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Abstract 

According to the estimations of the World Health Organization and the International Agency for Research in Cancer, 
lung cancer is the most common cause of death from cancer worldwide. The last few years have witnessed a rise in 
the attention given to the use of clinical decision support systems in medicine generally and in cancer in particular. 
These can predict patients’ likelihood of survival based on analysis of and learning from previously treated patients. 
The datasets that are mined for developing clinical decision support functionality are often incomplete, which 
adversely impacts the quality of the models developed and the decision support offered. Imputing missing data 
using a statistical analysis approach is a common method to addressing the missing data problem. This work inves-
tigates the effect of imputation methods for missing data in preparing a training dataset for a Non-Small Cell Lung 
Cancer survival prediction model using several machine learning algorithms. The investigation includes an assess-
ment of the effect of imputation algorithm error on performance prediction and also a comparison between using 
a smaller complete real dataset or a larger dataset with imputed data. Our results show that even when the propor-
tion of records with some missing data is very high (> 80%) imputation can lead to prediction models with an AUC 
(0.68–0.72) comparable to those trained with complete data records.
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Introduction
According to the estimations of the World Health 
Organization (WHO) and the International Agency for 
Research in Cancer, lung cancer is the most common 
cause of death from cancer world wide [1]. One of every 
4 cancer deaths is caused by lung cancer with 1.8 million 
new cases in 2012 and 1.59 million deaths [1, 2]. A sig-
nificant proportion of patients with Non-Small Cell Lung 
Cancer (NSCLC) are not treated according to clinical 
practice guidelines mainly due to the difference in patient 
characteristics between the carefully selected clinical trial 
population from which the evidence-base is derived and 
the average patient cohort, consisting typically of older 

patients with frequent comorbidities. Clinical decision 
support systems (DSSs) leveraging models mined from 
digital medical records of previously treated patients, can 
be potentially useful in determining personalized treat-
ment based on patient and tumour specific factors [3, 
4]. They can support physicians and patients, especially 
in cases where the relevance of clinical trial results and 
evidence based guidelines are in doubt. DSSs can corre-
late patient attributes (including patient-specific clinical 
indicators, medical test/imaging results and information 
on co-morbidities) and treatments to outcomes (such as, 
survival, toxicity, quality of life). A DSS has the potential 
to effectively support decisions by predicting the out-
comes that would be achieved for a given patient with 
a given treatment. This ability stems from being able 
to learn from past histories that record the same data 
items (patient attributes, treatment administered and the 
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outcomes in each case) using sophisticated data analytics 
techniques.

The reliability of models that underpin a DSS improves 
in direct proportion to the size of the dataset that is 
used to obtain these models [5, 6]. Clinical data tends to 
be noisy and is often replete with gaps. Clinicians and 
administrative staff often do not capture critical com-
ponents of patient and treatment data in a structured 
electronic format (sometimes because they are under-
standably driven by the immediate needs of patient care 
rather than the imperative of data collection). Some-
times, the data is recorded in paper-based records. The 
size of the dataset required to build a reliable model is 
also proportional to the number of features (attributes) 
being used to obtain the prediction/classification out-
come. If the size of the dataset is not large enough, the 
statistical significance of the prediction/classification 
outcomes will be low and the model will be prone to 
over-fitting. Entries in the dataset with missing data can-
not be provided as input to the data analytics machinery, 
thus reducing the size of the effective dataset being used 
for prediction or classification. This has motivated much 
of the current work on imputing missing values [3].

There are two main approaches for dealing with miss-
ing data. The first approach filters out the records with 
missing data and uses only the complete sets for building 
the models. The problem with this approach is that if the 
quantity of data is already small, reducing it will result in 
much smaller datasets, in turn reducing the reliability of 
the built models [7].

The second approach to overcome the missing data 
problem is to perform prior imputation to fill the gaps in 
the clinical training dataset before building the DSS. This 
is performed by building another mathematical-statis-
tical model to predict the missing values [3, 8–10]. The 
imputation model is also used to predict missing attrib-
ute values for the new patterns (corresponding to a new 
patient) that are added to the DSS after it has been built 
and has been operationally deployed.

One way to build such imputation models is using alto-
gether different datasets that might have entirely different 
sets of patient attributes [3, 9]. As shown in [3, 8], such 
an approach for imputing missing values can improve 
the overall DSS performance. The main limitation of this 
approach is the need of another independent data set 
containing predictors for the missing field values, which 
may not be available.

Another way to overcome the missing values prob-
lem without imputing them is to use a machine-learning 
algorithm which tolerates missing data for building the 
DSS [11]. The disadvantage of this approach is that it 

limits the types of modeling and machine learning algo-
rithms that can be used. For example, the support vector 
machine is a very common model for clinical DSSs as it is 
known to be robust to noise in data and over-fitting [12] 
but cannot work with missing data.

A common approach to overcome these limitations 
relating to external datasets and usable machine learn-
ing algorithms is to build imputation models by analyz-
ing parts of the available dataset that contains values for 
the parameters of interest. Then to impute values of these 
parameters in the dataset where these values are missing 
[9, 10], [13, 14]. In a manner similar to [7], we use this 
approach in this paper but additionally provide a com-
prehensive analysis of the impact using different propor-
tions of complete datasets to build imputation models.

This will make the DSS building process an ensemble 
learning process (i.e., one that uses and combines more 
than one model to enhance classification or predictive 
performance [15–18]).

There is no unique solution for the imputation problem 
and an imputation technique may perform well with one 
classification problem and not perform well with another 
[9]. According to [7, 9], detailed analysis to determine an 
acceptable missing data imputation method as well as the 
survival prediction model is needed for every different 
clinical data environment, set of variables and machine 
learning algorithm. To determine the appropriate impu-
tation method for classification, the relation between 
imputation error and classification accuracy needs to be 
studied.

The aim of this paper is to mainly address two research 
questions.

1.	 The first question is to explore the effect of imputa-
tion error on the classification performance of the 
model.

2.	 The second question is to determine whether it is 
better to rely on a smaller dataset with no imputed 
values or a larger dataset with some imputed values 
for a model which would underpin a DSS; then, if 
imputation is effective, which imputation-classifica-
tion algorithms combination gives the best result for 
the NSCLC survival prediction using the available 
variables.

We assess this by building a NSCLC survival prediction 
model using the same data and a prior imputation model 
as in [3] (where the initial dataset had missing values 
which were imputed). Several models are built using dif-
ferent proportions of imputed and real data to compare 
the performance.
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Methods
Prior imputation methods
A common approach to fill the missing values is to rely 
on analyzing the existing values in the dataset to impute 
the missing ones. Two main approaches for achieving this 
are the statistical and the machine learning approaches.

The first, statistical approach includes simple proce-
dures like replacing missing values with the mean values 
of the observed data. Another method, referred to as hot 
and cold deck imputation, fills in a missing value with the 
value of a similar complete pattern [9]. An alternative is 
using a missing category indicator, and replacing miss-
ing values with the last measured value (last value carried 
forward) [10]. Single imputation of missing values usu-
ally causes problems such as reducing data variability and 
causing the standard errors to be too small, since it fails 
to account for the fact that there is uncertainty about the 
missing values [9, 10].

The multiple imputation (MI) method [9, 10, 13, 14] 
is a sophisticated statistical imputation method that is 
effective when data is missing completely at random 
(MCAR) meaning that there is no systematic pattern of 
not recording the missing data that implies a clinical rea-
son behind ignoring it or dependency between variables 
having missing values. It is also suitable for data that is 
missing at random (MAR). In the case of data not miss-
ing at random (MNAR), statistical imputation cannot 
be used [19]. This method addresses the data variability 
and the uncertainty problem discussed above. It aims to 
allow for the uncertainty in the missing data by creating 
several different imputed data sets and combining results 
obtained from each of them.

The first stage is to create multiple copies of the data-
set, with the missing values replaced by imputed values. 
These are sampled from their predictive distribution 
based on the observed data. Thus MIs are based on a 
Bayesian approach. The imputation procedure must 
fully account for all uncertainty in predicting the missing 
values by injecting appropriate variability into the mul-
tiple imputed values. The second stage of the statistical 
approach is to use standard statistical methods to fit the 
model of interest to each of the imputed datasets. Esti-
mated associations in each of the imputed datasets will 
differ because of the variation introduced in the impu-
tation of the missing values. Standard errors are calcu-
lated using Rubin’s rules [20, 21], which take account of 
the variability in results between the imputed datasets, 
reflecting the uncertainty associated with the missing 
values. Valid inferences are obtained because we are aver-
aging over the distribution of the missing data given the 
observed data [10, 13].

The second approach for imputing missing values is 
the machine learning approach. The k-nearest neighbor 

algorithm can be used to estimate missing values by find-
ing the most similar complete k-data points or patterns 
and use their values [9, 22]. A lot of work has also been 
done to build more elegant machine learning algorithms 
like neural networks and decision trees for imputation [9, 
22, 23]. Another method taking account of more values 
to improve the variance estimation is expectation maxi-
mization (EM) which uses the statistical maximum likeli-
hood of a missing value. This approach iterates through 
a process of estimating missing data and then estimating 
parameters. The Maximization step performs maximum 
likelihood estimation as if there were no missing data. 
Then, the Expectation step finds the conditional expec-
tation of the missing values given the observed data and 
current estimated parameters. These expectation values 
are then substituted for the missing values [9, 20–22]. 
This approach continues until there is convergence in the 
parameter estimates.

The majority of the literature in imputation concludes 
that any imputation method’s performance relies on 
many problem specific factors including the depend-
ency among the variables and the reasons behind occur-
rence of missing data. Nonetheless, MI and the EM are 
the dominant methods used currently in several domains 
for imputation due to their ability to consider the uncer-
tainty and variability of the imputed data [9, 13].

Lung survival classification methods
The classification problem tackled here is prediction of 
lung cancer survival after radiotherapy. Data relating to 
patients with NSCLC, who underwent a similar treat-
ment protocol (a radical curative protocol) and where 
survival outcome was available, were used to build a clas-
sification model after imputing missing data. This model 
could be used to classify newly diagnosed patients pre-
treatment to predict survival if they undergo radical 
radiotherapy treatment. Based on this classification, a cli-
nician could discuss treatment options with the patients 
on whether to proceed with this treatment or try another 
one.

The features selected to be predictive for NSCLC sur-
vival after radiotherapy were the Eastern Cooperative 
Oncology Group (ECOG) scale of performance status, 
Forced Expiratory Volume in one second as a percentage 
of predicted (FEV1), Gender, Age and Gross Tumor Vol-
ume (GTV) and the 2 year survival status as a target class 
based on availability and the studies reported in [24, 25].

The prediction models used in this work were based 
on several machine-learning algorithms: Naïve Bayesian 
(NB), Multi-layer Perceptron Neural Network (MLP), 
Decision Tree (DT), Random Forest (RF), Logistic 
Regression (LR), Polynomial Kernel SVM (Poly-SVM), 
Radial Basis Function Kernel SVM (RBF-SVM) and the 



Page 4 of 11Barakat et al. Health Inf Sci Syst (2017) 5:16

Pearson Universal Kernel SVM (PUK-SVM). To minimize 
potential bias in implementation and for reproducibility, 
all the models were implemented using the widely-used 
WEKA data mining tool [26]. The aim is not to compare 
the performance of those machine-learning algorithms 
but to show the effect of using an imputation algorithm 
before training the model. The prediction models were 
evaluated using the area under the curve (AUC) of the 
receiver operating characteristic (ROC) as it is the most 
common metric in evaluating classifiers and to ensure 
that the system performance is not sensitive to certain 
threshold values [7, 27]. These machine-learning algo-
rithms were selected as they are highly utilized in this 
particular field of medicine [12, 28].

Experimental setup
Dataset description
A dataset of NSCLC patients was extracted and de-
identified from the Liverpool Cancer Therapy Center 
information system and Picture Archiving and Com-
munication System (PACS). The features extracted 
from the oncology information system included the 
age, gender, ECOG performance status, FEV1, and 
2-year survival status of the Stage I-IIIB NSCLC 
patients who received radical curative radiotherapy 
treatment, based on a total dose of 45  Gy. The GTV 
for each patient was calculated from the computed 
tomography (CT) scans taken for radiotherapy plan-
ning, which were available from the PACS. The avail-
able data was found to consist of 269 patient records in 
total. Only 108 records contain values for every feature 
while the remaining 161 records have either missing 
ECOG or FEV1 values or both are missing. The gen-
der and survival status values were binary values and 
ECOG data values were categorical. The remaining 
features values were continuous.

In this experiment we split the patient data into two 
separate data sets to investigate the effect of imputation 
error on prediction decision performance. Firstly, miss-
ing values were randomly assigned within the complete 
dataset of 108 patient records in order to compute an 
imputation error as the difference between the imputed 
and real value. Secondly, we test the generalization of 
the prediction models on external data. The models were 
trained with 161 records that originally had missing 
values but were completed with imputation and where 
model parameters were calibrated using 10-fold cross-
validation. We then tested these models on the 108 com-
plete records dataset.

The complete dataset is referred to as the 108 dataset 
while the missing values dataset is referred to as the 161 
dataset.

Experimental methodology
To investigate the effectiveness of using prior imputation 
on survival prediction, artificial gaps have been intro-
duced randomly to the ECOG (categorical) and FEV1 
(continuous) fields in the 108 dataset and imputation 
algorithms were used to fill those missing values. In addi-
tion to the KNN and EM algorithms investigated in [7] 
this work also includes the mean imputation, hot–cold 
deck and MI for filling missing data in advance before 
building prediction models. The mean, hot–cold deck 
and KNN imputation modules were implemented in 
MATLAB [29] while the MI and EM imputation were 
conducted using the IBM SPSS software [30] to ensure 
unbiased implementation.

The ratios of cases containing missing data (ECOG, 
FEV1 or both) considered are from 10 to 100% in incre-
ments of 10% and the survival status field has been 
removed completely during the imputation process to 
ensure independence. For each ratio, 10 different datasets 
were generated to ensure insensitivity of the results to 
coincidence that may have happened when the random 
gaps were made. This resulted in 100 different generated 
data sets. For each data set we applied the Little’s MCAR 
test and this showed that the missing values were MCAR 
[19]. This indicates that the status of whether data point 
is missing was not dependent on another variable in the 
data set and validates the application of imputation.

Each of the five imputation methods used in this work 
produced estimations for the missing values in each data 
set. The EM algorithm and MI algorithms were imple-
mented in the SPSS software package [30] using a normal 
distribution for EM and the Markov Chain Monte Carlo 
algorithm for MI [31].

Performance evaluation
To address the first question, an error measure was cal-
culated for each imputation algorithm. The normalized 
mean absolute error, E, between the imputed and actual 
values is calculated using:

where F is the number of features containing miss-
ing data, xf′ is the imputed value in the fth feature, xf is 
the actual real observed value for feature f. The maxi-
mum and minimum observed value of xf were used for 
normalization.

The average 10-fold cross validation AUC for every 
model trained with the different levels of missing data 
(10–80%) is reported as the evaluation metric. Also, 
the same models were built using the 161 dataset where 
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100% of the records contain missing values; and the mod-
els were tested on the 108 dataset.

To address the second question, a model is be trained 
for each level of missing data using only the small but 
complete part of the dataset, the 108 records dataset (no 
imputation) and compared with the model built on the 
whole imputed dataset. However, answering this ques-
tion is not straightforward as there are several variables 
playing roles in achieving this answer including the train-
ing data size, the machine learning algorithm used for 
model building, the imputation algorithm and the evalu-
ation method.

An experiment was set up to consider these values. 
First, the 108 patient complete dataset was used to evalu-
ate the models built from datasets with different ratios of 
missing data. For instance, for 30% missing data another 
model is trained using only the 70% complete records 
without incorporating imputed records. The model is 
then tested using the 10-fold cross validation and on the 
original values of the 30% part used for testing the impu-
tation. Second, the performance of models trained on the 
161 patient dataset with missing values was tested on the 
108 patient dataset and this is compared with the models 
built in the first step.

To report the significance of the results, uncertainty 
bars are displayed for all averaged results, estimated by 
calculating the 95% confidence intervals using the mean, 
standard deviation and sample size.

Results and discussion
Imputation error
Figure 1 shows that using imputation for the lung cancer 
survival dataset has a minimum normalized mean abso-
lute error of 0.132 when the ratio of records having miss-
ing values was 10% and the maximum error was less than 
twice that, at 0.225, when the missing ratio was 100%. 

The range of FEV1 was 27–125% and the range of ECOG 
is 0 to 2 in the collected datasets.

More importantly, for all the datasets there is a com-
mon pattern of very high error for the hot–cold deck 
imputation method. From the uncertainty bars, there 
is no significant difference in the error of the rest of the 
used imputation algorithms except when the missing 
data ratio reaches 20% where the MI has error signifi-
cantly higher than the mean, KNN and EM imputation. 
In general, it can be said that the hot–cold-deck has the 
highest error followed by the MI then the KNN and EM 
while the mean gives the lowest error.

Survival prediction
Complete data results
Figure 2 shows the average 10-fold cross validation AUC 
of different types of survival prediction models trained 
using the complete dataset of 108 patients without any 
missing values or artificial imputation. Using the com-
plete data for building a survival model could achieve an 
AUC between 0.61, and 0.72, using the NB classifier.

Imputed data results
Figure 3 shows the values for the AUCs of the NB, RF and 
SVM prediction models when trained with datasets con-
taining missing data imputed using statistical imputation 
methods (mean, hot–cold-deck, KNN, MI and EM). The 
figure shows these three classifiers results as an example; 
the rest show similar properties. For each missing data 
ratio, the imputation algorithms have produced similar 
AUCs where the lines and uncertainty bars intersect in 
many points despite that they had different normalized 
error results in Fig. 1.

Despite that the hot–cold deck had the highest abso-
lute mean error as shown in Fig. 1, the AUCs of the pre-
diction models trained by datasets containing hot–cold 
imputed data were very similar to the AUCs of the same 
prediction models trained with datasets having imputed 
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data using other algorithms. This indicates that while 
the distances between the imputed values and the actual 
value was high in magnitude, the direction of this differ-
ence does not breach the class boundaries of this classifi-
cation problem.

Several imputed datasets produced models with higher 
AUCs than the models trained without imputed values. 
This was found while using the 10 datasets with randomly 
assigned missing value positions. Imputed values are esti-
mated according to similarity analysis with the existing 
values to be in the same range and therefore this can lead 
to data points of the same class being closer together and 
thus aids in fitting a classifier to the data.

Another observation from these graphs is that with 
10% imputed data the prediction models had AUCs 
between 0.61 and 0.71. This is not significantly different 
to the complete data results of AUCs between 0.61 and 
0.72, considering the uncertainty bars in Fig. 2. With 30% 
imputed data the prediction models had AUCs between 
0.6 and 0.71. This means that for this problem and its 
collected dataset, imputing 30% of the dataset by analyz-
ing the remaining 70% can help in building prediction 
models with AUCs very close to using the complete real 
dataset.

It was also found that even with high ratios of records 
contain missing data, between 80 and 100%, AUCs of 0.7 
can be achieved. However, these AUCs are of the cross 
validation test where parts of the imputed data were 
randomly included in the test. Hence the next section 
describes experiments of building models using imputed 
data while the test is the real complete patient data with-
out imputation.

Imputed external data results
As pointed out in the introduction, one motive for this 
work is investigating solutions for the scenario of having 

incomplete records but building prediction models after 
imputing the gaps.

The same imputation algorithms were used to gener-
ate five different training datasets and the same classifi-
ers were built using each dataset. First, the models were 
tested for convergence on the training data using the 
10-fold cross validation test. Then the models were tested 
using the complete 108 patients records used in the pre-
vious experiment to ensure the generalization of the 
models.

Table 1 displays the average AUC of the 10-fold cross 
validation testing for every model when trained with the 
five training datasets generated by imputing the missing 
data using the five imputation algorithms. All the tested 
models could reach AUC of at least 0.6 with one or more 
imputation algorithm.

The best performance achieved was by the LR model 
over all the tested models with AUC of 0.68 using data 
imputed by the MI or EM algorithms. This is different 
from the results in [7] as expected since the classification 
variables and classes are different [9]. The LR also had the 
best performance compared to other models when the 
data was imputed using the rest of the imputation algo-
rithms. Another observation is also that the hot–cold 
deck imputation algorithm performance is comparable 
with the other imputation algorithms and not consist-
ently lower despite the high-normalized error shown in 
Fig. 1.

Table  2 displays the AUC of the same models when 
tested using the 108 complete real patient records. An 
AUC of 0.68 is still achievable with the LR model but 
trained using hot–cold deck and KNN imputed data sets. 
Using the MI and EM still gave comparable AUCs of 0.65 
and 0.67 respectively.

There is a noticeable drop in the performance of all 
the models trained with datasets imputed by the mean 

Table 1  Average AUC and standard deviation of the 10-fold cross validation calibration test of the imputed 161 patient 
dataset

The highest AUC values are highlighted in bold

Algorithm/model Mean Hot–cold KNN MI EM

AUC ± σ AUC ± σ AUC ± σ AUC ± σ AUC ± σ

Naïve Bayes 0.66 ± 0.01 0.66 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.64 ± 0.01

MLP 0.66 ± 0.02 0.64 ± 0.02 0.62 ± 0.01 0.65 ± 0.02 0.66 ± 0.01

Decision Tree 0.64 ± 0.02 0.61 ± 0.01 0.60 ± 0.01 0.62 ± 0.01 0.62 ± 0.02

Random Forest 0.62 ± 0.02 0.61 ± 0.01 0.61 ± 0.01 0.62 ± 0.01 0.63 ± 0.01

Log Regression 0.66 ± 0.01 0.66 ± 0.01 0.66 ± 0.01 0.68 ± 0.01 0.68 ± 0.01

SVM 0.62 ± 0.01 0.62 ± 0.01 0.60 ± 0.01 0.61 ± 0.01 0.62 ± 0.01

RBF-SVM 0.59 ± 0.01 0.59 ± 0.02 0.59 ± 0.01 0.60 ± 0.01 0.59 ± 0.01

PUK-SVM 0.60 ± 0.01 0.62 ± 0.01 0.61 ± 0.01 0.62 ± 0.01 0.6 ± 0.02
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imputation algorithm when tested using the external 
108 patients dataset compared to the 10-fold cross vali-
dation results. The only exception was the LR, which 
kept the same AUC of 0.62 in both cases. This can be 
interpreted as over-fitting the model to the training data 
resulting from using only one value to fill the gaps in the 
training data, which is the mean value extracted from 
the training data. This mean value was not close enough 
to the real values found in the external 108 patients test 
dataset.

Building a NSCLC survival model based on the ECOG, 
FEV1, Gender, Age and GTV predictors is possible and 
can reach AUC of 0.68 even when 100% of the records 
have a missing value for ECOG, FEV1 or both. LR gave 
the best performance and using the mean imputation has 
the negative effect of exposing the prediction models to 
over-fitting. There was also no strong relation between 
the imputation algorithm error in estimating missing 
data and the prediction performance of the models built 
using the imputed data.

Imputations versus no imputation
In Fig. 4 we show two modeling performance outcomes 
as the proportion of missing data is increased. The first 
is the AUC of the model trained on the complete data 
portion as assessed by 10-fold cross-validation. The sec-
ond assessment is the AUC performance of the same 
model on the with-held portion of with missing data at 
each level. The additional points at 100%, marked by a 
triangle and cross, represent the best cross-validation 
and test AUCs of the approach when trained using the 
dataset of 161 patients that originally had missing data. 

All five imputation algorithms were tested and only 
the highest AUC values were shown in the graph. The 
NB, RF and SVM results were the only ones shown for 
brevity.

With the increase of missing data and the decrease of 
training data, the cross validation results improve, how-
ever, the external data AUC degrades to a lesser degree. 
This is expected as it is easier to fit a classifier to separate 
a small number of data points but it is also indicative of 
over-fitting. With more than 80% missing data for the set 
of 108 patients (86), no models could be built due to the 
low number of samples.

According to the figure, the cross markers, referring 
to models trained on data with imputed values, are 
always above or in the range of the red curve. This indi-
cates that in this situation there is no significant impact 
of applying imputation and training with the larger 
imputed data set.

However, each classifier has different meeting points 
between the imputed data trained models performance 
and the size of the complete part of the data. Table  3 
shows the AUC of the imputed data trained models and 
the equivalent AUC of the complete data along with the 
corresponding complete data ratio used to build this 
model. For example, the first row shows that the two NB 
models gave similar AUC when the complete data model 
was trained with only 30% of the 108 patients data (32 
records); and that models trained with amounts over 30% 
of the training data gave higher AUC than the models 
trained with 161 imputed data when tested on external 
data and the ones trained with less than 30% gave lower 
performance.

But other models like MLP, RF and PUK-SVM had 
AUC equivalent to the imputed data model only when 
the ratio of the complete data became 80% (88 records). 
Of course, focus should be given to the models with the 
best performance in general and the table shows that LR, 
RF and the MLP have the best performance. The equiva-
lent AUCs in the complete data part trained models were 
at 60, 80 and 80% respectively.

So the answer to the question of whether to impute or 
not depends on the kind of model used and the available 
amount of data. For all the models, when the amount 
was less than 30% of the 108 patients data, imputation 
was necessary to have a working model. Just 30% of this 
data (32 records) was enough to have NB and DT mod-
els performing similarly to models trained using the 161 
imputed records.

Table 2  Average AUC of  the external data set test of  the 
models trained with  imputed 161 patients dataset 
and tested on the complete 108 patients records

The highest AUC values are highlighted in bold

Mean Hot–cold KNN MI EM

Naïve Bayes 0.54 0.62 0.62 0.58 0.59

MLP 0.58 0.67 0.63 0.59 0.60

Decision Tree 0.51 0.52 0.54 0.55 0.51

Random Forest 0.57 0.60 0.60 0.67 0.67

Log Regression 0.62 0.68 0.68 0.65 0.67

SVM 0.57 0.60 0.60 0.67 0.67

RBF-SVM 0.52 0.59 0.54 0.56 0.58

PUK-SVM 0.52 0.53 0.50 0.53 0.55
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Fig. 4  AUCs for survival Naïve Bayesian, Random Forest and SVM prediction models trained using the complete part only of 108 patients datasets 
with 0–100% missing data compared to models built using the 161 patients dataset containing missing data (colored)
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Conclusion
According to our analysis, there is no significant rela-
tionship between error in estimating the missing values 
and the prediction AUC of the models built using the 
imputed data. The hot–cold deck imputation method 
had the highest normalized error in estimating the miss-
ing data but it gave the highest AUC when used with the 
LR algorithm for building a model. The mean imputation 
algorithm exposes the prediction models to over-fitting 
while the hot–cold deck, KNN, MI and EM gave similar 
performance in terms of prediction AUC.

Unsurprisingly, a complete dataset is the best way to 
build prediction models. However, the amount of com-
plete data needed to obtain a model performing at the 
same level of discriminability, in terms of AUC, as a 
model built using imputed records varied with differ-
ent classifiers. Therefore the algorithm sensitivity to the 
level of missing data in the application may then be a sig-
nificant factor in selecting which modeling approach to 
adopt. Logistic Regression models consistently exhibited 
superior performance in each of the tests.
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