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Abstract

Background—Human mobility is important for infectious disease spread. However, little is 

known about how travel varies by demographic groups and how this heterogeneity influences 

infectious disease risk.

Methods—We analyzed ten years of survey data from 15 communities in a remote but rapidly 

changing region in rural Ecuador where road development in the past 15–20 years has 

dramatically changed travel. We identify determinants of travel and incorporate them into an 

infection transmission model.

Results—Individuals living in communities more remote at baseline had lower travel rates 

compared with less remote villages (adjusted odds ratio [OR]=0.51, 95% CI 0.38, 0.67). Our 

model predicts that less remote villages are, therefore, at increased disease risk. Though road 

building and travel increased for all communities, this risk differential remained over 10 years of 

observation. Our transmission model also suggests that travelers and non-travelers have different 

roles in disease transmission. Adults travel more than children (adjusted OR=1.73, 95% CI 1.30, 

2.31) and therefore disseminate infection from population centers to rural communities. Children 

are more likely than adults to be infected locally (attributable fraction=0.24 and 0.09, respectively) 

and were indirectly affected by adult travel patterns.

Conclusions—These results reinforce the importance of large population centers for regional 

transmission and show that children and adults may play different roles in disease spread. 

Changing transportation infrastructure and subsequent economic and social transitions are 

occurring worldwide, potentially causing increased regional risk of disease.
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Introduction

Human mobility contributes to the spread of infectious disease at multiple spatial and 

temporal levels [1–5]. Human migration—the long-term process by which individuals 

permanently or semi-permanently relocate—has been implicated in the introduction of 

pathogens to new locations. For example, movement along the Silk Road introduced the 

Black Death to Europe in the 14th century, and the forced transatlantic migration of African 

slaves brought malaria to the US [1]. Short-term movement—travel to another location with 

subsequent return—can also introduce pathogens when it occurs over large distances [2]. 

Examples of this process include the spread of SARS [6], pandemic influenza [7, 8], and 

cholera [9]. Short-term movement also occurs over smaller distances more critical for 

pathogen circulation, analysis of which can help reveal spatial patterns of infection spread. 

Short-term movement has been implicated in the 2010 cholera epidemic in Haiti [10] as well 

as seasonal influenza [11] and dengue transmission [5, 12].

Road availability can influence both frequency and determinants of mobility. For example, 

as remote towns gain road access, travel frequency and average distance may increase, and 

towns’ sociodemographic environment may change [13]. Easier access to roads also makes 

urban markets more accessible to rural farmers, which may influence their economic 

activities within the village as well as reasons for their travel [14]. Finally, road access may 

also facilitate migrant labor, leading to a more transient population and changing social 

network structure [14–16].

Therefore, in addition to the benefits of road access, construction of new roads might also 

lead to increased regional risk of disease [16]. Other work has shown that environmental 

change occurring in tandem with road construction projects may lead to increased local risk 

of malaria and dengue [17,18]. As previously remote regions in parts of Asia, Africa, and 

Latin America gain access to new roads, their changing travel patterns may facilitate both 

pathogen introduction and pathogen circulation, leading to convergence of regional risk.

The relevance of both short- and long-term movement for transmission has been widely 

recognized by transmission modelers, who regularly incorporate movement into their models 

[10,11,19–21]. For example, travel can increase transmission and allow for pathogen 

invasion even when there would not otherwise be an outbreak [22–24]. Most of this work 

has focused on developing models that adequately capture the average rate of travel and 

distribution of destinations rather than the variability in these patterns by demographic 

subgroups [19, 25, 26]. A separate body of work has looked at the role of population 

heterogeneity in disease transmission and has shown that outbreaks can occur when the 

average basic reproduction number (R0) is less than one if a subgroup of super-spreaders is 

at higher risk [27, 28]. We aim to combine these two lines of research, investigating how 

population heterogeneity in both disease susceptibility and travel frequency may influence 

outbreaks. We use a transmission model, parameterized to reflect rotavirus, as a case study 

because it is epidemiologically important in our study region and globally and because its 

attack rate differs by age [29–31].
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This paper contributes to a more developed understanding of short-term movement. Using 

data from a region in rural Ecuador that has been experiencing continuous road 

development, we evaluate changes in movement patterns and village demographics over a 

10-year period (2003–2013) following the construction of a new road. We next identify 

determinants of short-term travel outside the study region and evaluate the stability of these 

determinants over time. Finally, we present a transmission model for rotavirus in our study 

region that accounts for heterogeneity in both travel and disease transmission and illustrates 

how this heterogeneity can lead to both increased risk of disease and changes in disease 

etiology.

Methods

Data

Data for this project were collected in rural Ecuador in conjunction with a larger study [16]. 

In 1996, the government of Ecuador began a road construction project to link the Andes with 

the Ecuadorian Pacific coast. The highway was completed in 2001, but new roads continue 

to be built, increasing access for previously more remote villages. Our EcoDess project was 

initiated in 2003 as a natural experiment to document longitudinal changes that occurred in 

villages surrounding the local metropolitan center of Borbón due to road construction. The 

present analysis focused on 15 study villages that were followed from 2003–2013. See 

reference [16] for more details about the study region. All data collection protocols were 

approved by institutional review boards at all institutions involved in the project.

In this paper, we use data from movement surveys conducted in 2003, 2007, 2010, and 2013 

and census data collected by our study at about the same times. We use stool sample 

positivity for rotavirus from our ongoing case–control study from 2007–before the vaccine 

was introduced [32]–to parameterize our transmission model. The methods used to identify 

rotavirus infection are described in detail elsewhere [29]. Our analyses considered 15 

villages, 1,347 households, 5,443 individuals, and 1–4 time points per individual, for a total 

of 10,725 observations and a median of 2 observations per individual.

Software

Time trend analyses were conducted in R (v. 3.1.2) using the package gee, and other 

multivariate analyses were conducted in SAS (v. 9.4). Transmission modeling was 

conducted in R (v. 3.1.2) using the package deSolve.

Defined measures

Remoteness—Remoteness reflects a number of interrelated factors that together capture 

the relative isolation of a given community. Here, we assess remoteness using two measures: 

1) travel frequency, which varies over time, and 2) the feasibility of travel at baseline, based 

on cost and travel time to reach the nearest large town. For the duration of this paper we 

refer to the latter metric (cost and travel time) as ’baseline remoteness.’

Travel frequency: The main outcome of interest in this study was whether an individual had 

traveled outside of the study region in the past seven days.
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Baseline cost and travel time: Project staff used data collected at the start of the study to 

develop a metric for the remoteness of each village based on the cost and travel time 

required to reach Borbón, the largest town in the region [16]. This measure was 

subsequently categorized into three groups: close, medium, and far.

While this metric reflects the feasibility of travel, actual travel frequency may not 

necessarily be shaped only by road accessibility; thus, the two metrics may measure 

different aspects of remoteness. Even if the absolute cost and travel time to Borbón changes 

over time as roads develop, if the relative isolation of these communities remains constant, 

remoteness would remain an important predictor of travel. If, however, road development 

homogenizes travel frequency across the region, any differences in travel by baseline 

remoteness should diminish over time. To determine whether or not the regional risk 

appeared to be converging, we considered baseline remoteness as a covariate in all 

multivariate models and investigated whether the association between baseline remoteness 

and travel frequency was stable over time.

Covariates—Occupation was classified as none, domestic, student, agriculture, salaried, or 

other. Age was calculated using date of birth and was categorized into three groups: <5, 5–

13, and >13 years. Each individual’s duration of residence in the village was analyzed using 

z-scores calculated within age brackets. Highest household education was the highest 

number of years of schooling reported by any individual of that household. Village-level 

availability of secondary schools was included in the models as a binary variable and was 

treated as time-invariant. The mean duration of residence for each village for all individuals 

over the age of 13 was also included as a proxy for population stability. All of these 

variables were taken from our census data.

Regression models

To investigate time trends and identify determinants of travel, we used a generalized 

estimating equation (GEE) framework, which allowed us to account for community 

clustering but retain a population average interpretation [33]. Because GEE models are not 

estimated using maximum likelihood, we compared model fit using quasi-information 

criteria [34]. Change-over-time was first evaluated by building regression models containing 

only one covariate and years since 2003. These time trends were conceptualized as 

providing descriptive information about the region and are therefore unadjusted. To identify 

determinants of travel, forward regression was used. Because all variables except baseline 

remoteness and secondary school availability were allowed to change over time, our model 

also adjusts for time-dependent confounding. The stability of associations over time was 

evaluated by comparing, for each study year, the model containing only cost and travel time, 

the model containing all variables except cost and travel time, and the full model.

Transmission model

We developed a disease transmission model with a susceptible, infectious, recovered 

framework (parameterized to reflect rotavirus) to investigate the impact of travel to an urban 

center (here modeled as analogous to Borbón) on a small village. Because the geography 

and transportation network of the region causes most travel to traverse Borbón, almost all 
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travel outside the region is to another urban setting, and travel to the village by city residents 

is assumed to be negligible, this relatively simple two-community model suffices to 

investigate the impact of travel by members of the village on their community as a whole. To 

capture heterogeneity in risk of infection and travel, we stratified the modeled populations 

into two age categories (under and over 5 years), with children under five being more likely 

to become infected and less likely to travel (see Figure 1 and the eAppendix for additional 

details on model structure). The appendix also presents the equations, parameterization, a 

sensitivity analysis of the transmission parameters, and calculations of the basic reproductive 

number for each community in isolation, which we call R0*. In our study region, the Global 

R0 is always greater than 1 for rotavirus infection and thus not relevant (see eAppendix, 

Transmission Rate section for the calculations necessary to numerically calculate the Global 

R0).To understand how disease risk (measured by cumulative incidence) might change with 

time, we modeled an average close, medium, and far village, using travel frequency and 

population size in the data for each of the four study years (2003, 2007, 2010, 2013) for a 

total of 12 models (three villages and four time points). To examine the separate roles of 

demographic heterogeneity in travel and the level of travel, we conducted model analyses to 

investigate changes in cumulative disease incidence as i) we increase the average travel 

frequency for all village residents (assuming children and adults travel the same) and ii) we 

fix the travel frequency of children but increase the travel frequency of adults. These 

analyses used the population size and structure from 2013 and considered rotavirus 

transmission rates corresponding to the maximum and minimum observed in the study 

region (corresponding to R0* of 0.79 and 1.44 respectively).

Results

Evaluating demographic change

Baseline characteristics of the participants are shown in Table 1. Over time, the fraction of 

individuals traveling outside the region increased for all remoteness levels, with a 9.1%, 

8.2% and 4.4% increase in travel for close, medium, and far villages respectively (see Table 

1 and Figure 2). In 2013, far villages had similar travel patterns to the close villages in 2003. 

Far villages consistently had lower levels of travel than the medium or close villages with an 

average 6.0% and 3.2% difference comparing far with close and medium villages 

respectively, suggesting that travel patterns for the communities had not yet converged 

during the study. All far villages that showed an increase in travel patterns did not begin 

their increases until 2010, suggesting a time lag in the effect of changing infrastructure for 

more distant communities.

In addition to increased travel, there was also a tendency toward increased socioeconomic 

status. The proportion of individuals having no occupation decreased over time. The fastest 

growing occupation was salaried worker, and this change was especially pronounced in the 

most remote villages. The proportion of individuals working in agriculture decreased 

slightly for close and far villages.
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Identifying predictors of travel

Gender was not associated with travel frequency and was therefore not included in the 

regression models. Based on prior knowledge, we conceptualized remoteness as being 

an ’exposure’ whose effects were mediated by various demographic factors. However, to 

estimate the effect of these mediators on travel, we adjusted our demographic models for 

remoteness because it was a common cause of the various demographic characteristics and 

travel and therefore a confounder of those associations. See eFigure 1 for causal diagram.

Because the relationship between age and travel patterns was non-linear, we used a 

categorical age variable (<5, 5–13, >13). The results of model building are shown in Table 2. 

Although all variables except for age were associated with both remoteness and out-of-

region travel (Table 2), only secondary school availability appeared to be markedly 

confounded by remoteness (comparing the Unadjusted and Remoteness Adjusted models). 

Secondary school availability and mean duration of residence appeared to be the strongest 

mediators of the remoteness–travel estimate, as indicated by the reduction in the point 

estimate (comparing the Unadjusted Model with Model 1). In general, occupation and 

education appear to have independent effects. However, the point estimate for salaried 

occupation attenuated after adjusting for education, most likely because of the much higher 

required education for salaried workers. In other words, there was no association between 

education and occupation except for salaried workers. The effect of occupation also 

appeared to be confounded by age (comparing Models 3 and 4).

After adjusting for all variables, travelers were more likely to come from households with 

higher education (OR=1.10, 95% CI 1.08, 1.12) and to work either in domestic (OR=1.64, 

95% CI: 1.14, 2.36), agriculture (OR=1.50, 95% CI: 1.13, 1.98), or salaried occupations 

(OR=3.27, 95% CI: 2.15, 4.96). Remoteness remained a strong predictor of travel (OR=0.51, 

95% CI: 0.38, 0.67), with travel being more common among individuals living in less 

remote regions. Individuals living in areas with a secondary school were also less likely to 

travel than people without secondary schools (OR=0.53, 95% CI: 0.37, 0.76). The effect of 

age was non-linear; individuals aged 5–13 were less likely to travel than children under five 

(OR=0.65, 95% CI: 0.50, 0.85) and adults over the age of 13 were more likely to travel than 

children under five (OR=1.73, 95% CI: 1.30, 2.31) (Table 2).

Although the effect estimate for increased travel by household level of education is small for 

each year increase in education (OR=1.10), the cumulative effect is substantial. For instance, 

a five-year difference in household education (roughly the difference between completing 

primary and secondary school) would correspond to an odds ratio of 1.61 for traveling.

Overall, the full model, including both baseline remoteness (cost and travel time) and all 

demographic variables was the best model for all four study years (Table 3). The quasi-

information criteria values including demographic factors were consistently lower than those 

with remoteness only, suggesting that these variables combined provided more information 

than the baseline remoteness metric alone. Although the cost and travel time metric provided 

less information than the demographic variables, adding it to the model improved model fit 

for each study year, supporting its continued use as a measure of remoteness in our region.
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Travel and disease transmission

Component effects—To disaggregate the impact of travel from the impact of 

heterogeneity in travel by age, we present simulated cumulative disease incidence that 

consider change in i) the overall travel rate for all ages (homogeneous travel) and ii) a 

proportional increase in travel for adults only (heterogeneous travel by age).

Homogeneity in travel: As travel increased from levels seen in far villages to those in close 

villages, the predicted disease incidence rate doubled (15, 27, and 31 per 1,000 people for 

close, medium, and far villages respectively, where R0*=0.79 for all village types). While 

higher transmissibility within the village (R0*) was associated with increased disease risk, 

the estimated effect of travel was much stronger. In general, predicted incidence at the 

maximum transmission rate (R0*=1.44) was only 1–2 cases per 1,000 people higher than 

risk at the minimum transmission rate (R0*=0.79), less than a 7% increase (details in 

eAppendix).

Heterogeneity in travel: As the relative travel rates of adults increased compared to 

children, the risk of infection for the village increased, suggesting that the adults disseminate 

the infection into local communities (see Table 4). Although this increase in risk was 

greatest for adults, risk also increased for children. Only results from close villages are 

shown; results were qualitatively similar for close and medium villages and are shown in the 

eAppendix. Based on our survey data (Table 2), adults had 1.73 times the travel of children, 

so we would expect our study region to most closely resemble the medium travel 

heterogeneity scenario (scenarios defined in Table 4).

Further, as heterogeneity in travel increased, the attributable fraction of infections acquired 

locally increased for children, but decreased for adults (Figure 3). The magnitude of local 

transmission depended on transmissibility within the village. Under conditions of high 

heterogeneity in travel and high transmission, 24% of all transmission to children originated 

within the village, compared to 6% for no heterogeneity in travel (i.e., adults traveled the 

same as children) and low transmission. However, regardless of whether R0* was greater 

than 1, most transmission for both age groups occurred in the city. This result held over the 

transmission parameter sensitivity analysis, but was modified by village population size. 

Increasing the population of the village relative to the city was associated with proportional 

increases in the attributable fraction for local transmission but slight decreases in the overall 

incidence (see eTable 6).

Predicted Incidence—Over time, modeled infection risk increased for all three types of 

communities (Table 5). In 2013, the risk in far villages was similar to that seen in close 

villages in 2003. At the end of the study, the predicted risks for close and medium villages 

were similar, but the risk for far villages remained lower. Thus, although all villages had 

predicted increases in risk over the study period, the gradient of risk by remoteness was 

preserved for the most remote villages. Comparison with our component effects model 

suggests that this increase in risk was almost entirely driven by increased travel rather than 

changing demographics.
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Discussion

Areas with changing transportation infrastructure undergo demographic change that can 

impact community structure and increase infection risk. In our analysis, this increased risk is 

largely driven by the city, highlighting the likely importance of population centers for 

transmission into remote regions. Furthermore, we show that increasing adult travel 

frequency can indirectly increase risk for those that travel less (e.g., children) and affect the 

fraction of infections that are acquired locally for both age groups.

Demographic change

Medium and close villages had higher rates of travel than far villages in 2003. Over time, 

travel rates increased across the region. Similar increases in travel in our transmission model 

led to increased risk of infection. Although we parameterize our model to reflect rotavirus, 

our results extend to other pathogens and demonstrate how road construction can lead to 

increased regional risk of enteric infection, highlighting the need to consider the broader 

health impacts of constructing roads and other projects like railroads that can increase 

opportunities for human movement.

Several demographic variables were found to be important predictors of travel; the effect of 

these variables did not appreciably change over time. Travelers were more likely to come 

from households with higher education and to be salaried or domestic workers. Individuals 

with salaried positions were the most likely to engage in out-of-region travel. The increased 

travel seen among domestic workers may reflect fewer time constraints placed on women 

who work inside the home. The tendency for young children under the age of 5 to travel 

more than older children (aged 5–13) may be because the youngest children are too young to 

be left behind in the villages when the mother is traveling.

Travel and disease transmission

Our transmission model results suggested increased travel could lead to increased infection; 

most of this risk to the village appears to be driven by the city. Although the city had a 

higher transmission rate than the villages, our sensitivity analysis revealed that the city’s 

population size was the primary reason that it dominated transmission. Adults experienced 

the greatest increases in infection risk due to their more frequent travel, but children were 

also indirectly affected by the travel of adults. This result highlights the role of travelers in 

dissemination of disease to remote communities and shows that population centers can be 

important for driving risk in remote regions.

The increased travel observed across all villages over time indicates potentially increased 

disease transmission for all types of communities–including those in remote regions–as a 

function of changing mobility. In general, more remote communities tend to benefit from 

less infection pressure due to their relative isolation [36]. In our study, remoteness remained 

an important predictor of travel and infection throughout the study, despite ongoing 

development. Therefore, at least in our study region, the erosion of a remoteness advantage 

occurs over a time scale longer than 10 years.
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Because of demographic differences in travel rates, local interventions may have a greater 

impact on children than adults but targeting interventions in cities is likely to be the most 

effective way to lower regional risk. Future studies comparing prevalence of infection and 

diarrheal disease both by remoteness and over time in this region may provide further 

insights into how changing travel patterns affect risk. Thus, while population-level proxies 

(i.e., gravity models, radiation models, etc.) for travel may be inadequate to capture 

demographic variability in travel, they still may be reasonable predictors of average travel 

behavior as development proceeds.

Strengths and Limitations

There are a few caveats to our study. First, our remoteness variable was defined at baseline. 

If community remoteness confounds the association between the covariates and travel, there 

may be some residual confounding by remoteness in later years that is not captured by the 

baseline measure. Second, because of the lack of preexisting theory on determinants of 

remoteness, we relied on the change in estimate criteria to evaluate confounding and 

mediation.

Additionally, our estimate of R0* required an estimate of age at first infection. We used age-

specific prevalence of infection as a proxy for age at first infection. Because people can be 

re-infected with rotavirus, this assumption may have led us to overestimate the average age 

at first infection and thus underestimate both transmission rates and R0*. However, 

sensitivity analysis demonstrated that i) our results were similar regardless of the actual 

value of R0* and ii) relative infectivity (city vs. community and adults vs. children) was 

more important than absolute infectivity for determining the source of cases. Because this 

overestimation of β is non-differential by remoteness and thus relative infectivity is 

unaffected, our main results should be unbiased. Furthermore, people are rarely infected 

more than twice, and subsequent infections are less likely to be symptomatic and thus less 

likely to transmit [31, 37, 38]. As such, any bias in the absolute infectivity is likely to be 

minimal.

These longitudinal data allow us to assess change over time and show that these covariates 

have stable relationships with travel. The timing of this study relative to the completion of a 

road construction project is also a strength because the data provided a useful natural 

experiment with a unique opportunity to answer these questions in a population with new 

road development.

Overall, these findings provide useful data and a theoretical framework for future studies 

investigating the determinants of movement in other populations, particularly areas that are 

rapidly urbanizing. Given that rural–urban connections are increasingly more common, the 

relevance of this work continues to increase [39].

Conclusions

Current methods for incorporating travel into disease transmission models generally rely on 

proxies for travel (e.g., gravity and radiation models) that are based on distance and 

population size, without any consideration of demographic heterogeneity [10, 11, 19–21]. 

Our results suggest that while these models may accurately estimate average travel, 
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accounting for travel heterogeneity in transmission models may both improve model 

predictions and identify opportunities to target public health interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rotavirus transmission model diagram. Dashed arrows represent transmission events and 

solid arrows represent movement of people. Villagers and city residents are classified as 

susceptible (S), infected (I) and Recovered (R), with separate compartments for individuals 

under age 5 and ages 5 and older (not shown). Susceptible people can become infected by 

direct transmission within their own community. Villagers can infect and be infected by the 

city during travel. We ignore travel by city dwellers and between smaller villages. Village 

susceptible infectious recovered (SIR) model is stratified by baseline remoteness (close, 

medium and far) and both village and city SIR models are stratified by year (2004, 2007, 

2010, and 2013) resulting in 12 models. Each model is stratified by age (less than or greater 

than 5 yrs.). This stratification results in 8 transmission parameters (6 village-level due to 2 

age-groups and three community groups, and 2 city level due to two age groups), and 24 

travel rate parameters to and from the city (2 age groups, 4 years, and 3 community types, 

where). Population size also varies by age, community type, and year. The recovery rate 

parameter is the same for all SIR models. See eAppendix for model equations and details.

Kraay et al. Page 13

Epidemiology. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Demographic changes over time by study year and remoteness strata from the survey data. 

Close, medium, and far villages are shown as solid line, small dashed line, and longer 

dashed line respectively. A) Percent out-of-region travel (weighted by population size), B) 

Percent reporting no occupation, C) Maximum household education (years), D) Percent 

reporting salaried occupation.
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Figure 3. 
Attributable fraction for local transmission by heterogeneity in travel (adults vs. children) 

from the transmission model for A) low within-village transmission (Baseline R0=0.79) and 

B) high within-village transmission (Baseline R0=1.43). R0 increases slightly with 

increasing heterogeneity. Increasing heterogeneity was done using a proportionality constant 

where traveladult = ctravelchild and c takes values of 1 (none), 2 (medium), or 3 (high); 

c=1.73 in the study data. Adults are shown in black and children are shown in gray.

Kraay et al. Page 15

Epidemiology. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kraay et al. Page 16

Ta
b

le
 1

Sa
m

pl
e 

ch
ar

ac
te

ri
st

ic
s 

by
 s

tr
at

um
 o

f 
re

m
ot

en
es

s.
 F

or
 b

as
el

in
e 

va
lu

es
, c

on
tin

uo
us

 v
ar

ia
bl

es
 a

re
 p

re
se

nt
ed

 a
s 

m
ea

n 
(s

ta
nd

ar
d 

de
vi

at
io

n)
 a

nd
 c

at
eg

or
ic

al
 

va
ri

ab
le

s 
ar

e 
pr

es
en

te
d 

as
 p

er
ce

nt
 (

n)
. T

im
e 

tr
en

d 
va

lu
es

 r
ep

re
se

nt
 th

e 
co

rr
el

at
io

n 
be

tw
ee

n 
tim

e 
an

d 
th

e 
co

va
ri

at
e 

ac
co

un
tin

g 
fo

r 
co

m
m

un
ity

 le
ve

l 

cl
us

te
ri

ng
 u

si
ng

 a
 G

E
E

 w
ith

 a
n 

in
de

pe
nd

en
ce

 c
or

re
la

tio
n 

st
ru

ct
ur

e.

R
em

ot
en

es
s:

 C
lo

se
R

em
ot

en
es

s:
 M

ed
iu

m
R

em
ot

en
es

s:
 F

ar

N
=1

00
4a

B
as

el
in

e
N

=4
,7

48
 a

T
im

e 
tr

en
d 

β(
SE

c )
N

=3
09

 a
B

as
el

in
e

N
=1

,4
40

 a

T
im

e 
tr

en
d 

β 
(S

E
c )

N
=9

27
 a

B
as

el
in

e
N

=4
,5

34
 a

T
im

e 
tr

en
d 

β 
(S

E
c )

V
ill

ag
e 

V
ar

ia
bl

es

C
os

t/t
ra

ve
l t

im
e 

m
et

ri
c

0.
01

8
--

0.
07

--
0.

17
--

M
ea

n 
du

ra
tio

n 
(y

rs
) 

of
 r

es
id

en
ce

; m
ea

n 
(S

D
b )

18
.2

(6
.5

)
0.

21
5(

0.
09

6)
24

.4
 (

3.
0)

0.
43

3(
0.

20
0)

28
.1

(3
.4

)
−

0.
03

7(
0.

18
7)

C
om

m
un

ity
 a

ge
 (

yr
s)

; m
ea

n 
(S

D
b )

23
.3

(1
.6

)
0.

08
5(

0.
05

6)
25

.2
(3

.2
)

0.
43

4(
0.

27
8)

23
.6

(3
.1

)
0.

22
3(

0.
08

8)

In
di

vi
du

al
 a

nd
 h

ou
se

ho
ld

 v
ar

ia
bl

es

H
ig

he
st

 h
ou

se
ho

ld
 e

du
ca

tio
n 

(y
rs

);
 m

ea
n 

(S
D

b )
7.

0(
3.

8)
0.

08
0(

0.
05

1)
5.

6(
3.

6)
0.

20
3(

0.
02

6)
6.

2(
3.

2)
0.

13
9(

0.
03

8)

H
ou

si
ng

 in
de

x;
 m

ea
n 

(S
D

b )
5.

01
(0

.9
3)

0.
01

9(
0.

00
7)

4.
60

(0
.9

4)
0.

03
9(

0.
03

1)
4.

37
(1

.2
0)

0.
03

4(
0.

03
1)

D
ur

at
io

n 
of

 r
es

id
en

ce
 (

z-
sc

or
e)

; m
ea

n 
(S

D
b )

−
0.

18
(0

.9
9)

0.
00

1(
0.

00
6)

0.
01

(0
.9

8)
−

0.
01

2(
0.

01
2)

0.
13

(0
.9

3)
−

0.
00

8(
0.

00
5)

A
ge

 (
yr

s)
; m

ea
n 

(S
D

b )
37

.9
(1

8.
4)

0.
15

5(
0.

06
5)

41
.8

(2
0.

4)
0.

82
6(

0.
69

3)
38

.2
(1

8.
8)

0.
11

1(
0.

28
3)

A
ge

; %
 (

N
o.

)

  <
5

21
(2

16
)

−
0.

02
9(

0.
01

0)
21

(7
0)

−
0.

04
5(

0.
08

5)
20

(1
95

)
−

0.
05

5(
0.

02
5)

  5
–1

3
26

(2
61

)
0.

00
3(

0.
00

4)
23

(7
4)

−
0.

11
5(

0.
05

7)
29

(2
87

)
0.

02
7(

0.
01

9)

  >
13

53
(5

40
)

0.
01

5(
0.

00
8)

56
(1

84
)

0.
12

4(
0.

01
0)

52
(5

14
)

0.
01

1(
0.

02
6)

M
al

e;
 %

(N
o.

)
52

(5
23

)
−

0.
00

5(
0.

00
7)

51
(1

65
)

−
0.

00
5(

0.
00

9)
50

(4
91

)
−

0.
00

3(
0.

00
8)

O
cc

up
at

io
n;

 %
 (

N
o.

)

  N
on

e
22

(2
23

)
−

0.
02

2(
0.

00
8)

28
.1

(8
8)

−
0.

05
8(

0.
07

1)
25

(2
30

)
−

0.
04

2(
0.

01
8)

  D
om

es
tic

17
(1

69
)

0.
01

2(
0.

00
6)

18
.5

(5
8)

0.
03

9(
0.

04
9)

19
(1

74
)

0.
00

3(
0.

01
5)

  S
tu

de
nt

33
(3

28
)

0.
01

2(
0.

01
2)

21
(6

6)
−

0.
03

1(
0.

02
7)

31
(2

91
)

0.
05

3(
0.

01
8)

  A
gr

ic
ul

tu
re

20
(1

99
)

−
0.

02
2(

0.
01

1)
25

(8
0)

0.
02

5(
0.

04
0)

20
(1

86
)

−
0.

06
4(

0.
02

4)

  S
al

ar
ie

d
4(

44
)

0.
04

8(
0.

01
4)

3(
8)

0.
19

1(
0.

04
0)

2(
21

)
0.

06
5(

0.
03

4)

  O
th

er
4(

41
)

0.
01

9(
0.

01
9)

3(
9)

0.
00

4(
0.

06
4)

3(
25

)
0.

05
5(

0.
03

9)

O
ut

si
de

 tr
av

el
; %

 (
N

o.
)

8(
83

)
0.

05
1(

0.
02

8)
7(

23
)

0.
18

9(
0.

01
6)

4(
38

)
0.

09
0(

0.
03

0)

Epidemiology. Author manuscript; available in PMC 2019 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kraay et al. Page 17
a : F

or
 B

as
el

in
e 

va
lu

es
 th

e 
to

ta
l n

um
be

r 
of

 o
bs

er
va

tio
ns

 c
om

e 
fr

om
 o

nl
y 

in
di

vi
du

al
s 

su
rv

ey
ed

 in
 2

00
3.

 F
or

 ti
m

e 
tr

en
d 

an
al

ys
is

 to
ta

l n
um

be
r 

of
 o

bs
er

va
tio

ns
 c

om
e 

fr
om

 in
di

vi
du

al
s 

su
rv

ey
ed

 a
t a

ll 
tim

e 
po

in
ts

 
(2

00
3,

 2
00

7,
 2

01
0,

 a
nd

 2
01

3)
, i

nc
lu

di
ng

 in
di

vi
du

al
s 

w
ith

 m
is

si
ng

 d
at

a 
on

 c
om

m
un

ity
 o

f 
re

si
de

nc
e 

(3
 p

eo
pl

e)
. T

he
se

 in
di

vi
du

al
s 

ar
e 

no
t i

nc
lu

de
d 

in
 T

ab
le

s 
2 

or
 3

.

b : S
D

 is
 th

e 
ab

br
ev

ia
tio

n 
fo

r 
st

an
da

rd
 d

ev
ia

tio
n

c : S
E

 is
 th

e 
ab

br
ev

ia
tio

n 
fo

r 
st

an
da

rd
 e

rr
or

Epidemiology. Author manuscript; available in PMC 2019 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kraay et al. Page 18

Ta
b

le
 2

D
et

er
m

in
an

ts
 o

f 
tr

av
el

 p
at

te
rn

s.
 W

e 
us

ed
 f

or
w

ar
d 

ge
ne

ra
liz

ed
 e

st
im

at
in

g 
eq

ua
tio

n 
(G

E
E

) 
re

gr
es

si
on

 w
ith

 c
om

po
un

d 
sy

m
m

et
ry

 c
ov

ar
ia

nc
e 

st
ru

ct
ur

e,
 a

nd
 

al
l t

er
m

s 
ar

e 
od

ds
 r

at
io

s 
(9

5%
 C

I)
. F

ir
st

, t
he

 u
na

dj
us

te
d 

as
so

ci
at

io
ns

 w
ith

 e
ac

h 
va

ri
ab

le
 a

nd
 th

e 
ou

tc
om

e 
w

er
e 

co
ns

id
er

ed
. T

o 
ev

al
ua

te
 p

ot
en

tia
l 

co
nf

ou
nd

in
g 

by
 r

em
ot

en
es

s,
 e

ac
h 

un
ad

ju
st

ed
 a

ss
oc

ia
tio

n 
w

as
 a

dj
us

te
d 

fo
r 

re
m

ot
en

es
s 

on
ly

. A
 s

er
ie

s 
of

 m
od

el
s 

w
as

 u
se

d 
to

 in
ve

st
ig

at
e 

th
e 

re
la

tio
ns

hi
ps

 

be
tw

ee
n 

th
e 

re
m

ai
ni

ng
 v

ar
ia

bl
es

. M
od

el
 1

 c
on

ta
in

ed
 o

nl
y 

vi
lla

ge
-l

ev
el

 v
ar

ia
bl

es
. M

od
el

 2
 w

as
 f

ur
th

er
 a

dj
us

te
d 

fo
r 

ed
uc

at
io

n.
 M

od
el

 3
 f

ur
th

er
 a

dj
us

te
d 

fo
r 

oc
cu

pa
tio

n.
 M

od
el

 4
 in

cl
ud

ed
 a

ll 
va

ri
ab

le
s 

in
 m

od
el

 3
 a

s 
w

el
l a

s 
du

ra
tio

n 
of

 r
es

id
en

ce
 a

nd
 a

ge
.

U
na

dj
us

te
d

R
em

ot
en

es
s

A
dj

us
te

d
M

od
el

 1
V

ill
ag

e
M

od
el

 2
M

od
el

 1
+

E
du

ca
ti

on

M
od

el
 3

M
od

el
 2

+
O

cc
up

at
io

n

M
od

el
 4

F
ul

ly
 A

dj
us

te
d

V
ill

ag
e 

va
ri

ab
le

s

R
em

ot
en

es
s

0.
69

(0
.5

9,
0.

82
)

0.
69

(0
.5

9,
0.

82
)

0.
48

(0
.3

5,
 0

.6
6)

0.
46

(0
.3

4,
 0

.6
1)

0.
51

(0
.3

8,
0.

68
)

0.
51

(0
.3

8,
0.

67
)

M
ea

n 
du

ra
tio

n 
of

 r
es

id
en

ce
 (

yr
)

1.
06

(1
.0

2,
 1

.1
0)

1.
06

(1
.0

2,
1.

10
)

1.
05

(1
.0

1,
1.

08
)

1.
05

(1
.0

2,
1.

08
)

1.
04

(1
.0

1,
1.

08
)

1.
04

(1
.0

1,
1.

07
)

Se
co

nd
ar

y 
sc

ho
ol

 a
va

ila
bi

lit
y 

(y
/n

)
1.

47
(1

.1
1,

1.
95

)
0.

76
(0

.5
8,

1.
00

)
0.

61
(0

.4
0,

0.
94

)
0.

50
(0

.3
5,

0.
70

)
0.

56
(0

.4
0,

0.
78

)
0.

53
(0

.3
7,

0.
76

)

In
di

vi
du

al
 a

nd
 h

ou
se

ho
ld

 v
ar

ia
bl

es

H
ig

he
st

 h
ou

se
ho

ld
 e

du
ca

tio
n 

(y
r)

1.
11

(1
.0

9,
1.

13
)

1.
10

(1
.0

8,
1.

13
)

--
1.

11
(1

.0
9,

1.
13

)
1.

10
(1

.0
8,

1.
13

)
1.

10
(1

.0
8,

1.
12

)

O
cc

up
at

io
n

--
--

  N
on

e
1.

00
(R

ef
)

1.
00

(R
ef

)
--

--
1.

00
(R

ef
)

1.
00

(R
ef

)

  D
om

es
tic

 v
s.

 N
on

e
2.

77
(1

.9
9,

3.
87

)
2.

70
(1

.9
6,

3.
73

)
--

--
2.

89
(2

.1
0,

3.
99

)
1.

64
(1

.1
4,

2.
36

)

  A
gr

ic
ul

tu
re

 v
s.

 N
on

e
2.

54
(1

.8
1,

3.
57

)
2.

47
(1

.7
8,

3.
43

)
--

--
2.

71
(1

.9
7,

3.
71

)
1.

50
(1

.1
3,

1.
98

)

  S
al

ar
ie

d 
vs

. N
on

e
7.

82
(5

.2
7,

11
.5

8)
7.

37
(4

.9
1,

11
.0

7)
--

--
5.

69
(3

.9
5,

8.
20

)
3.

27
(2

.1
5,

4.
96

)

  O
th

er
 v

s.
 N

on
e

4.
51

(2
.8

9,
7.

03
)

4.
36

(2
.7

8,
6.

84
)

--
--

4.
21

(2
.5

7,
6.

90
)

2.
43

(1
.5

1,
3.

92
)

D
ur

at
io

n 
of

 r
es

id
en

ce
 (

yr
)

0.
99

(0
.9

0,
1.

10
)

1.
00

(0
.9

1,
1.

09
)

--
--

--
1.

04
(0

.9
5,

1.
13

)

A
ge

  <
5

1.
00

(R
ef

)
1.

00
(R

ef
)

--
--

--
1.

00
(R

ef
)

  5
–1

3
0.

75
(0

.5
9,

0.
95

)
0.

77
(0

.6
2,

0.
95

)
--

--
--

0.
65

(0
.5

0,
0.

85
)

  >
13

2.
94

(2
.2

5,
3.

85
)

2.
83

(2
.1

5,
3.

73
)

--
--

--
1.

73
(1

.3
0,

2.
31

)

Epidemiology. Author manuscript; available in PMC 2019 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kraay et al. Page 19

Ta
b

le
 3

Q
ua

si
-i

nf
or

m
at

io
n 

cr
ite

ri
a 

va
lu

es
 f

or
 g

oo
dn

es
s 

of
 f

it 
fo

r 
th

e 
re

gr
es

si
on

 m
od

el
 b

y 
st

ud
y 

ye
ar

 a
nd

 c
ha

ra
ct

er
is

tic
s 

co
ns

id
er

ed
. T

he
 lo

w
es

t q
ua

si
 in

fo
rm

at
io

n 

cr
ite

ri
on

 (
pr

ef
er

re
d 

m
od

el
) 

fo
r 

ea
ch

 y
ea

r 
is

 in
 b

ol
d.

20
03

20
07

20
10

20
13

O
ve

ra
ll

Fu
ll 

M
od

el
81

5.
42

13
43

.5
2

12
33

.1
0

22
20

.8
0

56
26

.7
1

R
em

ot
en

es
s-

on
ly

 m
od

el
10

74
.8

9
16

69
.9

6
13

31
.0

5
23

87
.6

9
65

37
.6

3

D
em

og
ra

ph
ic

s 
m

od
el

82
9.

78
13

47
.9

7
12

52
.6

3
22

75
.6

0
58

15
.4

0

Epidemiology. Author manuscript; available in PMC 2019 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kraay et al. Page 20

Table 4

Percent difference in cumulative incidence predicted by the transmission model for adults, children, and the 

whole community for increasing heterogeneity of travel by age group. Increasing heterogeneity was done 

using a proportionality constant where traveladult = ctravelchild and c takes values of 1 (low), 2 (medium), or 3 

(high). Low-within village transmission corresponds to a baseline R0 of 0.79 and high within village 

transmission corresponds to a baseline R0 of 1.43 (R0 increases slightly with increasing heterogeneity)

Travel heterogeneity Adults Children Community

Low within-village transmission

  Medium vs. None 1.6% 0.2% 1.4%

  High vs. None 3.1% 0.3% 2.8%

High within-village transmission

  Medium vs. None 1.7% 0.3% 1.4%

  High vs. None 3.3% 0.6% 2.8%
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Table 5

Predicted cumulative incidence per 1,000 people by remoteness and study year. Models were parameterized to 

reflect data collected in our field site over time and from the literature regarding the three disease processes: 

travel to the city (by community, age group, and study year), transmission rate (by community and age group, 

but not time), and recovery rate (estimated from literature at five days). Community population size and the 

fraction of children under 5 years of age were also estimated for each study year using survey data and were 

incorporated into our model. The population of the city was fixed at 5,000 for all study years. All parameter 

values are shown in the supplement along with relevant derivations.

Study Year

Remoteness 2003 2007 2010 2013

Close Villages 13 24 13 28

Medium Villages 12 16 16 31

Far Villages 7 10 10 14
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