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Abstract

Background—Epidemiologists have long used case–control and related study designs to 

enhance variability of response and information available to estimate exposure–disease 

associations. Less has been done for longitudinal data.

Methods—We discuss an epidemiological study design and analysis approach for longitudinal 

binary response data. We seek to gain statistical efficiency by over–sampling relatively informative 

subjects for inclusion into the sample. In this methodological demonstration, we develop this 

concept by sampling repeatedly from an existing cohort study to estimate the relationship of 

chronic obstructive pulmonary disease to past–year smoking in a panel of baseline smokers. To 

account for over–sampling, we describe a sequential offsetted regressions approach for valid 

inferences in this setting.

Results—Targeted sampling can lead to increased statistical efficiency when combined with 

sequential offsetted regressions. Efficiency gains are degraded with increased prevalence of the 

disease response variable, with decreased association between the sampling variable and the 

response, and with other design and analysis parameters, providing guidance to those wishing to 

use these types of designs in the future.

Conclusions—These designs hold promise for efficient use of resources in longitudinal cohort 

studies.
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INTRODUCTION

Study designs using enhanced sampling to detect associations are ubiquitous in 

epidemiological research. The case–control study [1, 2, 3] is a very commonly applied 

design, and from its principle of enriching the sample with increased response (and possibly 

exposure) variability, many other efficient designs have emerged, including the nested case–

control design [4], the case–cohort design [5], the case–crossover design [6, 7], and various 

two–phase designs [8, 9, 10].

We discuss a class of enhanced sampling study designs for longitudinal, binary response 

data wherein subjects are sampled prospectively with probability depending on an auxiliary 

variable measured at screening (or baseline) that is related to the longitudinal response. 

Sampled subjects are then followed over time. Even though the auxiliary sampling variable 

is not of interest for analyses, due to its relationship with the outcome, sampling based on it 

can improve efficiency and precision by increasing the event rate in the sample. A 

supporting aim is to describe and illustrate methods of data analysis tailored to these study 

designs.

To support this methodologic demonstration, we exploit an existing cohort, as subset of 

participant from the Lung Health Study, on the natural history of cardiovascular disease in 

smokers, and consider the hypothetical scenario wherein complete data are available on only 

a subset of needed variables measured at baseline. Then, a targeted subsample of participants 

from the parent cohort is drawn and referred for assessment on the entire panel of variables 

needed for analysis.

As an illustrative example, suppose that the aim of our study is to estimate the effect of 

current (past year) smoking on a time–varying chronic obstructive pulmonary disease 

(COPD) diagnosis. We consider the absence of COPD according to a standard clinical 

definition and, for illustrative purposes, severe COPD, to be defined later. Because the Lung 

Health Study participants tended to have mild COPD, both binary outcomes under study 

(COPD absence and severe COPD) are somewhat rare in the Lung Health Study cohort. This 

is important because, analogous to case–control studies, our designs provide the greatest 

benefits in precision when outcomes are rare.

In a scientifically ideal setting, individuals would be assigned to smoking or non–smoking 

status each year through a structured random process controlled by the investigator, as 

subjects were followed over time. Assuming participants adhered to their assigned smoking 

status, such a design would yield unambiguous estimates of the causal effect of smoking. 

Because this is of course not possible, we exploit available covariates to control confounding 

to the extent possible in an observational study. In particular, we adjust for 1–year lag of 
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current smoking to account for time–dependent confounding between respiratory symptoms 

and current smoking, as well as other potential time–varying and time–invariant confounders 

described later in the paper.

METHODS

The Lung Health Study: Participants and Measures

The Lung Health Study [11, 12] is a 10–center randomized clinical trial on smokers with 

mild COPD. Lung Health Study protocols were approved by the institutional review boards 

at each clinical center and participants were enrolled after written informed consent was 

obtained. The trial was designed to test the efficacy of a smoking intervention program and 

the use of an inhaled bronchodilator to slow the rate of pulmonary decline over time. Data 

from the first five annual clinic visits in Lung Health Study are available at the National 

Center for Biotechnology Information database of genotypes and phenotypes ([13]; 

accession number phs000335.v2.p2; https://www.ncbi.nlm.nih.gov/gap). Links to 

instructions for downloading data are provided in the eAppendix.

Table 1 summarizes the Lung Health Study data after modest data cleaning. The original 

dataset contained N = 4391 subjects, and after cleaning, N = 4213 (96%) remain. Among 

those excluded, 78 died during follow–up. The rest were removed due to lack of available 

spirometry data. Whereas we recognize that bias could arise with these exclusion criteria, we 

felt the impact would be minimal, particularly for purposes of the present methodological 

investigation.

We consider a hypothetical study that seeks to estimate the effect of past–year smoking on 

current COPD, a longitudinal binary response realized at each of five annual clinic visits, 

defined for illustrative purposes in two different ways. In the Lung Health Study, spirometry 

was conducted during the screening visit and at all annual follow–up visits. A clinical 

diagnosis of COPD is realized if the ratio of post–bronchodilator forced expiratory volume 

in the first second of exhalation (FEV 1) to forced vital capacity (FV C) is less than 0.7; as 

such we define COPD absence as occurring when FEV 1/FVC ≥ 0.7. COPD is absent in 

approximately 21% of subjects at the screening visit and 23% of subjects at the first follow–

up visit (Table 1). This is a standard definition for absence of COPD (e.g., see http://

www.goldcopd.org). A second outcome, generated for methodological demonstration 

purposes to be rare, was severe COPD, defined at each visit as having FEV 1/FVC < 0.57. 

Severe COPD occurs in 11% of subjects at the screening visit and 12% of subjects at the 

first follow–up visit. Whereas this is not a standard definition of severe COPD, it provides a 

useful platform for illustrating the impact of prevalence on the efficiency of our design.

Risk factors for COPD available in the Lung Health Study database and used in analyses 

include (Table 1): gender, age, years of education, height, weight, and lifetime smoking 

status (in pack years) were collected at baseline. We use years of education as a surrogate for 

socioeconomic status. Through a short annual survey, dust exposure at work, asthma 

symptoms during the previous year, and chronic bronchitis are assessed in each wave. In 

annual clinic visits, current smoking is assessed via a cotinine test. Even though asthma and 

chronic bronchitis were measured over time, for purposes of a stratified design discussed 
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later, we assume they are time–fixed and only use their values measured at the first follow–

up visit.

Subsampling from the Cohort

Although Lung Health Study data are available on N = 4213 subjects, for methodological 

demonstration, we consider a hypothetical but realistic scenario wherein resources limit 

sampling to only n = 800 participants from the baseline sample for longitudinal follow up. 

Sampling may be simple random sampling of n = 800. However, with either of the two 

COPD endpoints, the response prevalence at any wave is fairly small, limiting information in 

the resulting data set.

To address this limitation, sampling may be enhanced by basing it on an auxiliary variable 

measured at or before baseline that is related to the COPD endpoints over time (auxiliary 

variable sampling). Here, we define auxiliary sampling variables to be the binary indicators 

of COPD absence (FEV 1/FVC ≥ 0.7) or of severe COPD (FEV 1/FVC < 0.57) at screening. 

In our particular implementation of auxiliary variable sampling, our goal was to sample 

approximately equal numbers of high– and low–risk subjects. For COPD–absence, we 

sampled independently from 896 high–risk subjects (i.e., COPD–absence at screening) with 

probability 400/896 = 0.45 and from 3317 low–risk subjects (with COPD at screening) with 

probability 400/3317 = 0.12. For the rarer, severe COPD outcome, we sampled high–risk 

participants with probability 400/445 = 0.90 and low–risk participants with probability 

400/3768 = 0.11. Two key features of auxiliary variable sampling are: (i) investigator–

specified sampling probabilities and (ii) oversampling of “high risk” subjects for whom the 

auxiliary variable equals 1. This oversampling serves to increase the observed response 

prevalence across waves, thereby enriching information in the sample for quantifying 

associations with risk factors of interest.

Sampling which also depends on a key covariate, usually rare, can additionally increase 

statistical efficiency for the coefficient of that covariate or its correlates. We conducted such 

an exposure and auxiliary variable sampling design using four strata defined by baseline 

COPD (either absence or severe) and baseline asthma. We sampled with probability 1.0 all 

subjects with asthma, and allocated the remainder of sampled subjects equally between those 

with and without baseline COPD absence or severe COPD, and without asthma at baseline 

(Table 2).

Statistical Analysis

Regardless of sampling design, the n = 800 sampled participants will each yield up to five 

annual waves of data, with the dichotomous time–varying endpoint Yij being either COPD 

absence or severe COPD for participant i at visit j. Under a random sampling design, 

analysis proceeds using a population average logistic regression model across the five visits, 

estimated with generalized estimating equations (GEE) [14]. In this model, the set of 

predictors includes the time–varying current smoking indicator—the exposure of interest; 

time–varying adjustors included to control confounding, including 1–year lag of current 

smoking; and time–invariant baseline variables, also included to control confounding; 
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complete model specification is in Table 3. Note that, because all participants are smokers at 

baseline, the 1–year lagged value of current smoking is 1 at wave 1 for all participants.

Importantly, all analyses used a GEE working independence covariance structure due to the 

likely violation of the full covariate conditional mean assumption [15, 16], wherein the 

cross–sectional model of interest, namely COPD prevalence at time j as a function of 

baseline predictors and predictors also measured at visit j (plus lagged smoking) does not 

equal the full covariate conditional prevalence, namely COPD prevalence as a function of 

predictors measured at all visit times and taken as an ensemble. This is also referred to as a 

‘no–interference’ assumption in the causal inference literature.

Under auxiliary variable sampling, some minimal notation is required to formalize the 

design and analysis. These study designs rely on an auxiliary variable—in this case, 

screening COPD absence or severe COPD—upon which sampling is based. Denote this 

variable Zi. Typically, Zi = 1 will indicate a high risk (for Yij = 1) stratum, and Zi = 0 a low–

risk stratum. While not of direct scientific interest, if well chosen, Zi will be highly related to 

Yij for all j, thereby yielding enriched response prevalence (and variability), and more 

efficient study designs. Formally, we sample individuals with investigator–specified 

probability π(Zi). When the outcome is rare, π(1) will be high compared to π(0).

In addition to measuring and sampling based on Zi, in some cases we also sample based an 

additional time–invariant exposure (predictor) variable Vi available at baseline. Such an 

exposure and auxiliary variable sampling design can further improve efficiency when Vi is 

rare, by increasing exposure prevalence and, thereby, (co)variability between Yij and Vi. 

Formally, we sample from four strata (0, 0), (0, 1), (1, 0), (1, 1) with probabilities π(Zi, Vi). 

In most cases, π(0, 0) is low, π(1, 1) is high, and π(1, 0) and π(0, 1) depend on the relative 

prevalence of Zi and Vi. In our methodological demonstration, we implemented such a 

strategy, letting Vi indicate baseline asthma, and sampling to achieve equal numbers of 

subjects in the other strata defined jointly by asthma and either COPD absence or severe 

COPD (Table 2).

Analysis approach 1: Sequential offsetted regressions—Sequential offsetted 

regressions ([17]) is an analysis procedure for the designs proposed in this paper. We refer 

interested readers to the eAppendix and to Schildcrout and Rathouz for details [17]. Briefly, 

with sequential offsetted regressions, we conduct two offsetted logistic regressions to 

estimate parameters of scientific interest. The first, auxiliary variable regression, captures the 

relationship of auxiliary variable Zi to observed endpoint and predictor data (Yij,Xij). The 

second logistic regression is for the question of scientific interest. It is corrected for the 

biased auxiliary variable sampling or exposure and auxiliary variable sampling sampling 

design.

To understand the first logistic regression, let Si = 1 (or 0) indicate whether the ith 

participant in the parent cohort is (is not) sampled for longitudinal follow–up. Then, note 

from Bayes’ Theorem that
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(1)

where the last factor is free of (Yij,Xij) because sampling only depends on Zi. The lefthand 

side is the disease odds model for Zi under the auxiliary variable sampling sample, while the 

first factor on the righthand side is the corresponding disease odds model in the population, 

i.e., the true model for Zi. It is also true that the last factor is known by design to the 

investigator and is equal to π(1)/π(0). Because equivalence (1) is in terms of the odds, a 

population logistic regression (i.e., log odds) model for the association of Zi to (Yij,Xij) will 

result in a sample logistic regression model of the same form, with the addition of log{π(1)/

π(0)} as an offset term. Schildcrout and Rathouz [17] provide the extension to the case 

where sampling is also based on a stratifying covariate Vi. Sequential offsetted regressions is 

implemented in a Stata and R packages (available for download from http://

biostat.mc.vanderbilt.edu/wiki/Main/ODSandLDA), wherein specifying log{π(1)/π(0)} = 0 

yields standard GEE.

In our hypothetical auxiliary variable sampling study, we specified the auxiliary model to 

include the disease response Yij, and all the same predictors Xij as in the model of interest 

(see Table 3). Additionally, because of the potential for a weakening relationship of Yij to 

screening Zi with increasing j, we included the interaction between Yij and annual visit 

number (study year).

Once Pr(Zi = 1|Yij,Xij) is known and available, it can be combined with Pr(Si = 1|Zi) (which 

equals Pr(Si = 1|Zi, Yij,Xij)) to obtain Pr(Si = 1|Yij,Xij). This in turn is used to compute

for every observation in the data set.

The second logistic regression follows the same pattern as the first one, but this one is aimed 

at the scientific question of interest in the population. Specifically,

(2)

Again, in (2), because both the sample and the population model are in terms of the disease 

odds, a logistic regression model for disease Yij in the sample can be specified in terms of 

the same logistic regression model in the population, with the addition of log{B(Xij)} as an 

offset term. In our work, we have estimated this model using GEE with independence 
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correlation structure, although under certain conditions, an alternative correlation structure 

such as exchangeable or AR(1) is allowed and could further increase statistical efficiency.

Analysis approach 2: Inverse probability weighting—Inverse probability weighting 

(IPW) is commonly applied when samples are intentionally (by design) or unintentionally 

(missing data) not representative of the source population [18, 19]. An alternative to 

sequential offsetted regressions, IPW is implemented by weighting each subject i (or, 

equivalently each observation) by the known value 1/π(Zi, Vi) to approximate the population 

represented by the original Lung Health Study cohort, and estimating the population model 

using GEE, again with an independence correlation structure. Whereas IPW is easier to 

implement than sequential offsetted regressions, in these designs, as we shall see, it can 

result in marked loss of statistical efficiency.

Comparative Analyses

Our primary analysis is of the Lung Health Study data generated under our hypothetical 

auxiliary variable sampling design, and analyzed using sequential offsetted regressions. As 

our primary aim is to demonstrate the strength and features of this methodology “on 

average,” we replicate the process (using auxiliary variable sampling to sample from the full 

cohort and using sequential offsetted regressions for analysis of sampled data) 250 times and 

average the results. We compare the results to those obtained from the full cohort of N = 

4213, and, additionally from those obtained under a random sampling design and under the 

auxiliary variable sampling design analyzed with IPW. Specifically, for each replicate, each 

participant is either sampled with probability 800/4213 for the random sampling design, or 

with auxiliary variable sampling probabilities given in the Subsampling from the Cohort 
subsection. On average, each sample includes n = 800 participants.

Design features within auxiliary variable sampling—Whereas auxiliary variable 

sampling can be a powerful method for increasing statistical efficiency while controlling 

expenditure of research resources, there are several key features of any auxiliary variable 

sampling design which can impact efficiency, some of which may be under control of the 

investigator, and all of which should be given careful consideration. We quantify these 

effects, using the actual Lung Health Study data [20], to explore three data and two design 

and analysis features. Similar to sensitivity analysis, for each feature studied, we perturb that 

single feature of the original data/design/analysis, leaving the rest intact, to evaluate the 

impact on results.

The three data features we study are: 1) overall prevalence of the response Pr(Yij = 1), which 

we alter by changing the cut–point that defines COPD–free and severe COPD outcomes, 2) 

strength of the relationship between Zi and Yi1, i.e. OR(Yi1 | Zi), which we alter by 

perturbing the original Zi values, and 3) correlation among repeated measurements within 

each subject r(Yij, Yik), which we alter by regenerating Yi2, … Yini using a fully parametric, 

marginalized model [21, 22, 23] estimated from the full cohort. Additionally, we examine 

the impact of using a more saturated auxiliary model for Pr(Zi = 1|Yij,Xij) which includes 

not only Yij and all predictors in Xij but also all two–way interactions between Yij and each 

predictor. Finally, we consider an exposure (Vi) and auxiliary variable (Zi) sampling plan 
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(sampling with probability π(Zi, Vi)), where Vi indicates asthma as a key predictor at 

baseline.

We use the inverse of sampling variance to quantify statistical efficiency. That is, the larger 

the sampling variance, the lower the efficiency. As such, we define relative variance (RV) as 

the ratio of average estimated variances,

Values greater than one are consistent with efficiency gains in auxiliary variable sampling 

with sequential offsetted regressions compared to random sampling. We also note that the 

estimators of the sampling variances are consistent for the true sampling variances [17], 

capturing components of variability due both to sampling the full cohort from the reference 

population, and to subsampling from the full cohort. To put efficiency gains of the design 

into context, 800 of the 4213 subjects from the Lung Health Study are randomly sampled 

under the random sampling design. Thus the efficiency of the full cohort analysis to the 

random sampling design analysis is 4123/800 = 5.26. As a final note, we conducted a 

distinct study wherein n = 500 (not 800) participants were sampled. The values of RV were 

qualitatively similar (see eAppendix).

RESULTS

In Table 3, we display logistic regression parameter and standard error estimates from full 

cohort analyses and average logistic regression parameter estimates and average estimated 

standard errors across 250 replicates from the auxiliary variable sampling and random 

sampling design–based analyses. As noted above, these standard error estimates capture all 

components of sampling variability. Focusing first on full cohort analyses for both 

outcomes, we can see (Table 3) that nearly all independent variables were associated with 

outcomes, and as expected, estimates have the opposite sign for the two outcomes. Overall, 

COPD is more severe in current smokers than in non–smokers, even accounting for past 

smoking, as measured jointly by all three of pack years at baseline, cigarette per day at 

baseline, and one–year lag of current smoking. The odds ratio for COPD–free and for severe 

COPD for smokers versus non–smokers is an estimated exp(−.33) = 0.72 and exp(0.34) = 

1.41, respectively. Additionally, even allowing for variations in smoking, COPD is 

increasing over time: The estimated per year odds ratios of being COPD–free and for severe 

COPD are exp(−0.14) = 0.87 and exp(0.19) = 1.21, respectively.

Examining results from the random sampling and auxiliary variable sampling designs, we 

observe the following: First, for the most part, point estimates appear to be similar across the 

various design and analysis procedures, implying that these procedures reproduced the full 

cohort results quite well, on average. As expected, random sampling estimates are very 

similar to those from the full cohort. Auxiliary variable sampling with sequential offsetted 

regressions and auxiliary variable sampling with inverse probability weighting vary a bit 

more from the full cohort, but almost always by less than a half of a standard error. Second, 
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random sampling and auxiliary variable sampling with inverse probability weighting 

produce similar average standard error estimates across replicates. Third, auxiliary variable 

sampling with sequential offsetted regressions produces lower average standard error 

estimates than the random sampling design and auxiliary variable sampling with inverse 

probability weighting. Finally, the increases in efficiency due to the auxiliary variable 

sampling with sequential offsetted regressions are more pronounced in the rarer, severe 

COPD outcome analysis, as compared to the COPD–free outcome analysis.

Design features within auxiliary variable sampling

First, we focus on the COPD–free results (Figure 1). In the original Lung Health Study data 

analysis, denoted with black diamonds in all panels, we used a cutoff of FEV1/FVC ≥ 0.70 

to define COPD–absence, resulting in Pr(Yij = 1) = 0.20, OR(Yi1 | Zi) ~ 16.4, and r(Yij, Yik) 

~ 0.59. Relative variance (RV), reflecting relative efficiency, ranged from 1.09 (study year) 

to 1.46 (asthma) across all regression parameters, indicating 9 to 46 percent more subjects 

are required under a random sampling design to obtain the same precision we obtain with 

auxiliary variable sampling with sequential offsetted regressions. Response prevalence had a 

dramatic impact on RV (panel A). With cutoffs for FEV1/FVC equal to 0.70 and 0.72, the 

overall prevalence of COPD–absence was 0.20 and 0.10, respectively. With lower prevalence 

(in grey), the efficiency of the design increased dramatically. Though the RV for the study 

year coefficient was only 1.09, the RV exceeded 1.82 for all other estimates.

In panels B and C, we reduced the strength of the Zi ~ Yi1 relationship and the response 

correlation, respectively. In both cases, lower relative variances resulted, and in such 

circumstances, one would question the usefulness of the design. Whereas we observed 

similar patterns for the severe COPD model (Figure 2), RV s were higher due to lower 

response prevalence.

To fully understand circumstances under which the designs may be useful, we examined two 

additional features for their impact on RV : 1) the richness of the specification of the 

intermediate, auxiliary variable model, Pr(Zi = 1 | Yij,Xij) used in sequential offsetted 

regressions analyses, and 2) the use of an exposure and auxiliary variable sampling design 

that creates sampling strata not only based on Zi but also on a time–fixed, baseline exposure 

Vi (Panels D and E of Figures 1 and 2).

In panels D of Figures 1 and 2, we show the impact that auxiliary variable model choice can 

have on RV. For the original analysis (labeled “not saturated”), our auxiliary model included 

response Yij, all predictors Xij in the model of interest, and the multiplicative interaction Yij 

× study yearij. For a more conservative approach, labeled “saturated”, we included the 

interaction between Yij and all terms in Xij. The saturated auxiliary model reduced 

efficiency gains for all parameters except those associated with study year. That is, by 

unnecessarily estimating many covariate interactions with Yij in the auxiliary model, RV s 

dropped substantially. Though the auxiliary model must be correct to ensure valid parameter 

inferences, it is reasonable to expect it to be relatively simple, because Yij should be most 

strongly related to Zi.
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In panels E of Figures 1 and 2, we show the impact that further sampling stratification can 

have on efficiency. In the original analysis, two sampling strata were defined by Zi. In panel 

E, because asthma is very rare (Table 1), we consider a strategy to gain further efficiency on 

the parameter associated with presence (Vij = 1) or absence (Vij = 0) of asthma at baseline. 

By enriching the sample with those with asthma, we observed enormous efficiency gains 

even compared to the original auxiliary variable sampling design, e.g., for the asthma 

parameter in figure 2, compare 1.63 under auxiliary variable sampling to 4.02 under 

exposure and auxiliary variable sampling. We also notice that, due to its association with 

asthma, the exposure and auxiliary variable sampling design was far more efficient for the 

chronic bronchitis parameter, where the RV jumped from 1.82 under auxiliary variable 

sampling to 2.44 under exposure and auxiliary variable sampling. Predictors weakly 

associated with baseline asthma (Vi) were not strongly affected by stratifying on Vi.

DISCUSSION

In this paper, we have picked up on the classic epidemiologic notion of sampling based on 

disease events, and shown one family of extensions to analysis of longitudinal or clustered 

data. Our main aims were, first, to focus on study design, and second, to treat data analysis 

methods as supporting methodologies to these new and more efficient study designs. 

Therefore, we have not gone into depth on the technical details around estimation and 

inference. Finally, we focused on longitudinal data but the ideas could be easily adapted to 

clustered data.

For this new family of study designs, we have demonstrated a method of analysis based on 

population average logistic regression models which we call sequential offsetted regressions. 

In the context of a hypothetical study based on a real cohort, we showed that strategic 

sampling based on an auxiliary variable related to the binary response series, together with 

sequential offsetted regressions, yields increased statistical efficiency relative to random 

sampling, and that sequential offsetted regressions can be more statistically efficient than 

standard IPW. Using the auxiliary variable sampling with sequential offsetted regressions, 

we demonstrated sensitivity of resulting statistical efficiency to specification parameters of 

the design and analysis. It is worth noting that in the process of conducting sequential 

offsetted regressions we estimated Pr(Si = 1|Yij,Xij). Weights based on this estimate, or 

associated stabilized weights [24, 25, 26], could also be used in IPW–based analyses. 

Though standard error calculations are difficult, bootstrap–based estimators can be used.

Our objective was to describe a class of designs that extend from the case–control sampling 

principle to the longitudinal response data setting. It is difficult to be comprehensive and 

variations of these and other designs will arise according to study–specific constraints. 

Methodologically oriented biostatisticians will be interested in developing analysis methods 

for such designs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Relative Variance across 250 replicates as a function of data features for the chronic 

obstructive pulmonary disease–free outcome: We show  for a 

number of data features. Black diamonds denote the analyses presented in Table 3 and grey 

diamonds show the result of perturbing one data, analysis or design feature. Panels show the 

impact on relative variance of response prevalence (A), strength of the Z ~ Y relationship 

(B), amount of response dependence (C), richness of the auxiliary variable model for Z (D), 

and asthma exposure and auxiliary variable sampling (E).
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Figure 2. 
Relative Variance across 250 replicates as a function of data features for the severe chronic 

obstructive pulmonary disease outcome: We show  for a 

number of data features. Black diamonds denote the analyses presented in Table 3 and grey 

diamonds show the result of perturbing one data, analysis or design feature. Panels show the 

impact on relative variance of response prevalence (A), strength of the Z ~ Y relationship 

(B), amount of response dependence (C), richness of the auxiliary variable model for Z (D), 

and asthma exposure and auxiliary variable sampling (E).
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Table 2

Exposure and auxiliary variable sampling probabilities based on chronic obstructive pulmonary disease and 

asthma at baseline in the Lung Health Study cohort.

COPD–Free

Asthma Yes No

Yes 17/17 = 1 97/97 = 1

No 343/924 = 0.37 343/3175 = 0.11

Severe COPD

Asthma Yes No

Yes 23/23 = 1 91/91 = 1

No 343/502 = 0.68 343/3597 = 0.095
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Table 3

Results from Lung Health Study data analyses: full cohort (FC) analyses and auxiliary variable sampling and 

random sampling results averaged across 250 replicates. RS=random sampling, AVS=auxiliary variable 

sampling, SOR=sequential offsetted regressions, and IPW=inverse probability weighting with (known–by–

design) weights 1/π(Zi)). We show logistic regression parameter estimates and standard errors (in parentheses) 

for the FC, and we show their average parameter and standard error estimates across 250 replicates for the RS 

and AVS designs. Models also included 9 dummy variables to adjust for differences across the 10 centers. For 

all analyses, GEE with a working independence correlation model was used.

Covariate FC random sampling AVS:SOR AVS:IPW

COPD–Free analysis

Time–varying covariates

Current Smoker −0.33 (0.06) −0.34 (0.13) −0.29 (0.11) −0.34 (0.13)

Current Smoker (lag) −0.35 (0.05) −0.36 (0.11) −0.37 (0.10) −0.35 (0.11)

Study Year −0.14 (0.01) −0.15 (0.02) −0.15 (0.02) −0.14 (0.03)

Dust −0.16 (0.06) −0.16 (0.15) −0.18 (0.13) −0.15 (0.15)

Time–fixed covariates

Female (vs male) 0.28 (0.08) 0.27 (0.18) 0.27 (0.15) 0.29 (0.17)

Baseline Age (per 10–year change) −0.68 (0.06) −0.68 (0.14) −0.71 (0.12) −0.70 (0.14)

Pack years (per 20–pack year change) −0.09 (0.05) −0.09 (0.12) −0.07 (0.10) −0.09 (0.12)

Cigarettes/day (per 10–cigs/day change) −0.07 (0.03) −0.07 (0.07) −0.07 (0.06) −0.07 (0.07)

Education (per 4–year change) 0.01 (0.05) 0.02 (0.12) 0.03 (0.10) 0.01 (0.12)

Baseline BMI (per 5 – kg/m2 change) 0.23 (0.04) 0.24 (0.10) 0.19 (0.09) 0.24 (0.10)

Chronic bronchitis −0.22 (0.18) −0.24 (0.43) −0.43 (0.36) −0.24 (0.41)

Asthma −0.67 (0.25) −0.74 (0.60) −0.62 (0.50) −0.70 (0.55)

Severe COPD analysis

Time–varying covariates

Current Smoker 0.34 (0.07) 0.36 (0.15) 0.35 (0.11) 0.34 (0.15)

Current Smoker (lag) 0.36 (0.06) 0.37 (0.13) 0.37 (0.09) 0.37 (0.14)

Study Year 0.19 (0.01) 0.19 (0.02) 0.18 (0.03) 0.20 (0.03)

Dust 0.04 (0.07) 0.04 (0.17) −0.03 (0.13) 0.05 (0.17)

Time–fixed covariates

Female (vs male) −0.24 (0.09) −0.26 (0.21) −0.22 (0.16) −0.26 (0.21)

Baseline Age (per 10–year change) 0.69 (0.07) 0.72 (0.16) 0.69 (0.12) 0.71 (0.16)

Pack years (per 20–pack year change) 0.11 (0.05) 0.12 (0.11) 0.12 (0.09) 0.12 (0.11)

Cigarettes/day (per 10–cigs/day change) 0.04 (0.03) 0.04 (0.07) 0.01 (0.06) 0.03 (0.07)

Education (per 4–year change) −0.11 (0.06) −0.12 (0.13) −0.07 (0.10) −0.11 (0.13)

Baseline BMI (per 5 – kg/m2 change) −0.33 (0.06) −0.34 (0.13) −0.35 (0.10) −0.35 (0.14)

Chronic bronchitis 0.08 (0.18) 0.08 (0.44) 0.10 (0.33) 0.11 (0.42)

Asthma 0.80 (0.22) 0.77 (0.52) 0.68 (0.41) 0.82 (0.49)
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