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Abstract

Objective—It is quite remarkable that Brain Machine Interfaces (BMIs) can be used to control 

complex movements with fewer than 100 neurons. Success may be due in part to the limited range 

of dynamical conditions under which most BMIs are tested. Achieving high-quality control that 

spans these conditions with a single linear mapping will be more challenging. Even for simple 

reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the 

control signals over time, instead of over the many neurons that normally control movement. This 

forces a compromise between a decoder with dynamics allowing rapid movement and one that 

allows postures to be maintained with little jitter. Our current work presents a method for 

addressing this compromise, which may also generalize to more highly varied dynamical 

situations, including movements with more greatly varying speed.

Approach—We have developed a system that uses two independent Weiner filters as individual 

components in a single decoder, one optimized for movement, and the other for postural control. 

We computed an LDA classifier using the same neural inputs. The classifier combined the outputs 

of the two filters in proportion to the likelihood assigned by the classifier to each state.

Main results—We have performed online experiments with two monkeys using this neural-

classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-

state decoder that switched states automatically based on the cursor’s proximity to a target. The 

performance of both monkeys using the classifier decoder was markedly better than that of the 

single-state decoder and comparable to the proximity decoder.

Significance—We have demonstrated a novel strategy for dealing with the need to make rapid 

movements while also maintaining precise cursor control when approaching and stabilizing within 
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targets. Further gains can undoubtedly be realized by optimizing the performance of the individual 

movement and posture decoders.
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INTRODUCTION

Brain machine interfaces (BMIs) allow individuals to interact with the surrounding 

environment by inferring the user’s intent directly from neural activity. In recent years, 

researchers have successfully demonstrated the viability of BMIs by enabling nonhuman 

primates to control computer cursors, robotic arms, and the activation of their own 

temporarily paralyzed arm muscles via neural activity recorded from the primary motor, 

premotor, or posterior parietal cortices 1–12. Closed-loop control of a computer cursor and a 

simulated or robotic arm have also been achieved using intracortical recordings from the 

primary motor cortex in humans 13–18. Consequently, BMIs represent a promising approach 

to increase the independence of people with paralysis or limb amputation.

Despite their promise, significant barriers to clinical adoption of BMIs remain. One such 

limitation is the inability of most BMIs to decode both rapid movements and stable 

postures 12, 15. There are well over 105 axons in the cortical spinal tract that project to each 

arm. Even the simplest of normal limb movements involves the activity of a large fraction of 

these axons. It is remarkable then, that anything approaching normal movement is possible 

with a BMI, given that current interfaces sample three orders of magnitude fewer signals 

than this. One consequence of this severe under-sampling is that the spatial averaging that 

normally occurs across many individually noisy channels is dramatically reduced. As a 

consequence, in order to achieve adequate accuracy and stability, it is necessary to average 

instead across time, thereby reducing system responsiveness along with noise. Adjusting the 

length of this sampling period to achieve an optimal tradeoff between accuracy and 

responsiveness achieved a several-fold improvement in overall information rate in an online, 

target classification task 19.

As an alternative to avoid the tradeoff between responsiveness and accuracy, we sought to 

distinguish periods in which the monkey was attempting rapid arm movements from those in 

which it was attempting to maintain a desired arm posture. We computed two independent 

multiple-input, multiple-output Wiener filters: one trained on data collected during 

movement periods, and one trained during postural periods as the monkey approached and 

stabilized within targets. We combined the output of these two filters to create a single 

decoder linking the recorded cortical activity to the control of a cursor moving on a 2D 

display. The two outputs were combined either on the basis of proximity of the controlled 

cursor to a specified target (the “proximity” decoder), or on the basis of the output of a linear 

classifier that was trained to differentiate the two states using the same neural recordings that 

were used to decode intended movements (the “classifier” decoder; figure 1). We compared 

the performance of these dual-state decoders to that of a standard, single-state decoder 

during online, brain-controlled cursor-movement tasks. Both of the dual-state decoders 
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resulted in dramatically better overall task performance and improved the ability to stabilize 

the cursor during target acquisition. The small difference in performance between the two 

versions of the dual-state decoder was very encouraging, given that the proximity decoder 

required knowledge of target location.

METHODS

Experimental design

To test the dual-state decoding approach, we conducted experiments involving two adult 

Rhesus monkeys (monkey C – male; monkey M – female). All procedures were approved by 

the Northwestern University Institutional Animal Care and Use Committee and were 

consistent with the Guide for the Care and Use of Laboratory Animals. The monkeys were 

seated in a primate chair facing a computer monitor and trained to acquire targets displayed 

on a 20 × 20 cm workspace by moving the handle of a two-degree-of-freedom 

manipulandum that controlled the position of a 1-cm diameter cursor with a 1:1 mapping 

between handle movement in the horizontal plane and cursor movement in the vertical plane. 

The monkeys performed a random target (RT) task, which presented randomly positioned 

1.5 × 1.5 cm (2.5 × 2.5 cm for monkey C) square targets and required holding the cursor 

within each target for a minimum of 0.8 s (1.0 s; monkey C) in order to complete a trial and 

receive a liquid reward. The monkey was given a time limit of 10 s to acquire each target in 

order to avoid failing the trial. If the cursor entered the target and then exited, the 10 s timer 

was restarted to allow re-acquisition of the target. There was a 1.5 s interval between the end 

of one trial and the beginning of the next one.

Following an initial training period, we implanted a microelectrode array consisting of 100 

silicon probes of 1.5mm length in a 10 × 10 grid (Blackrock Microsystems) in the primary 

motor cortex (M1) of each monkey, contralateral to the arm used in training (monkey C – 

right hemisphere; monkey M – left hemisphere). These experiments were conducted two and 

four years after the implant for monkeys M and C, respectively. We used a 96-channel data 

acquisition system (Plexon, Inc) to store the time stamp and waveform shape of threshold-

crossing spikes, and the position of the handle at 1-ms intervals. Thresholds were initially set 

at a value of −4.5 times the standard deviation of the signal on each channel, and manually 

adjusted in cases where single or multi-unit waveforms were clearly distinguishable from 

background noise to maximize waveform capture and reduce noise. We computed average 

spike rate and kinematic parameters in 50-ms bins prior to any other processing.

Cursor position was updated at a rate of 20 Hz in all real-time brain control experiments by 

integrating two-dimensional velocity estimates produced by the decoder. We also used a 

high-pass filter with a cutoff frequency of 0.003 Hz on the decoder output, prior to the 

integrator, to eliminate slow drifts. The monkeys used three different types of decoders: a 

single-state linear decoder, a dual-state decoder that switched states based on a neural 

classifier (the “classifier” decoder), and a dual-state decoder that switched states based on 

the proximity of the cursor to the target (the “proximity” decoder).

On day zero of a week-long series of experiments, we recorded kinematic and neural data 

for a period of 20 minutes while the monkey reached with the manipulandum to acquire 
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targets. After day zero, we removed the manipulandum and the monkey used brain control, 

driving cursor movement with decoded neural activity that was discriminated in real-time. 

The monkey acquired targets for 20 minutes (10 minutes in the case of monkey C) via brain-

controlled cursor movements with the proximity decoder. We used these data to train the 

LDA classifier, in an effort to minimize differences in brain state that would otherwise occur 

between hand and brain control. Beginning on day two, the monkey performed alternating 

10–20 minute blocks of target acquisition via brain-controlled cursor movements using the 

single-state decoder, the proximity decoder, and the classifier decoder in random order.

Decoder and classifier calculation

Each decoder comprised either one or two multiple-input Wiener filters 20 that calculated 

two-dimensional cursor velocity as a weighted linear combination of the most recent 0.5-s 

firing history of neurons. We subsampled the velocity and firing rates into 50 ms bins. To 

build the single-state decoder, we trained a single filter on all available day-zero data as the 

monkeys performed the task under hand control with the manipulandum. To build the dual-

state decoders, we sorted the training data into posture and movement epochs based on the 

monkey’s hand speed. We concatenated data points corresponding to speeds less than 8 cm/s 

to form a posture dataset and formed a movement dataset from all remaining data. This 

speed threshold resulted in optimal decoding as described below. We trained separate Wiener 

filters on the two datasets. The output of the decoders (cursor velocity, v) were combined to 

produce a single velocity command:

where vm and vp were the outputs of the movement and posture filters respectively, and Pm 

and Pp the portion of control assigned to each (described further below).

The proximity decoder used the movement filter when the cursor was far from the target and 

transitioned to the posture filter as the cursor approached the target. Specifically, Pm and Pp 

were based on the distance between the cursor and target centers, such that the dominant 

filter switched as the cursor came within either 2cm (monkey M) or 4cm (monkey C) of the 

center of a target, according to the following equations:

where r is the distance between the center of the cursor and the target, r0 = 2 (or 4) cm, and 

λ = 4 (selected empirically to provide a smooth but brief transition between decoders). The 

larger 4 cm switching radius gave monkey C more time to decelerate from his relatively fast 

movement speed and helped to compensate for his otherwise poorer performance.

The classifier decoder combined the outputs of the movement and posture filters in a similar 

manner, based on the output of an LDA classifier. The classifier was trained on data 

recorded during closed-loop brain control with the proximity decoder. As ground truth, all 
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data points where r > r0 were assigned to the movement state, while data points where r ≤ r0 

were assigned the posture state. We calculated the LDA weighting matrix (W) according to:

where Σ is the covariance of the observations from the training sets and μm and μp, the mean 

observation vectors for the movement and posture states, respectively. Calculating the dot 

product of this weighting matrix with a given observation (a set of neural firing rates at a 

given point in time, x) allows the observation to be reduced to a scalar value. A typical LDA 

classifier would compare the result (W • x) with a threshold (k), in order to classify the 

observation as movement or posture state. Instead, we used this dot product as the input to a 

logistic function in order to calculate Pm and Pp as follows:

Again, we chose λ = 4 in order to yield smooth, but brief transitions between decoders. 

Because changes in the neural input (e.g. lost or added neurons) might bias the output of the 

classifier, we adjusted a time-varying threshold (kt) continuously using a delta rule, to 

achieve a distribution of 70% posture and 30% movement. This distribution corresponded 

approximately to the time each monkey spent in the posture and movement states during 

hand control. We adjusted the threshold as follows:

where knew is the threshold to be used in the next classifier calculation, kold is the threshold 

from the previous classification, α is the adaptation rate, in our case 0.01, and  is the 

running average of the classifier output over the past 200 data points. The desired probability 

of the movement state was 0.3, corresponding to that of the natural hand movement 

statistics.

Offline analysis of classifier and decoder performance

We selected a threshold of 8 cm/s to separate posture and movement states based on 

previous offline experiments 21. In those experiments we built LDA classifiers and 

movement and posture filters using a range of thresholds. We used test data recorded later in 

the session to predict hand velocity and calculated the fraction of the variance in cursor 

velocity accounted for by the predictions (VAF). We selected the threshold (8 cm/s) that 

resulted in the greatest VAF for the current study.

We tested the accuracy of the neural LDA classifier using N-fold cross validation 22 on data 

recorded when the monkey performed the RT task under hand control. We separated training 

data into posture and movement states based on the 8cm/s speed threshold and compared the 

output of a standard LDA classifier to ground truth based on the 8cm/s threshold to 

determine the percentage of correctly classified and misclassified data points.
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We quantified the accuracy of the decoders by computing VAF for the X and Y components 

of the velocity predictions during hand control on day zero, and reported the mean and 95% 

confidence intervals across cross-validation folds. We also characterized the difference in 

gain of the single-state decoder and that of the movement and posture filters of the dual-state 

decoders by computing the speed predicted for a representative dataset obtained when each 

monkey was using the classifier decoder. To compute the gain of the single-state decoder 

and the two dual-state filters we found the average speed in one-minute blocks across the 

entire data set, rather than dividing the data into posture and movement components.

Quantification of behavioral parameters during online performance

We computed several different metrics to quantify the monkeys’ behavioral performance, 

each expressed as a mean and 95% confidence interval across one-minute blocks. As an 

overall measure of success, we counted the number of targets acquired per minute. We 

computed two metrics designed to quantify the reaching portion of each trial: mean peak 

speed for reaches longer than 3 cm (measured in a window from −0.5 to 0.5 s around the 

peak) and the ”time to first touch”, defined as the time between the target appearance and the 

time the cursor first entered the target. We also computed two metrics to measure the 

monkeys’ ability to acquire targets: “dial in time”, the time from the first target touch to the 

time of reward, minus the required hold time, and “target entries”, the number of entries per 

trial before final target acquisition. Finally, to characterize the state-switching behavior of 

the dual-state decoders, we computed “time to posture state”, the time from the beginning of 

a trial until Pp exceeded 0.5. For this metric, we ignored those trials in which the monkeys 

started and remained in the posture state throughout the entire trial. The peak speed analysis 

included every trial in which the cursor touched the target at least once. All the other 

analyses included only successful trials.

RESULTS

Function of the dual-state decoders

In monkey M we used signals from 49 electrodes that had movement-related single or multi-

unit activity. The mean fraction of variance accounted for (VAF) during hand control on day 

zero of each week using the single-state decoder was 0.66±0.01 and 0.69±0.03 for X and Y 

velocity, respectively. For monkey C, we used only 31 electrodes. The smaller number of 

active electrodes for this monkey was a consequence of the much longer time since the array 

had been implanted and was the likely cause of somewhat lower VAF, 0.40±0.03 and 

0.38±0.03 for X and Y velocity, respectively.

We compared the online performance of monkeys M and C using all three decoders in 10–20 

minute blocks across 12 and 4 experimental sessions respectively. Monkey M performed the 

RT task using the classifier decoder in 22 blocks, the proximity decoder in 12 blocks, and 

the single-state decoder in 24 blocks. Monkey C performed the task with each decoding 

method four times. Figure 2 illustrates a representative trajectory as monkey M intercepted a 

series of four targets using the classifier decoder. The initial movement, beginning at the 

blue square, went rapidly toward the first target. The small green circles along the path 

indicate that the decoder was in the movement state, and their 50 ms spacing indicates that 
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the speed of movement was approximately 20 cm/s. The monkey missed the target by 

several cm, requiring a small corrective movement. After the corrective movement, the 

decoder switched to the posture state (red circles), and the speed dropped abruptly. The 

monkey made a single target entry before achieving the required target hold time. The 

decoder switched to the movement state and the cursor accelerated rapidly toward the next 

target, this time, switching states roughly halfway between the targets. Close inspection 

reveals a few dots near each transition with colors between red and green, but generally the 

state transitions happened very quickly and as we quantify in more detail later (figure 8), the 

control state remained predominantly either fully in either the posture or movement state. 

The monkey made the final, shortest movement, almost entirely in the postural state. In this 

respect, it is important to note that the postural decoder did not actually lock the current 

position, but simply changed the dynamics of the decoder. Two video clips showing a 

continuous series of representative movements executed by both monkeys using the single-

state and classifier decoders are included in the supplementary materials (Movie - Monkey 

M.mp4 and Movie - Monkey C.mp4).

We quantified the monkeys’ performance with a number of different metrics, including the 

overall success rate, the speed of movement, the time to first target contact and final success, 

and the number of target entries prior to a successful target acquisition. The RT task allowed 

the monkeys to increase their reward rate by increasing the number of targets they acquired 

in a given amount of time. Because of this, the monkeys were motivated to move between 

targets as quickly as possible, making the reward rate a good measure of the quality of each 

decoder. The small (1.5 cm) targets used in the example in figure 2 were very difficult for 

the monkey to acquire with the single-state decoder. With the single-state decoder, monkey 

M achieved a success rate across all sessions of only 3.5 ± 0.3 targets / minute (figure 3). 

However, using either of the dual-state decoders, the success rate increased roughly 4-fold. 

Using the classifier decoder, the monkey performed only slightly less well than with the 

proximity decoder, achieving 12.8±0.6 and 15.7±1.0 targets/minute respectively. Monkey C 

had a better success rate with the single-state decoder than did monkey M (5.8±0.6 targets / 

minute), but this was undoubtedly due to the 67% larger targets we used for this monkey, 

which provided less of a challenge. The larger targets were necessitated by the poorer 

performance when monkey C was tested with the smaller targets, very likely a consequence 

of the low quality of the control signals due to the smaller number of channels with neural 

activity. Both dual-state decoders provided a two-fold improvement in success rate, and were 

not different from each other (11.0±0.3 and 11.1±0.4 targets / minute, respectively).

Source of the performance advantage of the dual-state decoders

The higher success rate might be explained by some combination of faster reaching speed 

and less time spent trying to stabilize the cursor within the target. We looked at several 

related metrics in order to understand their impact on the monkeys’ overall success rate. 

Surprisingly, figure 4 indicates that the time to the first target touch (gray bars) for the 

single- and dual-state decoders did not differ significantly for monkey M, but was 

marginally significant (t-test; p=0.04) for monkey C. Likewise, the time to the first transition 

was the same across dual-state decoders for both monkeys. On the other hand, dial-in time 

(the time between first touch and final (successful) target entry; white bars), was 
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dramatically reduced by both dual-state decoders. For monkey M, both dual-state decoders 

were similar, reducing dial-in time by approximately 85%. Because of the very large number 

of trials, the difference between the two dual-state decoders was also significant (t-test, 

p=0.003). For monkey C the proximity decoder was slightly more effective, but the classifier 

decoder also reduced dial-in time by 80%. This difference was highly significant (t-test; 

Monkey C, p~0).

These timing results don’t provide much insight into the cause of the increased dial-in time 

with the single-state decoder. One possibility is that the monkeys tended to overshoot the 

target and take a long time to return, while another is that they repeatedly entered the target, 

but were unable to hold the cursor in place for the required period of time. To address this 

question, we computed the total number of target entries prior to the successful hold (figure 

5(a,b)). The cumulative histograms show the proportion of trials achieved with a given 

number of entries. Both monkeys required at least four or five entries for success in 50% of 

trials with the single-state decoder, but only a single entry with either of the dual-state 

decoders. Twenty percent of trials were unsuccessful even after 10 entries with the single-

state decoder. This shows that the stability provided by the postural decoder made a 

tremendous difference in the monkeys’ ability to enter and hold the cursor steadily within 

the targets.

We also calculated the speed profiles, aligned to peak speed and averaged across all 

movements longer than 3 cm (figure 5(c,d)). There was relatively little difference in peak 

speed between the decoders for monkey M (17±0.4, 21±0.4, and 25±0.6 cm/s, for the single-

state, classifier, and proximity decoders, respectively), but considerably larger differences 

for monkey C. Peak reaching speeds with both dual-state decoders were 50% faster than 

with the single-state decoder (27±1.0, 49±1.9, 53±2.0; single-state, classifier, and proximity, 

respectively). Figure 5 also reveals that the shape of the speed profile differed for both 

monkeys, being significantly more peaked for the dual-state decoders than for the single-

state ones. The shape corresponds to greater acceleration on either side of peak speed for the 

dual-state decoders. These observations, and the fact that the time to target did not differ 

across decoders, suggests that the monkeys were able to reach higher peak speeds during 

movement, yet reduce that speed upon approaching the target in order to maintain greater 

control.

Behavioral characteristics of the classifier decoder

Figure 2 illustrated several representative transitions in speed that occurred when the 

classifier decoder switched states. Some of this acceleration would have occurred with the 

single-state decoder, by virtue of the monkeys’ efforts to speed up or slow down, but an 

additional component was due to the different dynamics of the movement and posture filters. 

To test the magnitude of the latter component, we passed neural data collected while the 

monkey used the classifier decoder through three different filters: that of the single-state 

decoder and the posture and movement filters that made up the dual-state decoders. We 

calculated the resulting average speed for each (figure 6). As expected given the evidence of 

much greater cursor stability, the posture filter output a lower average speed than both the 

single-state and the movement filters for both monkeys. For monkey C, the average speed of 
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the movement filter was a bit more than twice that of the single-state decoder, but they did 

not differ significantly for monkey M. These latter results are roughly consistent with the 

difference in peak speeds shown in figure 5.

The proximity decoder consistently outperformed the classifier decoder when the two 

differed. However, the great majority of the performance differences between the two were 

quite small or insignificant. On the other hand, the proximity decoder has the major 

disadvantage that it requires knowledge of target locations. The random target task had only 

a single possible target at a time. In more realistic conditions with multiple possible targets, 

the proximity decoder cursor may well have been “trapped” as it passed by an incorrect 

target. The classifier decoder attempts to address these limitations by accurately selecting 

whether the monkey was trying to make fast or slow movements.

To test classification accuracy we acquired data while the monkeys performed the random 

target task under regular “hand” control. We compared the cross-validated output of the 

classifier to the actual movement state. Figure 7(a) shows the histogram of movement speeds 

occurring in a single session for monkey M, representing the ground truth against which we 

compared the classifier output. Panel b shows a scatter plot of the classifier output as a 

function of movement speed, while panel c shows the distribution of classifier outputs color 

coded by the ground truth state. The yellow region indicates overlap between posture (red) 

and movement (green) states. Misclassifications occurred in this area of overlap, represented 

by movement states appearing above the threshold line and posture states below it. These are 

further summarized for both monkeys by the confusion matrices in 8d. Overall 90% of data 

points were classified correctly for monkey M and 84% for monkey C.

The neural classifier determined the movement state rather accurately, but control was not 

actually effected as a simple binary switch between the movement and posture filters. Rather 

we mixed the output of both filters in proportion to the likelihood of each state. In principle, 

a monkey could have consistently used a mixture of the two filters if that provided better 

control. In practice, the classifier typically settled rapidly into one of the two states with high 

confidence. Figure 8 shows the distribution of these classifier state weights. Roughly 70% of 

the time both monkeys were in either the posture or movement state. Not surprisingly, they 

were in the posture state about three times more than in movement. Monkey M spent slightly 

more time in the movement state than did monkey C. In addition to the monkey’s behavior, 

the distribution for the neural classifier decoder was driven by the continuously varied 

threshold that set the transition point, as well as the steepness of the sigmoid function that 

mixed the two outputs. On the other hand, the proximity states were dependent on the 

distance-from-target parameter, which we hand-tuned to achieve approximately optimal 

behavioral performance for each monkey.

Comparison of posture and movement filters and firing rate changes

Figure 6 indicates that the overall gain of the movement filters was much higher than that of 

the posture filters for both monkeys. However, that analysis provided no indication of the 

contribution of individual neural inputs to the two filters. We computed the ratio, k, of the 

mean magnitude of the weights of the movement filter divided by the posture filter for 
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individual electrodes where: . Ki was significantly correlated across 

electrodes for both monkeys, although the correlation for monkey M was much stronger (R2 

= 0.5; p~0) than for monkey C (R2 = 0.15; p = 0.031) (Figure 9). The average ratio between 

the movement and posture decoder weights was 6 and 13 for the two monkeys, respectively. 

The larger ratio for monkey C corresponds to the greater average speed ratio for monkey C 

(Figure 6), and the high slope may account, in part, for the relatively low R2.

We also estimated the effective direction of each input to the decoder, and how it changed 

between the posture and movement filters. We computed  using the 

average of the weights across the 10 lags for each input, i. For monkey M, the average angle 

between the two directions for the posture and movement filters was 64°. For monkey C that 

number was 53°. To place these numbers in perspective, we did a similar analysis of the 

angles between pairs of same-state filters, using either movement or posture data. 

Consequently, we were able to use only half the data available for the original decoders. For 

monkey M, the mean angle between the two posture filters was 28°, and 41° between the 

movement filters. For monkey C those numbers were 18° and 17° respectively. The much 

larger angles between across-state filters (KS test, all comparisons < 10−5), suggests that the 

directional information captured from the cortical recordings was encoded differently for the 

two different speed ranges.

Finally, we examined the change in firing rates measured on individual electrodes during the 

movement and posture phases of both hand and brain control. Under all conditions, firing 

rates during the movement phase were higher than posture, but not markedly so. For monkey 

M, the mean rate was about 20% higher during movement, and about 30% higher for 

monkey C. During brain control, these increases were somewhat greater, 25% and 31% for 

the classifier and proximity dual-state decoders for monkey M, 65% and 32% for monkey C 

(Figure S1). For comparison, the ratio of mean speeds during the movement and posture 

states of hand control was much higher, 12.6 and 11.1 for monkeys M and C, respectively. 

Under all conditions, the electrodes’ average discharge rates across movement and posture 

were highly correlated, with R2 ranging from 0.86 to 0.95.

DISCUSSION

The small number of neurons used for control in existing BMIs works remarkably well for 

movements made in a relatively limited range of dynamical conditions. Broadening this 

range will be one of the challenges facing higher performance, more clinically relevant 

BMIs. We have introduced a novel state-dependent decoder that deals both with potentially 

nonlinear mappings from firing rate to movement kinematics, as well as the stochastic noise 

in neurons by detecting the monkey’s intent to make either a rapid movement or to stabilize 

within a target, and optimizes its dynamics accordingly. This same principle might well be 

extended to other dynamical conditions.

The overall performance of the two monkeys that used this decoder increased by two to four 

fold compared to a standard, single-state decoder. The performance gains were the result of 

the dual-state decoder’s ability to adjust its gain to allow greater or lesser speed in 

accordance with the requirements of each phase of the task, generating rapid movements 
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toward a target and slower, more controlled movements with less noise when entering and 

holding within a target. The classifier version of the dual-state decoder was only slightly less 

effective than a similar decoder that changed state simply based on the cursor’s proximity to 

known targets.

Strategies to optimize target acquisition

Algorithms that provide continuous cursor control based on neural activity often have 

difficulty allowing both rapid movement toward and stabilization within the target, making 

rapid target selection during BMI tasks difficult. One approach to improve the speed of 

target selection is to decode the target itself, rather than a movement trajectory 19, 23. This 

method has proven capable of providing rapid selections from a predefined target array, but 

cannot generalize well to novel targets. High-level movement goals have also been decoded 

from neurons recorded from the posterior parietal cortex of monkeys 23 and more recently, a 

person with tetraplegia 24. In addition to the potential to serve as a communication interface, 

such spatial goals can be used as endpoint goals for a robotic limb. Although it would 

remove some level of control from the user, such computed trajectories could presumably be 

directed smoothly and accurately toward the selected target.

The slightly better performance of our proximity-based dual-state decoder comes with the 

caveat that it too, requires a priori knowledge of target locations. The neural-classifier 

decoder has the advantage that the use of the posture filter need not be limited to targets, but 

could be applied in any situation requiring extra precision or stability. Potential examples 

include navigating around an obstacle or generating a detailed trajectory such as when 

writing one’s name.

Another approach to this problem, which combined classification and continuous control, 

was designed to imitate the “point and click” approach to navigating a computer screen with 

a mouse. In this case, people with tetraplegia learned to control 2D cursor movement 

through a Fisher discriminant analysis that classified the neural activity into “click” and 

movement states 15. In the movement state, cursor movement was controlled with a Kalman 

filter, and target selection required a click to be detected when the cursor overlapped a target.

At least two groups have exploited the idea of combining classification and continuous 

control to discriminate between periods of rest and active movement. Unlike our approach, 

this strategy was intended primarily to improve the dynamics of a movement decoder and to 

reduce noise and unwanted movements between trials 25, 26. In neither case, was there a 

reason to expect improvement in the ability to make small controlled adjustments near 

targets. A related approach, philosophically similar to ours, involved a “speed-dampening 

Kalman filter” (SDKF) that automatically slowed the cursor in a graded fashion with the 

increasing magnitude of angular velocity that is typical of terminal movement corrections 27. 

SDKF led to a 70% improvement in success rate, which was achieved, as in our study, 

without any change in movement time. The larger improvement in our study may have been 

partially due to the even greater reduction in speed that it afforded, as well as the longer hold 

times required in our study. In some sense the SDKF algorithm recapitulates the two-thirds 

power law relating speed and curvature, which accurately describes a wide range of 

biological motion 28. It is interesting to speculate whether this may afford a particularly 
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natural user interface. SDKF has the additional clear advantage of simplicity, in that it would 

not require any additional decoder or classifier stage. A drawback of the approach is that 

movements aimed accurately at the target will gain relatively little advantage. It will be 

important to test the SDKF approach in a random target task like ours that has highly curved 

trajectories. While the dual-state approach might well be extended to other dynamically 

varied states, it is less obvious how SDKF might be extended.

Knowledge of target location has also been used to improve trajectory prediction both in 

simulation 29, 30 and during real-time control 5, 31, 32. These approaches use probabilistic 

mixtures of continuous trajectory models to combine the benefits of discrete target 

identification with the desire to provide some level of continuous control to the user. While 

these mixture models have produced substantial gains in reach speed and accuracy they do 

not explicitly solve the target-hold problem. It would be interesting to test the performance 

gains that would result by combining this multiple-trajectory decoding approach with our 

movement and posture decoder.

Consequences and implications of the differential representation of movement and 
posture

Studies of both human psychophysics 33–35 and single unit recordings 36, 37 have provided 

evidence that the motor system may represent posture and movement differently. If the 

motor system switches between posture and movement control states during physical 

movements, it may be quite natural for users to switch between multiple filters that are 

specifically designed to match the normal dynamics of posture and movement. However, 

firing rates for both monkeys were highly correlated between the movement and posture 

states under hand control and both dual-state decoders. Interestingly though, the directional 

contributions of individual neurons differed significantly between the two filter states. Thus 

while we found no compelling evidence for two discrete populations of neurons, the 

possibility that a single population of neurons is engaged differently to control these two 

different motor states remains open.

Although firing rates were strongly correlated across the two states, the slope of this relation 

was not nearly as extreme as was the ratio of mean speed across the two conditions. The 

extent to which speed is well represented in M1 is subject to some debate, but it may well be 

secondary to reach direction 27, 38, 39. Whether this apparent difference in the representation 

of the magnitude and direction of velocity by M1 might actually reflect a more complex 

representation of movement dynamics is another open question, and an important 

consideration in the design of higher performance BMIs 40. In any case, this marked 

nonlinearity in kinematic representation helps to explain the dramatic improvement in 

performance obtained with the dual-state decoders in the current study.

One might suspect that constantly switching decoder filters mid-trial, as we have done, 

would hinder the monkey’s ability to learn either one well 3. Other models that switch 

decoding strategies mid-trial have been used to predict movement trajectories from offline 

data, but have not been tested for online control 25, 31, 41, 42. There is some evidence that 

decoders that are adapted slowly, giving the subject more time to learn the altered structure, 

yield better performance than rapidly adapted decoders 43, 44. Ganguly and Carmena showed 
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that decoder consistency was only necessary during learning. After learning decoders with 

differing structure, monkeys could switch between them on successive trials 3.

These observations argue for maintaining as much consistency as possible in the decoder 

structure to reduce the learning burden. In our case, we did nothing to ensure that the 

movement and posture filters had similar structure. The primary difference between filters 

was their gain: greatest for the movement filter, lowest for the posture filter, with the single-

state decoder filter intermediate. There may also have been greater low-pass filtering by the 

posture filter, but we did not analyze this quantitatively. We might thus have accomplished 

the same end result by simply modifying the gain and filtering characteristics of a single-

state decoder to generate appropriate movement and posture dynamics while otherwise 

maintaining as much similarity as possible. However, while the magnitude of the 

contribution of each input was correlated across the two different filters, there were 

significant differences in the directional tuning of the filter weights. It is tempting to 

consider this as evidence the brain might encode movement direction differently at different 

movement speeds. It is worth considering that this apparent difference in kinematic coding 

might actually represent different force or muscle activation requirements needed for 

movement and postural control 36, 45–47. In either case, rapid switching between separately 

tuned decoder filters might provide more natural control.

Optimization of system performance

Providing the monkey with a decoder that allowed different dynamics during reaching and 

target stabilization resulted in dramatically improved online cursor control. However, it may 

be possible to improve performance further by optimizing several aspects of the decoder. 

Online implementation of BMIs is complicated by the fact that neurons typically change 

their firing behavior upon transition from hand control to brain control 3, 848. It has now 

become common to retrain or adapt decoder weights during online control as a mean of 

improving BMI performance, by periodically recomputing the decoder during brain control 

based on the target direction that the user presumably intended despite any decoder 

prediction errors 8, 10, 13, 17, 43, 49, 50. The “recalibrated feedback intention–trained Kalman 

filter” 12 also set cursor velocity to zero whenever the cursor was within a target to further 

reflect the user’s intent to maintain a stable posture. Furthermore, as it is well known that 

M1 discharge contains position as well as velocity information 51–53, ReFIT-KF attempted to 

account for the position component, which would otherwise appear as noise to the velocity 

decoder. Monkeys using this decoder achieved dramatically better performance than with a 

simple Kalman velocity filter.

In some sense, our approach was philosophically similar, in that we used a simple classifier 

to infer whether the monkey’s motor intent was more closely related to either movement or 

posture and accounted for the two modes separately. Furthermore, we trained the classifier 

using data collected during brain control as the monkey used the proximity decoder, rather 

than during hand control. We did not, however, “recalibrate” the individual filters of the 

dual-state decoders using brain-control data. When the cursor is very close to (or within) the 

target, the inferred direction of intended hand movement becomes increasingly noisy. While 

this ambiguity is also present in hand control, the decreased cursor stability of brain control 

Sachs et al. Page 13

J Neural Eng. Author manuscript; available in PMC 2017 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exacerbates the situation. Other approaches (including ReFIT) have dealt with this by 

discarding directional information and regressing velocity to zero under this condition. The 

extent to which the additional uncertainty of intent estimation would offset any advantage of 

recalibration is unclear, but warrants further investigation.

The distribution of movement and posture states and the nature of the transition between the 

associated filters may also be subject to improvement. We based the 70/30 mix on statistics 

derived from these monkey’s hand control performance. The implicit assumption that that 

the hand-control ratio would remain optimal under brain control may well not be true. 

Furthermore, different behaviors (e.g., ones that stress accuracy as opposed to speed) might 

well have different optimal ratios. In order to improve the extent to which this approach 

would generalize, it will be important to include a mechanism to learn this ratio, as well as 

to weight this prior expectation component based on movement statistics against the 

likelihood information derived from neural recordings. This general principle might well be 

expanded from the simple dual-state controller that we have implemented to a multi-state 

controller that recognizes rest states (see, e.g., 26), exertion of isometric interaction forces, or 

other dynamically varied states.

We mixed the output of the two filters using a logistic function, the parameters of which we 

selected empirically. The goal was to have the cursor be driven primarily by a single filter at 

any given time (see figure 8) without the dynamics changing abruptly as the cursor was 

about to enter a target as might have happened by simply switching between binary states. 

Alternatively, we could have adjusted λ to more closely match the continuous distribution of 

state estimates from the classifier, or eliminate the sigmoid altogether and simply weight the 

two filters based on the classifier output. Either approach would likely have resulted in more 

gradual transitions than the method we adopted.

CONCLUSION

In order to address the tradeoff between the ability to move rapidly and to stabilize easily 

within targets, we separated these two control functions into movement and posture 

components of a single, dual-state decoder. The dramatic performance improvements that 

we achieved appeared to result primarily from the monkeys’ improved ability to stabilize 

quickly within targets. While the reach itself had a different speed profile that may have 

influenced target acquisition, it did not appear to be nearly as important as the effect of the 

independent posture filter. Improving the speed and accuracy of the reach itself by using a 

Kalman filter and closed-loop, online decoder calibration methods could lead to 

performance more nearly rivaling that of hand control.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Design of the neural-classifier, dual-state decoder. Firing rates from primary motor cortex 

were used to predict intended cursor velocity using two different decoding filters, one 

computed assuming the monkey intended to make a reaching movement, the other that the 

monkey intended to stabilize the cursor. We used a classifier that ran in parallel to compute 

the proportion of control assigned to both the movement (PM) and the posture (1-PM) filters. 

A threshold, kt, was continuously adapted in order to keep the ratio of movement and 

posture states near their normal distribution during hand control. The final velocity 

command was the weighted combination of the velocity and posture components. This 

summed command was integrated, to control the cursor position.
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Figure 2. 
Example trace of a sequence of trials performed by monkey M using the neural-classifier, 

dual-state decoder. Squares represent sequential targets, beginning with the blue target. Dots 

along the black trace are separated by 50 ms. The color of the dots represents the classified 

state, which varied continuously from red for posture, to green for movement. Note the rapid 

transitions between the two states.
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Figure 3. 
Overall tracking performance for each of the three decoding methods. Performance was 

gauged by the number of successful trials per minute (mean ± 95% confidence bounds). 

Both monkeys had much higher success rates using both dual-state decoders than the 

standard, single-state decoder. Monkey M (red) performed slightly better using the 

proximity-based decoder than the neural-classifier decoder, but monkey C (blue) performed 

equally well with both.
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Figure 4. 
Average time to target acquisition. Filled bars show the average time between go cue and 

first target touch. Open bars show the mean dial-in time (the time between first target entry 

and the final (successful) target entry). The total height of the bars shows the time from go 

cue to target acquisition (without the hold period). Error bars represent the 95% confidence 

interval of the mean. For the dual-state decoders, dashed lines represent the average time 

when the classifier output first switched to the posture state in a given trial. Shorter times 

mean better performance.
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Figure 5. 
Target stability and reach speed. (a), Cumulative histogram of the number of target entries 

per trial for monkey M for all decoding methods. The monkey acquired 80% of the targets 

with at most 2 target entries with both dual-state decoders, but fewer than 30% with single-

state decoder. (b), same as (a), for monkey C. (c), average cursor speed profile for all 

movements longer than 3 cm for monkey M. Traces aligned to time of maximum speed. 

Proximity-based decoder allowed for the fastest movements, followed by neural-classifier 

and single-state decoders. (d), same as (c), for monkey C.
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Figure 6. 
Mean speed for different decoders computed offline from data acquired during both posture 

and movement. Symbols show mean speed (± 95% confidence bounds) for the single-state 

decoder, and the posture and movement components of the dual-state decoders. Monkey M 

(red) and monkey C (blue).
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Figure 7. 
Offline performance of neural state classifier. (a), histogram shows the distribution of 

movement speeds during a single session of hand control for monkey M. Movements with 

speeds faster and slower than 8 cm/s were defined as movement and posture states, 

respectively. (b), scatter plot showing the dot product between the classifier weighting 

matrix and neural observations (W • x) on the vertical axis and the actual hand speed on the 

horizontal axis. Points in the pink quadrant were correctly classified as posture, those in the 

green quadrant as movement. Remaining points in gray quadrants were misclassified. (c), 

histogram shows distribution of classified points (red and green bars), including overlap 

(yellow bars). (d), confusion matrices with average classification performance for both 

monkeys. Pink and green denote correct classifications; gray, incorrect.
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Figure 8. 
Distribution of classifier outputs. The output of the classifier was bimodal, with about 70% 

of the data points falling at either end of the classifier range. Both monkeys spent half of the 

time fully in the posture state, and between 10 and 20% of the time in the movement state.
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Figure 9. 
Comparison of movement and posture decoder weights. Each point is the magnitude of the 

mean movement filter weight compared to the posture filter weight for a single electrode 

(input to the decoder; ki). This gain ratio largely explains the difference in speed for the two 

components of the dual-state decoders.
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