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Objectives—To apply a statistical clustering algorithm to combine information from dynamic 

contrast enhanced (DCE) magnetic resonance imaging (MRI) into a single tumour map to 

distinguish high- (HG) from low-grade (LG) T1b clear cell renal cell carcinoma (ccRCC).

Methods—This prospective, IRB-approved, HIPAA-compliant study included 18 patients with 

solid T1b ccRCC who underwent pre-surgical DCE MRI. After statistical clustering of the 

parametric maps of Ktrans, Kep and iAUC with a fuzzy c-means (FCM) algorithm, each tumour 

was segmented into three regions (low/medium/high active areas). Percentages of each region and 

tumour size were compared to tumour grade at histopathology. A decision tree model was 

constructed to select the best parameter(s) to predict HG ccRCC.

Results—Seven HG and 11 LG T1b ccRCCs were included. HG histology was associated with 

higher percent high active areas (p = 0.0154) and this was the only feature selected by the decision 

tree model, which had a diagnostic performance of 78% accuracy, 86% sensitivity, 73% 

specificity, 67% PPV, and 89% NPV.

Conclusions—The FCM integrates multiple DCE-derived parameter maps and identifies tumour 

regions with unique pharmacokinetic characteristics. Using this approach, a decision tree model 

using criteria beyond size to predict tumour grade in T1b ccRCCs is proposed.
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INTRODUCTION

Kidney cancer is the tenth most common cancer in humans with an estimated 62,700 new 

cases and 14,240 deaths in the U.S. in 20161. More than 90% of kidney cancers are renal 

cell carcinomas (RCC) and about 70% of these are clear cell RCC (ccRCC)1. The 

serendipitous discovery of RCC has been steadily increasing with the proliferation of cross-

sectional imaging studies2. However, the resulted increased detection on early stages has not 

translated into reduction of cancer-specific mortality possibly indicating the over-treatment 

of small, potentially indolent renal tumours3. Consequently, active surveillance (AS) has 

become an acceptable option for the management of patients with incidentally discovered 

small renal masses (i.e. T1a disease)4. Although the risk of developing metastases for these 

patients is small, it increases in larger and high grade tumours5. Similarly, ccRCC carries a 

worse prognosis than other pathologic subtypes with lower prevalence such as papillary and 

chromophobe RCC6. The association between clear cell histology and worse prognosis has 

not been specifically documented for T1b tumours although a higher tumour grade is 

associated with worse disease free-survival in these tumours7. Furthermore, while the safety 

of AS in T1b RCC has been reported8, the reliability of tumour biopsies to accurately grade 

RCC may be limited in larger, heterogeneous tumours and its role in providing an accurate 

histologic subtype and nuclear grade may be limited9,10. The lack of reliable predictors of 

oncologic behaviour represent an important argument for resistance to using AS, particularly 

in patients with larger, heterogeneous renal masses (T1b disease)8,11. An imaging biomarker 

could help overcome this limitation by offering complementary information about tumour 
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biology/aggressiveness in the whole tumour in patients with larger (T1b), heterogeneous, 

biopsy-confirmed ccRCCs.

Multiphasic contrast-enhanced magnetic resonance imaging (MRI) can help in the 

characterization of RCC subtypes based on the degree of enhancement12–14. Alternatively, a 

high temporal resolution dynamic contrast enhanced (DCE) MRI approach combined with 

pharmacokinetic modelling of signal intensity allows for quantitative assessment of tumour 

vascularity with extraction of parameters such as the transfer constant between the 

intravascular and extravascular space (Ktrans), the rate constant (Kep), and the fractional 

volume of the extravascular extracellular (Ve) and vascular (Vp) space15–19. Efforts to 

correlate DCE MRI-derived pharmacokinetic parameters to tumour grade in RCC have 

offered variable results to date16,20. Furthermore, the integration of large amounts of data 

generated in quantitative model-based pharmacokinetic maps challenges the applicability of 

tumour characterization with DCE MRI in clinical practice. Moreover, it is unclear if such-

model based quantitative parameters offer additional information compared to other simpler 

semi-quantitative measures based on enhancement changes (e.g. initial area under the 

concentration curve [iAUC]). Clustering algorithms such as fuzzy c-means (FCM) of DCE-

MRI data has been proved to be a useful tool in segmenting tissues in kidney21 and to 

characterize and assess treatment response in heterogeneous tumours in the breast22,23 and 

brain24. To our knowledge, the value of pattern recognition techniques based on FCM 

algorithms to distinguish RCC grades has not been reported.

The purpose of this preliminary study was to apply a statistical clustering algorithm to 

combine information from multiple quantitative pharmacokinetic maps derived from DCE 

MRI to generate a single tumour map for the diagnosis of high-grade T1b clear cell renal 

cell carcinoma.

MATERIAL AND METHODS

PATIENT POPULATION

This was an Institutional Review Board approved Health Insurance Portability and 

Accountability Act-compliant prospective study. Inclusion criteria: 1) patients with a known 

renal mass confined to the kidney that is >4 cm but ≤7 cm in size, 2) scheduled for surgical 

resection, 3) agreed to undergo a research MRI prior to surgery, and 4) histopathological 

confirmation of clear cell histology with pathologic stage T1b after nephrectomy. All 

patients signed an informed consent prior to the MRI examination. Exclusion criteria: 1) 

patients with predominantly cystic masses on MRI (i.e. more than 75 % of the mass 

demonstrating non-enhancing fluid signal with a thin wall), 2) contraindication for MRI (e.g. 

MRI unsafe indwelling devices), 3) pregnancy, 4) renal function impairment (estimated 

glomerular filtration rate [eGFR] <30 mL/min/1.73 m2), and 5) unable to complete the MRI 

examination (e.g. claustrophobia). Seventy-eight consecutive patients with known renal 

masses were recruited between August 2012 and August 2014. Among those, 54 patients 

completed the MRI examination and had a diagnosis of ccRCC at pathology after surgery. 

Nine of those 54 were predominantly cystic ccRCCs and therefore excluded. Of the 

remaining 45, 18 were T1b ccRCCs. As a result, 18 patients with solid T1b tumours were 

included and represent our study population (Figure 1). Data from DCE MRI acquisitions in 
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18 of these patients was previously reported but the analysis and results of the data of the 

previous report do not overlap with this analysis25.

MAGNETIC RESONANCE IMAGING PROTOCOL

All patients underwent MRI on 3T dual-transmit MRI scanner with phased-array torso coils 

(Achieva and Ingenia, Philips Healthcare, Best, The Netherlands) before surgery (average 

MRI-surgery time = 4 ± 3 days). A multiparametric MRI protocol included T2-weighted 

imaging for anatomic localization with the following imaging parameters: echo time (TE)/

repetition time (TR) = 80/1115 ms, flip angle (FA) = 90°, number of signal averages (NSA) 

= 1, field of view (FOV) = 402×340 mm2, acquisition matrix = 284×268, bandwidth = 467 

Hz per pixel. DCE MRI was performed using a coronal three-dimensional (3D) spoiled 

gradient echo (SPGR) sequence before, during, and after the administration of a bolus of 0.1 

mmol/kg body weight of gadobutrol (Gadavist; Bayer Healthcare Pharmaceuticals, Wayne, 

NJ) at a rate of 2 mL/s followed by a 20 mL saline flush at 2 mL/s. A slightly slower 

injection rate than previously reported was used to compensate for the lower temporal 

resolution of the 3D acquisition and the high flow rate anticipated in the kidney and ccRCC. 

DCE images were acquired for about 6 minutes at a 5-second per dynamic phase with the 

following parameters: TR/TE = 3/1.53 ms, FA = 10°, NSA = 1, slice thickness = 5 mm, FOV 

= 180 × 408 mm2, acquisition matrix =120 × 288, bandwidth = 1326 Hz per pixel. To 

minimize respiratory motion, 3 consecutive dynamic phases (5 seconds each) were obtained 

within each 15-second breath-held acquisition period with a 15-second period of free-

breathing between consecutive acquisition periods. Prior to the DCE acquisition 3 coronal 

SPGR acquisitions with the same image parameters as those described above but with flip 

angles of 2, 5, and 10 degrees respectively, were obtained for the purpose of calculating 

tissue T1 relaxation25.

IMAGE ANALYSIS

Only DCE MRI data were included for the purpose of this study. DCE images were analysed 

with a commercial software, VersaVue Enterprise (iCAD Inc, Nashua, NH) with voxel by 

voxel fitting of the change of contrast agent concentration in tumour using the extended 

Tofts model. Quantitative maps of Ktrans and Kep were generated after motion correction 

using a non-rigid registration algorithm in VersaVue software26 in 18 patients. A population-

based arterial input function (AIF)27 was used since the temporal resolution of the 3D DCE 

acquisition used in this study precluded the accurate measurement of individual AIF. The 

initial area under the concentration curve (iAUC) was calculated during 60 seconds after 

contrast arrival28,29.

All DCE images and parametric maps were analysed using the open-source Picture 

Archiving and Communications System (PACS) viewer (Osirix X, version 5.6, 64-bit, 

Bernex, Switzerland). A representative slice location through the centre of the mass was 

selected by a radiologist (I.P., more than 15 years of experience) who was unaware of the 

final pathology. Regions of interest (ROIs) were drawn by the same radiologist to outline the 

periphery of the target lesion. Pixel-by-pixel values of Ktrans, Kep and iAUC of the tumour 

ROI were exported for fuzzy c-means clustering analysis. The maximum dimension in the 

cranio-caudal direction (SL), latero-lateral direction (LL) and anterior-posterior direction 

Xi et al. Page 4

Eur Radiol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(SP) was recorded. Three tumour size measurements on each renal mass were made: 1) 

maximum length (Lengthmax) of the tumour (cm) in the anterio-posterior (AP), latero-lateral 

(LL), or supero-inferior (SI) dimension; 2) tumour area within a region of interest (ROI) 

drawn to outline the periphery of the renal mass (Arearoi); and 3) estimated tumour volume 

(Volest) as SI × LL × AP. Further, we generated a surrogate of tumour shape by calculating 

the standard deviation of the lengths from AP, SI and LL. A round shaped tumour would 

have similar dimensions in all three orthogonal planes thus having a small shape 

measurement. An elliptical tumour would have a larger shape measurement since the 

differences among the dimensions were larger.

FUZZY C-MEANS CLUSTERING

Pixels within the tumour ROI in the representative slices from all patients were exported 

together and used for clustering (see below). Their DCE-derived parameters, Ktrans, Kep and 

iAUC, were recorded. All values were logarithmically transformed to correct for right 

skewness. Due to positive correlation between DCE-derived parameters, three clusters were 

used to classify different regions. They were named as low-active area (LAA), medium-

active area (MAA) and high-active area (HAA). A Fuzzy c-means (FCM) algorithm was 

then applied to the parameter domain with the number of clusters set at three30. The initial 

cluster centres were set such that the centre for LAA had lower Ktrans, lower Kep and lower 

iAUC (i.e. 25th percentile in the population); the centre for MAA had intermediate Ktrans, 

intermediate Kep and intermediate iAUC (i.e. median); and the centre for HAA had highest 

Ktrans, highest Kep and highest iAUC (i.e. 75th percentile for HAA). The FCM algorithm 

recursively calculates between two steps until the objective function is minimized: step 1) 

calculate the membership to each data point corresponding to each cluster centre based on 

distance between the cluster centre and the data point; and step 2) calculate the cluster 

centres as the weighted summation of the data points where the membership was used as 

weights. The objective function is the weighted summation of the distances between all 

points and all cluster centres with the membership as the weight. For each point, its 

membership to each of the three clusters are represented by three numbers between 0 and 1. 

These numbers can also be interpreted as the probability of belonging to each of the clusters. 

Therefore, the summation of the three memberships should be one for each point. After the 

objective function is minimized, each point is assigned to the cluster with the highest 

membership. The assigned cluster labels are then mapped back to the tumour ROIs.

HISTOPATHOLOGICAL ANALYSIS

Histopathologic results after surgical resection of the tumour served as the reference 

standard in all cases. The final diagnosis was provided by an uropathologist (more than 10 

years of experience). All tumours were classified based on the International Society of 

Urological Pathology (ISUP) grading system as low-grade ccRCC (LG ccRCC; ISUP I–II) 

or high-grade ccRCC (HG ccRCC; ISUP III–IV). The presence of necrosis at histopathology 

was recorded.

STATISTICAL ANALYSIS

First, the percentages of LAA, MAA and HAA in each tumour were calculated (noted as 

%LAA, %MAA and %HAA). Second, the differences in the median of each tumour 
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percentage area as well as the tumour size measurements between HG and LG ccRCCs were 

tested using Wilcoxon rank sum test univariately. The presence of necrosis at histopathology 

was also compared to tumour size and percentage areas.

Third, using tumour histopathology as reference, a binary decision tree model was 

constructed and tested to identify a strategy to best classify the tumours based on the 

variables calculated above31. Briefly, a binary decision tree model first ranks all variables 

according to their correlation to the reference (known as importance). The candidate 

variables included: 1) tumour size measurements (Lengthmax, Arearoi, Volest and shape); 2) 

tumour activity measurements from FCM (% LAA, % MAA and % HAA); and 3) tumour 

pharmacokinetic parameters (mean and standard deviation of Kep, Ktrans and iAUC). Then, 

the model selected a subset of the candidate variables and built a set of hierarchical rules that 

best discriminates HG and LG ccRCCs. Subsequently, the data is split into two sub-groups 

according to the variable with the highest importance and a cutoff that optimizes the overall 

accuracy (node). This procedure is repeated for each of the sub-groups until a minimum size 

is reached or no improvement can be made. The minimum size for terminal node was set to 

5 to avoid overfitting. To minimize the bias created by training and validating the model 

using the same data, a leave-one-out cross-validation technique was implemented32. The 

purpose was to train the decision tree on all but one tumour in the dataset, and compare the 

prediction of the tumour that was “left out” to its final histopathology diagnosis. This routine 

was repeated for each tumour in the data set, and the sensitivity, specificity, positive and 

negative predictive values were calculated. 95% bootstrap confidence intervals were also 

calculated. A p value <0.05 was considered statistically significant. All statistical analyses 

were performed using the software, R (version 3.2.4, Vienna, Austria). The Rpart package 

was utilized for the construction of the decision tree model.

RESULTS

Eighteen patients (15 male, 3 female; mean age ± SD, 60 ± 8 years) were included in this 

study. Patients’ characteristics are shown in Table 1. Seven patients had HG and 11 patients 

had LG ccRCC. No significant difference was found in any of the size measurements 

between HG and LG ccRCCs (Table 2, Figure 2). There was no statistical difference in mean 

length between tumours without (5.4 ± 0.9 cm) and with necrosis (6.4 ± 0.7 cm, p>0.05).

Fuzzy C-Means clustering

A total of 22192 pixels were collected from all tumours. Pearson correlation coefficients 

were 0.75 between Kep and iAUC, 0.77 between Ktrans and iAUC, and 0.88 between Ktrans, 
Kep, which indicated strong positive correlation (i.e. pixels with higher Ktrans would also had 

higher Kep and higher iAUC). The fuzzy C-means algorithm performed as expected with 

pixels from HAA exhibiting the highest values in all three DCE parameters while pixels 

from LAA showed the lowest (Table 3). Representative parametric and fuzzy c-means maps 

are shown in Figure 3.

Median and mean ± standard deviation of percentage areas were 5.6% and 8.9% ± 8.8% 

(HG) and 34.0% and 30.1% ± 17.9% (LG) for %LAA, 42.8% and 40.1% ± 16.6% (HG) and 

37.7% and 40.2% ± 13.9% (LG) for %MAA, and 53.6% and 51.1% ± 20.6% (HG) and 
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19.6% and 29.8% ± 22.5% (LG) for %HAA. Figure 5 gives a visual representation of the 

distributions of the percentage areas for HG and LG tumours. Wilcoxon rank sum test 

showed statistical significant differences in the median percent areas between HG and LG 

ccRCC in %LAA and %HAA but not %MAA (p value = 0.02 (LAA), 0.72 (MAA) and 0.02 

(HAA)).

Decision Tree Model

The optimal decision tree model was constructed with selection of only one of the candidate 

variables, %HAA. According to the model, tumours were classified as LG when %HAA < 

27% and HG when %HAA was ≥27%. An example in Figure 4 illustrates how %HAA helps 

predicting tumour grade.

After leave-one-out cross-validation, the accuracy, sensitivity, specificity, positive and 

negative predictive value (PPV, NPV) for the diagnosis of HG ccRCC were estimated as 

78% (50%, 100%), 86% (66%, 100%), 73% (58%, 100%), 67% (56%, 100%) and 89% 

(63%, 100%).

DISCUSSION

The implementation of active surveillance (AS) protocols for the management of small renal 

masses is based on the presumption that the risk of metastatic disease is minimal and likely 

lower than the morbidity and mortality associated with surgical and/or ablative interventions 

(33–35). To minimize the risk of metastasis in AS patients, most would advocate for tumour 

subtyping and grading with percutaneous biopsy at the time of diagnosis to rule out high 

grade disease. However, this approach is not without limitations as serious complications 

associated to percutaneous biopsies occur in approximately 2–4% of patients36,37. 

Importantly, incorrect tumour grading on percutaneous biopsies may occur in up to 30% of 

the renal masses sampled37 and likely more common in larger, heterogeneous tumours. The 

inability to accurately grade the latter (i.e. T1b renal masses) is an obstacle towards 

implementation of AS in patients with larger tumours despite evidence indicating that AS 

for many of these may be indeed safe8. This is particularly relevant in the case of clear cell 

histology given its association with worse prognosis and the inherent tumour heterogeneity 

that characterizes this disease38. Our preliminary results suggest that a dynamic contrast 

enhanced magnetic resonance imaging (DCE-MRI) protocol may add valuable information 

to the pre-surgical characterization of T1b ccRCC.

Traditionally, the presence of intratumoural heterogeneity within a given tumour is not 

integrated into the analysis of imaging examinations performed for characterization of renal 

masses although the overall imaging phenotype is known to correlate with the final 

histopathologic diagnosis39. However, the subjective nature of image interpretation leads to 

unreliable results because of differences in training, experience, and other possible factors 

affecting decision-making. To maximize the utility of the acquired imaging data, statistical 

analyses such as histograms, probability distributions, spatial analyses, and clustering have 

been introduced to quantify tumour heterogeneity and help improve diagnoses40–44. Our 

study introduces a novel approach by combining three DCE MRI-derived parameters to 

draw a simplified map of tumour vascular heterogeneity in ccRCC. The FCM algorithm 
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offers a possibility to summarize multiple DCE-derived pharmacokinetic maps and identify 

unique tumour regions with different enhancement characteristics.

Tumour size measurements were not helpful in differentiating HG from LG ccRCCs in our 

study. This is consistent with previous reports illustrating the association between age, sex, 

and size with increased risk of malignancy but moderate diagnostic performance of 

preoperative tools (e.g. nomograms) based on these variables for the prediction of tumour 

grade45. Our proposed decision tree model had an overall accuracy, sensitivity, specificity, 

positive and negative predictive value (PPV, NPV) for the diagnosis of HG ccRCC of 78%, 

86%, 73%, 67% and 89%, respectively. These preliminary results, if validated in larger 

series, could have immediate clinical applicability in patients with inconclusive tumour 

grading (e.g. scant tissue) on percutaneous biopsy and those where the biopsy may be 

challenging based on the tumour location. Based on its high negative predictive value (89%), 

DCE MRI may serve as a complementary test to percutaneous biopsy when selecting 

patients with heterogeneous T1b renal masses for AS. Moreover, the statistical association 

between the percentage of HAA and HG histology suggests that directing percutaneous 

biopsies to those areas of the tumour with HAA could yield a higher diagnostic performance 

for the detection of its more aggressive component. Prior reports have demonstrated an 

ability of different MRI techniques such as arterial spin labelled perfusion, DCE MRI, and 

diffusion weighted imaging to detect intratumoural heterogeneity of microvessel density and 

tumour cellularity15,46.

Implementation of the proposed DCE MRI protocol as a screening method with the potential 

to replace percutaneous biopsy to identifying high-grade ccRCC would require a high 

sensitivity and NPV. In our cohort, with cross-validation adjustment, the overall sensitivity 

and NPV of the resulting tree were 86% and 89%, respectively. Thus, 11% of tumours 

classified as LG would be misclassified. While encouraging, these results would indicate 

that percutaneous biopsy is still preferable in most clinical scenarios. However, with further 

refinements of this model (e.g. whole tumour assessment) it could potentially replace the 

percutaneous biopsy in carefully selected clinical scenarios such as in patients with other 

comorbidities, and those with difficult access and/or inherent increased risk of 

complications.

Our study has several limitations. First, although we have pathologic confirmation in all 

cases a correlation between tumour heterogeneity on DCE MRI and at histopathology was 

not performed. In addition, because of the small sample size we did not have any grade 4 

RCCs. Second, our information on tumour vascularity was limited to Ktrans, Kep and iAUC. 

We did not include other parametric variables such as Ve and Vp into our study due to their 

high noise level. Third, the FCM algorithm provides information about each pixel behaviour 

during the DCE-MRI experiment but it does not take into account information about the 

location of the pixels. For this reason, we were not able to quantify spatial heterogeneity 

patterns similar to those in previous reports43,44. Fourth, the confidence interval of the 

diagnostic performance was wide due to small sample size. Thus, the generalizability of this 

method needs to be tested on a larger dataset. Finally, we only analysed a single slice 

location through the centre of the mass for each of the DCE parametric maps. Analysis of 

multiple slices covering the entire renal mass may enhance the assessment of tumour 

Xi et al. Page 8

Eur Radiol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heterogeneity. We chose a single slice analysis based on the practicality of implementing this 

type of analysis in routine clinical practice. While expansion from 2-D to 3-D statistical 

models deserves further investigation, we anticipate that implementation of the latter would 

be more challenging (i.e. need to draw multiple ROIs per tumour and substantial increase in 

computation power needs).

In conclusion, the application of the fuzzy c-means method to the DCE MRI data could 

facilitate the implementation of DCE MRI protocols in clinical practice by offering a single 

map that can be generated in seconds and be easily analyse in the context of an MRI exam 

performed for evaluation of a renal mass. The proposed statistical method offers an 

objective, quantitative analysis with the potential to offer meaningful information about the 

tumour biology in patients. Using this approach, we were able to construct a decision tree 

model to predict tumour grade in T1b renal masses. Further validation of our preliminary 

results with this novel statistical method in larger patient cohorts is needed.
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ABBREVIATIONS AND ACRONYMS

RCC Renal Cell Carcinoma

ccRCC Clear-Cell Renal Cell Carcinoma

AS Active Surveillance

HG/LG High Grade/Low Grade

DCE-MRI Dynamic Contrast-Enhanced Magnetic Resonance Imaging

Ktrans Transfer Constant between the Intravascular and Extravascular Extracellular 

Space
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Kep Rate Constant

Ve Fractional Volume of the Extravascular Extracellular Space

Vp Fractional Plasma Volume

iAUC Initial Area Under the Concentration Curve

SPGR spoiled gradient echo

PACS Picture Archiving and Communications System

ROI Region of Interest

SI Superior to Interior

LL Lateral to Lateral

AP Anterior to Posterior

Lengthmax maximum length

AreaROI tumour area within a region of interest drawn to outline the periphery of the 

renal mass

Volest estimated tumour volume

FCM Fuzzy C-means

ISUP International Society of Urological Pathology

LAA Low Active Area

MAA Medium Active Area

HAA High Active Area

%LAA Percent Low Active Area

%MAA Percent Medium Active Area

%HAA Percent High Active Area

PPV Positive Predictive Value

NPV Negative Predictive Value

FOV field of view

FA flip angle

NSA number of signal average

TE echo time

TR repetition time
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KEY POINTS

1. Tumour size did not correlate with tumour grade in T1b clear-cell RCC.

2. Tumour heterogeneity can be analysed using statistical clustering via DCE-

MRI parameters.

3. High grade ccRCC has a larger percentage of high active area than low grade 

ccRCCs.

4. A decision tree model offers a simple way to differentiate HG/LG ccRCCs
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Figure 1. 
Diagram of the flow of participation. ccRCC= clear cell renal cell carcinoma
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Figure 2. 
Box-plots of Lengthmax, Arearoi, Volest and shape in HG and LG ccRCCs. No significant 

difference was found in any of these size measurements (all P values > 0.05).
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Figure 3. 
MRI in 2 ccRCCs. From left: T2-W; DCE maps (iAUC, Kep, Ktrans); and FCM. iAUC 
dominated the FCM result in tumour 1. In tumour 2, iAUC did not show particular pattern of 

heterogeneity while islands of high enhancement were visible in Kep and Ktrans. Both 

tumour 1 and tumour 2 are HG.
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Figure 4. 
Boxplots of percent areas for HG and LG ccRCCs. %LAA: percent low-active-area; 

%MAA: percent-medium-active-area; %HAA: percent high-active-area. Significant 

difference in median was observed in %LAA and %HAA between HG and LG ccRCC but 

not in %MAA (p value = 0.02 (LAA), 0.72 (MAA) and 0.02 (HAA)).
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Figure 5. 
Characterization of T1b RCCs. Representative examples illustrating the contribution of 

%HAA to classify T1b RCCs into HG and LG ccRCC based on the decision tree model. 

From left: T2-W; DCE maps (iAUC, Kep, Ktrans); and FCM. Tumour 1 is larger 

(Lengthmax = 6.5 cm) but has lower %HAA (10%, maroon on FCM) than Tumour 2 

(Lengthmax = 4.8 cm), which has a high %HAA (55%, maroon on FCM). The decision tree 

predicted low-grade histology for tumour 1 and high grade for tumour 2, respectively. 

Histopathologic analysis confirmed the results of the decision tree model with clear cell 

renal cell carcinoma ISUP grade II and III for Tumour 1 and 2, respectively.
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Table 1

Patient characteristics.

Characteristic No. of Patients %

Age (years) 60±8

Gender

M 15 83.3

F 3 16.7

T Stage

Ib 18 100

ISUP Grade

I 0 0

II 11 61.1

III 7 38.9

IV 0 0

Necrosis

Yes 3 16.7

No 15 83.3

Treatment

RPN 12 66.7

LRN 5 27.8

OPN 1 5.6

Data in cells represent mean values ± standard deviation.

ISUP= International Society of Urological Pathology. RPN= Robotic partial nephrectomy. LRN= Laparoscopic radical nephrectomy. OPN= open 
partial nephrectomy.
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Table 3

Mean and standard deviation of iAUC, Kep and Ktrans.

Number of pixels iAUC (mm·sec) Kep (min−1) Ktrans(min−1)

Low-active area (LAA) 4291 1.3 ± 3 0.5 ± 2 0.11 ± 0.5

Medium-active area (MAA) 10333 25.6 ± 39 11.0 ± 7 4.1 ± 3

High-active area (HAA) 7569 87.4 ± 109 35.9 ± 27 19.2 ± 17

Mean and standard deviation of iAUC, Kep and Ktrans stratified by active areas for all tumour pixels combined. High-active area had the highest 

values in all three DCE parameters while low-active area had the lowest values.
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