained using only knowledge of the force targets. In order 

to better interpret the accuracy of this decoder, we compared its performance to that of 

several other decoders (summarized below in Table 1) that were computed either with or 

without adaptation, and with varying amounts and features of force-related signals. We used 

comparisons to these other decoders to understand the characteristics and limitations of the 

adaptive EMG decoder. One of the decoders used for comparison was an “optimal-force” 

decoder computed between neural activity and actual force measured during the entire 20 

minutes of training data. This decoder is optimal, in the sense that it is the best least-squares 

linear mapping between the high-dimensional neural space and the measured force signal. 

Whether it would also allow a monkey to achieve the best online performance is an 

important empirical question. At the opposite extreme, we computed an “optimal-target” 

decoder using only knowledge of the target force during the same limited segments of data 

used to train the EMG decoder. An intermediate case is that of the “adaptive-force” decoder, 

computed using gradient descent on actual force signals, but only during the restricted 

target-related periods and with the same adaptation rate used for the adaptive EMG decoder.

Data analysis

We used three datasets from each of two monkeys for the offline analysis (K1 to J3; figure 

4(a)). Each of these six datasets included 30 minutes of data divided into 20 minutes for 

training, five minutes for parameter optimization, and five minutes for testing. After training 

the decoders, we evaluated the MSE between actual and predicted testing data. The testing 

data were also used to evaluate the force prediction accuracy of the four different types of 

decoders. Six months later, we conducted four online brain-control sessions with monkey J 

(J4 to J7; figure 4(b)). These sessions involved a 20-minute data segment for decoder 

training and five minutes for offline testing of force predictions. They also included five 

blocks of five minutes each for measuring the monkey’s behavioral performance: one block 

of hand control, two blocks of brain control with the optimal force decoder, and two blocks 

of brain control using the adaptive EMG decoder. These online test sessions used the closer 

Ethier et al. Page 8

J Neural Eng. Author manuscript; available in PMC 2017 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



targets (8N) and shorter hold times (0.2s) indicated in figure 4(b), and the adaptation 

parameters that had been previously optimized offline.

We quantified online behavioral performance using five different metrics: trial time, path 

length, success rate, failure rate, and abort rate. Trial time included the duration of the 

movement starting from outer target onset and including the outer target hold time. The path 

length was the sum of all the Euclidean distances between successive time points along the 

path until the end of the trial; this was computed only for successful trials, abort and failed 

trials were excluded. The success, abort, and failure rates were the number of successful, 

aborted (failure to hold center target), and failed (failure to hold outer target) trials, 

respectively, divided by the total number of trials.

RESULTS

Adaptation parameter search

We systematically varied the adaptation parameters (adaptation onset delay and learning 

rate) while testing the resulting prediction performance in order to determine their optimal 

values across datasets. There was typically a small but consistent peak in performance for 

delays between 500ms and 650ms (figure 5(a)). Longer delays reduced decoder performance 

significantly, presumably because of the reduced amount of available training data. A delay 

of 600ms provided the lowest MSE across all datasets. The decoding performance for 

datasets for which this value was suboptimal was reduced by 15% in the worst case (figure 

5(b)).

We tested learning rates η of 0.625, 1.25, 2.5, 5, 10, 20, and 40 (in multiples of 10−7). The 

learning rates leading to the lowest MSE ranged from 2.5x10−7 to 2x10−6 (figure 5(c)) over 

individual datasets. The single best learning rate across datasets was 5x10−7 (figure 5(d)); as 

for the delay parameter, this value was suboptimal by only 15% in the worst case.

Performance dependence on training duration

Figure 6 shows how the performance of the decoders varied with amounts of training data. 

After two and a half minutes of continuous data (figures 6(a) and 6(b), cyan lines), the 

decoder weights had begun to capture the neuron-to-muscle mapping, and most force bursts 

were predicted in the correct direction. However, these predictions still had very low 

magnitude; the weights had not yet substantially changed from their initial random small 

values, resulting in near zero EMG (and thus force) predictions. After 20 minutes (figures 

6(a) and 6(b), blue lines), the predictions had improved dramatically, matching the actual 

force (figures 6(a) and 6(b), grey lines) both in magnitude and in direction. In this example, 

the MSE of the radial /ulnar deviation force predictions (6.2) was better that of the flexion / 

extension force predictions (11.1).

For most datasets, as in this example, both the adaptive and optimal decoders predicted 

radial/ulnar deviation forces better than flexion/extension forces. Overall, MSE for the 

adaptive decoder averaged 6.9±1.5 and 8.9±1.6 for R/U and F/E, respectively. Two possible 

explanations are that 1) F/E forces may simply be more difficult to predict, or 2) the neural 

data contained more information about R/U. Failure of the decoders to predict forces 
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generated by the long finger flexor and extensor muscles (note the failure to predict the peak 

at 1370 seconds in figure 6(a)) may have contributed to greater errors along this axis. 

However, there was also compelling evidence that the F/E axis was underrepresented in the 

neural recordings.

Figure 7 shows polar histograms of PDs for each monkey superimposed on the average MSE 

of force predictions for each target. The MSE was calculated from 600ms after target onset 

until the end of target hold. The histograms show the number of neural channels having PDs 

within each 18° bin. There were fewer PDs in the flexion direction, in close correspondence 

with the overall spatial pattern of the MSE: the average MSE was higher for targets in 

directions that were poorly represented in the PD distribution. The scarcity of neural 

channels with PDs in the flexion direction provides a plausible explanation for the higher 

accuracy for the prediction of forces in the radial and ulnar directions.

EMG predictions

Figure 8(a) shows predicted EMG amplitude, a quantity equivalent to a rectified and filtered 

EMG signal. The signal predicted for each muscle was strongly modulated in a target-

dependent manner. These signals, when applied to the static muscle model shown in figure 

2, produced the forces shown in figure 6. In clinical use, these signals might serve to control 

stimulation intensity in an FES prosthesis used by a spinal cord injured person. In the 

clinical setting, the muscle model corresponding to that of figure 2 would not be a generic 

one, but one specifically determined for each individual to reflect the force that could 

actually be generated by the stimulation of each muscle.

Figure 8(b) shows the average EMG magnitude predicted for each muscle during 

presentation of all possible targets. The average predictions (thin black lines) roughly match 

the magnitude of the optimal EMG used to train the decoders (thick colored lines). For the 

10 test datasets used in this study, the overall correlation across all targets and all muscles 

between the magnitudes of predicted and optimal EMG was ρ = 0.88 (Spearman rank 

pairwise correlation).

Adaptive decoder performance in offline force predictions

As a benchmark for evaluating the performance of the adaptive EMG decoder, we compared 

it to the performance of several other decoders. These included both fixed and adaptive 

decoders that were trained with differing amounts and types of force-related signals (see 

Methods and Table 1). Figure 9(a) shows the evolution of performance with increasing 

offline adaptation for dataset J7. Prediction error generally decreased as a function of 

training time, with most of the improvement occurring within the first 10 minutes. With 

between 15 and 20 minutes of training data, the performance of all decoders approached a 

plateau, but did not consistently saturate. As anticipated, the force prediction accuracy of the 

“optimal force” decoder, which was computed to directly map neural data into continuously 

recorded force, was significantly better than that of the adaptive EMG decoder (figure 9(a), 

red and blue lines respectively). To understand whether this difference was due to the 

different amount of training data or to the use of adaptive methods, we tested two other 

neuron-to-force decoders. We compared the adaptive EMG decoder to an “optimal target” 
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decoder that was computed without adaptation, using only the instructed target force training 

data that was available to the adaptive EMG decoder. With 20 minutes of behavior data, the 

performance of these two decoders was very similar (figure 9(a), purple and blue lines), 

suggesting that the difference in performance between the optimal force and adaptive EMG 

decoders was not due to the adaptive training. We also tested the effect of the inferred EMG 

error measure by comparing an “adaptive force” decoder trained with actual force signals 

measured during the same target hold periods that were used for the adaptive EMG decoder 

(figure 9(a), green line). The performance of this decoder was no different than that of the 

adaptive EMG decoder. This result suggests that the use of inferred (as opposed to 

measured) EMG for the adaptive EMG decoder was not a significant source of error.

The performance across all datasets was similar to that shown in figure 9(a) for dataset J7, 

with the optimal force decoder significantly better than all others. We conclude that this 

superior performance was due to the much larger amount of force-related data available to 

that decoder. Surprisingly, we found that given 20 minutes of training data, the adaptive 

EMG decoder was slightly, but significantly better than the adaptive force decoder 

(p<0.0005, figure 9(b)). The optimal target decoder was intermediate in performance, not 

substantially different from either the adaptive EMG or the adaptive force decoders.

Adaptive decoder performance during online brain control

In a later set of experiments that took place six months after the last offline dataset was 

recorded, we evaluated monkey J’s ability to perform a center-out task in an online, brain 

control (BC) setting. The data presented in figure 10 illustrate the quality of the control 

achieved during hand control (HC) along with that achieved with both the adaptive EMG 

decoder and the optimal force decoder. Figure 10(a) shows cursor trajectories for all 

successful trials performed during a five-minute block from dataset J6, for each of the three 

conditions. The center-out trajectories were highly stereotypical during HC. The path to 

some targets was consistently curved (e.g., the lower right target), but most paths were 

straight and smooth. The trajectories during the two BC conditions were more variable 

(figure 10(a), middle and right panels). Note that for these three conditions, we reduced the 

distance to the outer targets from 10N to 8N, and the hold time for outer targets from 0.8s to 

0.2s, in contrast to the behavioral parameters used for offline decoder training and testing 

(see Methods).

We quantified performance in these three conditions using five behavior metrics (figure 

10(b)). As expected, performance during HC was better by all measures when compared to 

BC (p<0.001 for all comparisons, paired t-test). Surprisingly, the monkey’s performance 

with the optimal force decoder in terms of trial time and success rate was no better than that 

achieved with the adaptive EMG decoder, despite its poorer offline prediction accuracy 

(figure 9(b)). However, the similar overall performance masked differences in the nature of 

control: cursor movement appeared to be relatively fast and jittery with the optimal decoder, 

while smoother but slower with the adaptive EMG decoder. These qualitative observations 

are reflected in several performance metrics. The higher jitter with the optimal force decoder 

led to a significantly longer path length. The similar trial time despite the shorter path when 

using the adaptive EMG decoder reflects a slower speed. The greater jitter also led to more 
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aborted trials for the optimal force decoder, as it was more difficult for the monkey to hold 

the cursor in the center target for the longer (up to 1 sec) hold time. On the other hand, 

although the effect did not reach statistical significance, the monkey tended to fail more 

often at reaching and holding the outer targets when using the adaptive EMG decoder, 

perhaps because of its lower prediction accuracy.

During BC there was a greater high-frequency jitter, with an amplitude of roughly 1cm, 

riding on a slower, more deliberate cursor trajectory. This jitter appeared to be of smaller 

magnitude when using the adaptive EMG decoder. The difference in jitter magnitude is 

reflected in the force power spectra (figure 10(c)). The force predicted using either decoder 

contained more power in frequencies between 2Hz and 8Hz than did the actual force; this 

effect was larger for the optimal force decoder.

DISCUSSION

Summary

We have demonstrated the ability to make accurate predictions of intended EMG that can be 

used for online brain control, without the need to first measure actual EMGs. The approach 

is similar to that used previously for “observation based” decoders of kinematic information 

[15, 41], but the EMG scenario is more difficult because of the high-dimensional nature of 

the EMG signal from multiple correlated muscles. We made use of the fact that the mapping 

from EMG (or muscle force) to endpoint force is largely preserved across subjects, at least 

for simple, highly constrained contractions like the isometric wrist task used in this study. 

This observation allowed us to use gradient descent to train EMG decoders that minimized 

both EMG error and total muscle activity. An important application of this approach is as a 

controller of functional electrical stimulation (FES) used to restore movement in paralyzed 

individuals. It may also be possible to use predictions like these to provide muscle activation 

inputs to a prosthetic limb controller that emulates the natural musculoskeletal architecture 

and dynamics of an actual limb.

Quality of the EMG predictions and clinical implications

There are many reasons to expect the EMG predictions produced by this adaptive approach 

to be, at best, of modest accuracy. The decoders were trained with limited data. The EMG 

error signal was not measured, but inferred from the instructed target force and a generic 

muscle-to-force model. To resolve the underdetermined nature of the inverse map from force 

to muscle activity, we searched for solutions that minimized total muscle activity. In spite of 

these limitations, both force and EMG predictions were quite good. For force predictions, 

the details of the muscle-to-force model were not critical, since we used the same model not 

only to infer the EMG patterns needed to train the decoder, but also to produce force output 

from the predicted EMG. In a clinical application, the EMG predictions could be used as 

FES commands, as we have done before [29, 30]. In that case, using an accurate model of 

the muscle to force mapping, determined individually for each person (as described below) 

would be important. Here, we chose to develop and validate the adaptation algorithm under 

the simpler scenario of force simulation instead of force production via FES.
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Despite the additional complications related to making EMG (as opposed to force) 

predictions, those too, were quite accurate. The bursts of predicted EMG in figure 8(a) were 

appropriately timed and with at least qualitatively the right target-dependent magnitude. It is 

worth noting that these patterns were not identical for repeated targets (e.g., the 2nd and last 

movements in this example), presumably reflecting the monkey’s varied effort. In spite of 

this variability, the intended target was readily discernable from the overall pattern of 

predicted muscle activity. In summary, the EMG predictions were similar to those observed 

during “natural” movements.

In a clinical setting, the muscles actually available and their response to stimulation will vary 

for any given individual. The muscle-to-force model would thus need to be obtained 

empirically through the process of electrode characterization, which maps each person’s 

muscle-to-force output [42–44]. This will determine the details of the patterns of muscle 

activity for any given endpoint force. A pattern that conforms to the constraints of a 

particular person while minimizing total activation (thereby also minimizing fatigue) is 

clearly optimal. In this respect, our EMG predictions were very successful. Across all data 

sets, their target-dependent magnitude (an example is shown in figure 8(b)) was very close to 

the optimal pattern used in the learning algorithm (figures 2(b) and 3).

The online brain control experiments provided a more direct demonstration of the usability 

of the adaptive EMG decoder than did the accuracy of offline force and EMG prediction. 

The monkey performed well when using the adaptive EMG decoder, in spite of its lower 

offline accuracy than the optimal force decoder. This similar online performance suggests 

that our novel adaptive training approach is clinically viable. However, a similar overall 

performance in terms of simple behavior metrics ignores differences in the quality of 

control: there was more jitter for the optimal force decoder, but larger prediction errors for 

the adaptive EMG decoder. The optimal force decoder is so named because it is the optimal 

linear map between neural activity and endpoint force. However, this decoder may not yield 

optimal online control, as has been noted before [45–48]. Remaining inaccuracies in the 

forward map from M1 to output, alterations in the somatosensory feedback, and the ability 

of the user to correct errors may all cause an “optimal” offline decoder to produce less than 

optimal performance upon transition from hand to brain control. One possibility that is 

relevant to our experiment is the observation that simply adding a low pass filter to improve 

cursor stability despite causing slightly less accurate offline predictions, might have 

improved target acquisition.

What were the limitations of the adaptive decoder?

Even better online performance would presumably have been achieved if the adaptive EMG 

decoder had provided more accurate offline force predictions. In addition to its use of actual 

force signals, the optimal force decoder had access to substantially more data than did the 

adaptive EMG decoder, for which training data was restricted to the limited fraction of time 

that the monkey maintained force within each target. We computed two additional decoders 

in an effort to understand this performance difference, a target-only version of the optimal 

decoder, and an adaptive version of the force decoder. Both alternate decoders performed 

significantly more poorly than the optimal force decoder (figure 9). The similarity between 
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the optimal target and adaptive EMG decoders suggests that the limited information 

available from the target force was a critical factor in limiting their performance. We were 

surprised to find that the accuracy of the adaptive force decoder, which was trained with 

actual force data, did not surpass that of the adaptive EMG decoder. This observation 

supports the use of inferred EMG patterns for decoder training, and highlights the 

importance of the amount of training data.

These observations suggest that further improvements in decoder performance could be 

achieved by providing training data not restricted to the limited target-hold periods. While 

this is technically challenging, it would also address one of the other main limitations: the 

decoder currently has no means to learn the dynamics of the neuron / EMG, relation since it 

is trained during only steady-state force application. Here we assumed that the intended 

levels of EMG activity would be reached at a short delay after target appearance and would 

remain fixed until the end of the target hold. By restricting training data to the static hold 

periods, we were able to use a muscle-to-force model that did not include dynamics. A 

potential way to remove the limitations of this static decoding would be to use a target 

tracking task together with inferred EMGs that vary temporally as well as spatially. While 

this continuous approach could appear more effective at providing larger amounts of training 

data, it also has the added complexity of having to infer optimal EMG patterns under 

dynamic conditions, and may be more prone to failure in matching the motor effort 

consistently.

Performance of all the decoders may have been affected by a non-uniform distribution of 

PDs, which significantly underrepresented flexion direction forces (figure 7). This 

systematic bias in PDs was unexpected. Such a bias could have arisen artifactually, had there 

been a force offset in our device. Since we nulled the force prior to each session, such an 

offset would have to have arisen from a passive mechanical effect as the monkeys inserted 

their hand into the device which biased muscle activation (and M1 activity) toward excess 

extension. Although we cannot completely rule out this possibility, is seems very unlikely 

that it could have been the sole effect, as it would have had to be large, systematic across 

sessions and monkeys, yet undetected by the experimenters.

Similar, though smaller asymmetries have been described earlier [49–51]. There is reason to 

believe that the flexor muscles receive disproportionate input from other sources, including 

the reticular formation [52]. This asymmetry is thought to underlie the characteristic flexor 

tone following stroke [53, 54]. The implications of this apparent disparity for cortical BMIs 

have not been directly investigated.

What is the role of user adaptation?

This study has focused on the development of a decoder adaptation algorithm that can be 

applied to unobserved EMG errors, in an effort to develop a decoder with properties as close 

as possible to those that can be achieved with an optimally trained decoder with access to 

measured EMG from an intact monkey. In principle, this “biomimetic” approach should 

allow the monkey or human subject to generate FES command signals simply by making a 

normal motor effort. In practice, prediction errors will arise and FES commands will not 

exactly match the intended action.
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Fortunately, the user can also adapt and compensate for some of these discrepancies, through 

a motor learning process that is presumably like that of achieving normal reaching 

movements when visual feedback is rotated [55, 56] or when the arm is perturbed by 

predictable forces [57, 58]. Several studies have shown that as brain control performance 

increases, measured by any number of different metrics, the firing rate and spatial tuning 

characteristics of neurons also change. This is true during the initial adaptation to brain 

control, but also in response to spatial distortions of the decoder [2, 6, 11, 59, 60]. One 

experiment in particular, extended the classic visual rotation experiments by rotating the 

effects of 25 or 50% of the neurons in the decoder about a common axis, causing the 

monkeys to make misdirected movements [60]. Accuracy gradually improved over the 

course of single experimental sessions, as the monkeys learned to compensate for the 

distortion. The authors found that in addition to the monkeys’ overall re-aiming strategy, 

there was evidence of “local” learning within the subset of rotated neurons that was greater 

than that of the unrotated neurons.

A more recent experiment investigated whether all such decoder distortions can be learned 

equally well [4]. The answer was very clearly “no”. In this case, the decoder map was 

perturbed within the 90-dimensional space defined by neural activity. Only when the 

perturbation did not disrupt the natural coactivation among neurons (i.e., when it remained 

within the 10D subspace spanned by the activity exhibited by the neural population prior to 

the perturbation), were monkeys able to learn to use the new decoder within a single session. 

A similar effect was observed in an experiment using muscle rather than neural inputs. 

Human subjects were better able to learn distorted maps that nonetheless respected natural 

muscle synergies than those that did not [61].

These results all point to the conclusion that a decoder that reflects the natural patterns of 

coactivation among neurons can be learned much more readily than one that does not. The 

goal of our proposed decoder adaptation is to assure that the adaptation requirements 

imposed on an individual remain feasible, similar to those that allow monkeys to adapt to 

perturbations within a single session. Presumably the more accurate the decoder, the simpler, 

and more intuitive will be the user adaptation. Further performance improvements could be 

achieved through user adaptation, combined with continued decoder adaptation and 

retraining [2, 9, 12, 15].

What needs to be done to make the adaptive decoder clinically viable?

We evaluated the accuracy of force predictions after training decoders with a range of 

training parameters. The use of globally optimal values of these parameters resulted in only 

a very small decrease in prediction accuracy for individual datasets. Finding that a single set 

of training parameters could be used across subjects is important, since a detailed parameter 

optimization process based on the accuracy of force prediction would not be possible with a 

paralyzed person. However, in this study we used only a subset of the muscles that produce 

torque about the wrist, and we used the same subset to develop decoders for both monkeys. 

Another simplifying feature of our study was to arbitrarily assign a maximal force of 15N to 

each muscle. In paralyzed people, a universal muscle-to- force model is likely to be neither 

appropriate nor necessary. The force evocable from each muscle will differ among 
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individuals because of the variable nature of spinal cord injury. Denervation due to 

motoneuron damage at the site of the injury renders muscles essentially nonexcitable 

electrically. Greater levels of hypertonia and muscle spasms in some individuals may also 

make the control of particular muscles and movements more difficult. Although computing 

an accurate muscle model for each person will be necessary, this process is feasible and 

would be very similar to the “grasp patterning” currently used to customize fixed stimulus 

patterns for each person who received the Freehand prosthesis [43].

More critical to the success of our approach is the question of its ability to generalize to 

more complex tasks, such as object grasping and manipulation [33]. Clearly, adaptive 

training using a single muscle-to-force model based on 2D wrist movement cannot be 

expected to generalize to independent finger use. However, we have shown previously that 

isometric wrist EMG predicted with an optimal linear filter decoder generalized better across 

forearm posture than did a decoder similarly trained to predict endpoint force [33]. We have 

made similar observations for reaching movements across different arm postures and 

external loads [62]. If the actual mapping between M1 activity and EMG were linear, an 

EMG decoder trained with a robust data set should generalize well. However, the question of 

this linearity remains to be conclusively demonstrated. In addition, the need for a simple, 

constrained muscle-to-force map from which to infer intended EMG poses a challenge. A 

potential solution is to collect training data while an individual imagines or attempts to 

perform a series of tasks, each with well-defined mechanics: palmar grasp, key grip, and 

precision grip, as well as the wrist task used here. Each device or task must be associated 

with its corresponding muscle-to-force model, determined by stimulating each implanted 

electrode and measuring the corresponding endpoint force for each device or task. A single 

neuron-to-muscle decoder would then be trained using data collected while the person 

imagined activating all the devices, using their jointly derived optimal muscle activation 

pattern.

To the extent that the map from M1 to muscles is well preserved across these various motor 

behaviors, it should be possible to train a single decoder that would function well for a range 

of functionally important motor behaviors. Should the mapping prove to be significantly 

nonlinear, or significantly context dependent, a more complex decoder would be required. In 

principle, a nonlinear or state-dependent decoder could be trained with the same approach, 

although it would undoubtedly require significantly more data. This would be true, however, 

for both a clinically relevant, adaptive decoder, or one computed directly from recorded 

neural activity and EMG under normal movement conditions.

Conclusions

We have shown that an adaptive EMG decoder trained without access to output signals that 

would be unavailable from a paralyzed person performs well for both offline predictions and 

online control. This proof of principle, although for a very simple motor behavior, suggests 

that cortically controlled FES that incorporates an accurate decoder of intended muscle 

activity is a clinically viable application of BMI technology. Rather than use actual muscle 

stimulation, we used a simple model of the relation between muscle activity and endpoint 

force for the online experiments in this study. Exactly the same approach could be used to 

Ethier et al. Page 16

J Neural Eng. Author manuscript; available in PMC 2017 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



control stimulation intensity, as we have done in the past [30]. This will be a critical next 

step in the further development of this method, along with the use of a more robust training 

set to develop decoders that generalize across a wider range of useful motor tasks.
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Figure 1. 
Experimental setup for computing adaptive decoders of EMG activity during production of 

isometric wrist forces. (a) The monkey controlled a cursor on a computer monitor. The 

position of the cursor was a function of the 2D force measured about the monkey’s left 

wrist, as he applied flexion/extension and radial/ulnar deviation isometric forces within a 

padded metal box mounted on a load cell. (b) The monkey performed a center-out task by 

applying the appropriate force to move the cursor to one of eight outer targets uniformly 

distributed around the center. (c) During two time windows in each trial the adaptation 
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algorithm assumed that the monkey’s neural activity corresponded to the motor intent of 

holding the cursor in the center and outer targets, respectively (adapt data, pink rectangles).
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Figure 2. 
Wrist muscle pulling directions and optimal muscle activation patterns. (a) Vectors indicate 

the direction of force exerted by each of the five main wrist muscles modeled in this study: 

Extensor Carpi Radialis longus (ECRl), Extensor Carpi Radialis brevis (ECRb), Extensor 

Carpi Ulnaris (ECU), Flexor Carpi Ulnaris (FCU), Flexor Carpi Radialis (FCR). Derived 

from [1]. (b) Optimal patterns of muscle activity needed to produce a force corresponding to 

each of eight targets using a minimal activation of the muscles shown in (a).
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Figure 3. 
Adaptive EMG decoder structure and the stochastic gradient training process. At the end of 

each trial, the linear decoder weights were modified according to the contribution of each 

neuronal unit to the error in the predicted EMG in comparison to pre-determined optimal 

EMG for the corresponding force target. During the testing phase, the neuron-to-EMG 

decoder weights were fixed, and the EMG predictions were transformed into force 

predictions by a vector sum of the force contribution of each muscle, as determined by the 

muscle-to-force model.
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Figure 4. 
Summary of the 10 datasets used for offline prediction and online control. (a) Three datasets 

from each of two monkeys, each consisting of a total of 30 minutes, divided into training, 

optimization, and test subsets. (b) Four datasets from a single monkey to study brain control 

comprised 25 minutes of hand control for training and offline analyses, and an additional 25 

minutes of center-out behavior, including both hand-control (HC) and alternating five minute 

blocks of brain-control (BC).

Ethier et al. Page 24

J Neural Eng. Author manuscript; available in PMC 2017 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Optimization of decoder adaptation parameters. (a) Mean squared Euclidean error of the 

offline force predictions for each of the six data sets in figure 4(a), as a function of the delay 

between target appearance and the onset of training data sampling. (b) Mean and one 

standard deviation of the results in (a) across all datasets. (c) Individual and (d) mean error 

as a function of the learning rate parameter. The values leading to the minimal overall MSE 

were a delay of 600ms and a learning rate of 5x10e−7.
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Figure 6. 
Improvement in offline force prediction from early to late adaptation. (a) Cyan lines indicate 

predicted flexion / extension force following decoder training with only 2.5 minutes of data 

(34 trials). Blue lines indicate the improved prediction with 20 minutes of data (283 trials); 

they matched the actual force (grey) more closely. (b) Similar results for radial / ulnar 

deviation force predictions. All data are from dataset K3.
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Figure 7. 
Non-uniform distribution of the preferred directions of neural recordings and offline force 

prediction accuracy. Polar histograms (blue) show the total number of neural signals with a 

PD within each of 20 bins dividing the 2D force space, across all datasets for each monkey. 

There was a marked paucity of signals with PDs near the 0° (flexion) axis for both monkeys, 

as well as in the 270–360° quadrant for monkey K. The MSE of the optimal force 

predictions was higher during the presentation of targets falling in these directions (red 

curve).
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Figure 8. 
Accuracy of offline EMG predictions following adaptation. (a) Predicted EMG signals were 

well modulated following each target appearance (gray shaded rectangles) and were 

predictive of the target location (black arrows). This data segment corresponds to the force 

signals in figure 6. (b) During target presentation, the mean EMG magnitudes (thin black 

lines) matched with great accuracy the optimal EMG associated with each target (thick 

colored lines).
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Figure 9. 
Comparison of different decoders performance. (a) Effect of training time on prediction 

accuracy for different types of force decoding approaches (Dataset J7). There was little 

additional improvement beyond 15 minutes. (b) With 20 minutes of training data, the 

optimal force decoder (red) provided the most accurate predictions across all datasets. The 

adaptive EMG approach (blue) led to force prediction accuracy comparable to the “optimal 

target” (purple) and slightly better than the “adaptive force” (green) decoders. Error bars 

represent 2*SEM.
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Figure 10. 
Summary of online cursor control performance with optimal force and adaptive EMG 

decoders. (a) The cursor trajectories during BC conditions (middle and rightmost panels) 

were more jagged than during HC (leftmost panel). (b) Most performance metrics were 

comparable for the adaptive EMG (blue bars) and the optimal force (red bars) decoders, but 

neither was as good as during HC (grey bars). Error bars represent 2*SEM. (c) The main 

reason for these differences appeared to be related to the greater cursor jitter present in the 

optimal force decoder predictions, observable as increased power in the higher frequencies. 

Note that the 2Hz periodic fluctuations in the force power spectra during both BC conditions 

are an artifact of using a 500ms decoder window length.
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Table 1

Summary of EMG and force decoders. In order to assess the effectiveness of the adaptive EMG decoder, we 

compared it to an “optimal force” decoder based on regression between neurons and actual continuous force 

data. In order to identify the impact of limiting the decoder training to short data segments and using a 

gradient descent instead of a regression, we also tested “optimal target” and “adaptive force” decoders.

Decoder name Training method Supervisory signal Data segments used Rationale for testing

Optimal force Regression Actual force Entire dataset (continuous) Provides an upper bound performance level 
for force prediction or control.

Adaptive EMG Gradient descent Inferred EMG patterns Target hold periods
Clinically applicable decoder. Provides 
muscle activation signals based only on 
motor intent without measuring EMG.

Optimal target Regression Target force Target hold periods

Comparison to Adaptive EMG decoder 
revealed little difference between regression 
and adaptation, or inferred EMG rather than 
measured force.

Adaptive force Gradient descent Actual force Target hold periods

Given the minimal effect of adaptation seen 
above, comparison to Optimal Force 
decoder revealed the large effect of using 
limited force training data.
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