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Modulation of Immune Signaling 
and Metabolism Highlights 
Host and Fungal Transcriptional 
Responses in Mouse Models of 
Invasive Pulmonary Aspergillosis
Shiv D. Kale1, Tariq Ayubi1, Dawoon Chung2,5, Nuria Tubau-Juni1, Andrew Leber1,  
Ha X. Dang1,4, Saikumar Karyala1, Raquel Hontecillas1, Christopher B. Lawrence3,  
Robert A. Cramer2 & Josep Bassaganya-Riera1

Incidences of invasive pulmonary aspergillosis, an infection caused predominantly by Aspergillus 
fumigatus, have increased due to the growing number of immunocompromised individuals. While  
A. fumigatus is reliant upon deficiencies in the host to facilitate invasive disease, the distinct 
mechanisms that govern the host-pathogen interaction remain enigmatic, particularly in the context of 
distinct immune modulating therapies. To gain insights into these mechanisms, RNA-Seq technology 
was utilized to sequence RNA derived from lungs of 2 clinically relevant, but immunologically distinct 
murine models of IPA on days 2 and 3 post inoculation when infection is established and active 
disease present. Our findings identify notable differences in host gene expression between the 
chemotherapeutic and steroid models at the interface of immunity and metabolism. RT-qPCR verified 
model specific and nonspecific expression of 23 immune-associated genes. Deep sequencing facilitated 
identification of highly expressed fungal genes. We utilized sequence similarity and gene expression 
to categorize the A. fumigatus putative in vivo secretome. RT-qPCR suggests model specific gene 
expression for nine putative fungal secreted proteins. Our analysis identifies contrasting responses by 
the host and fungus from day 2 to 3 between the two models. These differences may help tailor the 
identification, development, and deployment of host- and/or fungal-targeted therapeutics.

Invasive pulmonary aspergillosis (IPA) is an infection of the lower respiratory system by the filamentous fungus 
Aspergillus fumigatus, and is principally associated with high mortality rates. IPA occurs in immune compro-
mised patient populations and progresses rapidly. These populations are composed of those: (i) suffering from 
severe or prolonged neutropenia1,2 (ii) receiving prolonged and high dose steroid treatments3,4 (iii) receiving 
immune suppressive regimens5, (iv) receiving stem cell and organ transplants6–8, (v) with chronic obstructive 
pulmonary disease (COPD), and (vi) viral and microbial sepsis9–11. The spectrum and diversity of patients 
susceptible to IPA is rather astounding though the underlying mechanisms in each at risk patient population 
remains enigmatic. Progression of IPA is thought to be dependent primarily on the type and severity of immune 
deficiency and includes both quantitative and qualitative innate immune effector cell defects. However, recent 
studies also highlight significant fungal strain variability that may account for differences in establishment of 
infection and disease progression12–16. Several mouse models of IPA have been developed to dissect clinically 
relevant host and fungal responses. For example, IPA in chemotherapeutic mouse models, highlighted by the use 
of cyclophosphamide, is thought to be due to host damage driven principally by the growth and progression of 
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the fungus. Host damage in repeated high dose cortisone acetate treatment models has been suggested to occur 
due to a combination of fungal proliferation and immunopathogenesis17,18. Pulmonary cytokine responses differ 
amongst mouse models of IPA19, as well as putative fungal virulence mechanisms, with the role of gliotoxin being 
a prime example18,20.

The development of whole genome and transcript based sequencing technologies has facilitated the discovery 
of novel aspects of A. fumigatus biology and pathogenesis. Genome sequences are available for several strains, 
including both the Af293 and Af1163 isolates21,22. Transcriptomics studies focused on A. fumigatus biofilm and 
planktonic growth provided novel insight into newly identified genes associated with biofilm formation23. In 
vitro challenge of A. fumigatus conidia and hyphae with neutrophils from humans suggested enhanced metabolic 
reprogramming and iron/copper assimilation in response to healthy neutrophils in comparison to those suffering 
from chronic granulomatous disease24. In human blood, A. fumigatus is thought to enter a resting mycelial stage 
due to decreased expression of genes associated with metabolism and nutrient uptake25. Dual organism tran-
scriptomics of human airway epithelial cells challenged with A. fumigatus has also provided mechanistic insights 
into differences between immortalized and primary cell responses to A. fumigatus in vitro26. Transcriptomics 
of normal human monocytes in response to A. fumigatus identified several upregulated cytokines, specifically 
IL-1β, IL-8, CXCL2, CCL4, CCL3, and CCL2027. Transcriptomics has also facilitated the identification of global 
gene expression changes associated with the pH-responsive transcription factor PacC during chemotherapeutic 
mouse model of IPA28. In vivo transcriptomics studies of A. fumigatus identified SrbA as a novel regulator of fun-
gal hypoxia and virulence29. Importantly, it seems clear that in vivo transcriptional responses are likely different 
from standard in vitro culture conditions as highlighted by studies on the AcuK and AcuM transcription factors30.

Here we provide a global overview of our dual organism transcriptomics study aimed at identifying differences 
and similarities in host and fungal gene expression between steroid treatment and chemotherapeutic mouse mod-
els of IPA. Our findings highlight the novel and context-specific expression of several Nlrs, Tlrs, and Clecs during 
IPA. We also identify conserved and contrasting expression of the putative A. fumigatus secretome between the 
chemotherapeutic and steroid mouse models of IPA. These differences and similarities in host and fungal gene 
expression provide a system-wide overview of the interaction of A. fumigatus and the host. Determination of 
global gene expression profiles during chemotherapeutic and steroid models of IPA provides an important frame-
work for the system-wide identification of potential novel host and fungal therapeutic targets that can be explored 
mechanistically in future studies for biological significance.

Results
Analysis of RNA Sequencing.  RNA was extracted from total lung tissue of chemotherapeutic (LD) and tri-
amcinolone treated (SD) mice (CD1) on day two and three post A. fumigatus (CEA10) aerosol challenge. In both 
these models a 80–100% mortality is reached within two weeks, with the majority of deaths occurring between 
days 4–631. Fungal load was determined using the quantitation of 18 s rRNA normalized to host β-actin mRNA 
via RT-qPCR (Supplementary Figure S1). We detected varying levels of 18 s rRNA across all normalized sample 
replicates; however samples with relatively low normalized levels produced substantial burden (1,752 ng of 18 s 
rRNA per ng of host β-actin). Total RNA was utilized for subsequent library preparation via Oligo-dT beads that 
capture polyA tails to generate a cDNA library of the coding transcriptome without strand information. Library 
sequencing via HiSeq-2500, mapping, and quality control filtration of reads resulted in approximately 16 M to 
29 M paired end reads per sample replicate (Supplementary Table S1). Approximately 98% of mapped reads 
aligned to mouse genes, while (50,000 to 1.1 M) paired end reads mapped to A. fumigatus strain A1163 genes 
per sample replicate. The vast majority of mapped mouse reads corresponded to exonic regions (>83%), while 
~10% and ~2% mapped to intronic and intergenic regions. Reads mapped to A. fumigatus were >75% for exonic 
regions, ~4% for intronic regions, and 20% for intergenic regions. Cufflinks/CummeRbund and HTSeq. 2/DeSeq. 
2 based pipelines were employed to determine FPKM and count distribution, covariance between samples, fold 
difference in expression (log2 fold change > 1), and cut-off values for statistical significance (q-value < 0.05, FDR-
adjusted p-value < 0.05) for mouse and fungal genes respectively (Supplementary Files S1,6, Supplementary 
Table S4, Supplementary Figure S2).

Host Gene Expression.  Approximately 15,000 unique mouse genes were identified with a FPKM > 1 for 
either the steroid (SD) and chemotherapeutic (LD) models two and three days (D2, D3) post fungal inoculation 
(Fig. 1a). FPKM cutoff of 1 was chosen based on a manual investigation of the histogram of FPKM distribution 
across genes (Supplementary Figure S3A). 13,812 mouse genes were expressed at varying levels amongst all mod-
els and days, while 256–465 genes were uniquely expressed for a given model and day (Fig. 1a). Mouse genes, of 
which 33,491 had an FPKM ≤ 1, across both models and time points were not considered as adequately expressed 
(Fig. 1a). Hierarchical clustering analysis based upon transcript levels for each sample replicate indicated 9 of 11 
replicates clustered closely with their respective counterparts (Fig. 1c). In two instances, a given sample clustered 
more closely with an alternate grouping, specifically a replicate of the day 3 steroid model (SD3_0 group) grouped 
with the replicates of the steroid model at day 2, and the chemotherapeutic model at day 3 (LD3_2) grouped more 
closely with the steroid model at day 3. SD3_0 and LD3_2 both had relatively low measured fungal burden in com-
parison to their counterparts, though both were lower in comparison to their apparent novel clustered groupings 
as well. Hierarchical clustering also indicated an initial separation from the root node by day and then by model. 
Principal component analysis and multidimensional scaling of filtered mouse genes suggests the steroid model 
on day 2 and the chemotherapeutic model on day 3 accounted for the highest degrees of variability while the ster-
oid model on day 3 and the chemotherapeutic model on day 2 were significantly lower (Fig. 1d, Supplementary 
Figure S2). Due to the large coverage of mouse genes by each model and time point, further analysis was relegated 
to differentially expressed genes and clustered gene families amongst the two models and time points.
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Figure 1.  Profiles of murine transcripts during steroid and chemotherapeutic models of invasive pulmonary 
aspergillosis on day 2 and 3 post inoculation. Filtered, paired-end reads reads were analyzed by Cufflinks based 
pipeline. Transcripts with a FPKM greater than 1 were considered adequately expressed. (a) Venn diagram of 
murine transcript expression (FPKM > 1) between the two models. (b) Diagram of number of unique murine 
transcripts expressed and number of identified transcripts considered differentially expressed between the two 
models (FPKM > 1 in one of two comparators, log2-fold change > 1, and q < 0.05). (c) Hierarchical clustering 
and (d) principal component analysis of samples based on filtered gene expression. (e) Differentially expressed 
genes unique and conserved (yellow) between models from day 2 to day 3 post inoculation. (f) Composition 
of day 3 differentially expressed genes for a given model in respect to differential expression at day 2. Steroid 
Model, S; Chemotherapeutic Model, L; Day 2, D2; Day 3, D3; DEGS, differentially expressed genes.
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Differentially Expressed Genes in the Host.  Differential gene expression was determined between 
each model for a given day and between each day for a given model (Fig. 1b) using a Cufflinks based pipeline 
(q-value < 0.05). This output was then further filtered based on the requirement that one comparator have a 
FPKM > 1 and a minimum of log2-fold change of 1 for a given comparison (Supplementary File S1). With these 
requirements, 416 differentially expressed genes (244 with increased expression, 172 with decreased) were identi-
fied from day 2 to day 3 post-fungal inoculation for the steroid model, while 1,813 differentially expressed genes 
(1,173 with increased expression, 640 with decreased) were identified in the chemotherapeutic model from day 
2 to day 3 post-inoculation (Fig. 1b). Of these 416 and 1,813 differentially expressed genes from day 2 to day 3, 
only 160 were increased in expression in both models, 57 were decreased in expression in both models, and 8 
had inverse expression between the two models (Fig. 1e). Approximately 88% (1,596 of 1,813) of differentially 
expressed genes from day 2 to day 3 were unique to chemotherapeutic model, while 47% (199 of 416) of differen-
tially expressed genes from day 2 to day 3 were unique to the steroid model (Fig. 1e). These findings suggest the 
majority of gene expression changes from day 2 to day 3 were exclusive to a given model. The increased number 
of differential expressed genes between the two models on day 3 (932 total; 427 with increased expression in 
chemotherapeutic, 505 with increased expression in steroid) in comparison to day 2 (522 total; 76 with increased 
expression in chemotherapeutic, 446 with increased expression in steroid) furthered the concept of increased 
divergence in gene expression (Fig. 1b).

We then looked to determine how many of the differentially expressed genes between the models on day 3 
were also differentially expressed between the models on day 2. For the steroid model, approximately 76% (385 of 
505) of day 3 differentially expressed genes with statistically higher expression (enriched) for the steroid models 
were not considered enriched on day 2. Similarly, 86% (368 of 427) of day 3 enriched genes for the chemothera-
peutic model were not enriched on day 2. The identification of these various groupings of differentially expressed 
genes provided a template for pathway, protein class, and functional categorization and enrichment to initially 
describe changes between and within a given IPA model. Importantly, these gene expression data suggest that 
host responses to IPA disease progression is temporal and model specific.

Enrichment and Categorization of Mouse DEGs.  To characterize the differentially expressed gene 
groupings, we utilized a combination of statistical enrichment of both biological processes (BINGO32,33) and 
curated protein-protein interaction networks (Reactome34), classification of protein function (PantherDB35), and 
involvement in metabolic pathways (KEGG overlays36) (Tables 1 and 2, Supplementary Figure S4, Supplementary 
Files S2, S3). Across all methods, most statistically enriched pathways and processes were focused on aspects of 
immune signaling and to a lesser extent various aspects of central metabolism. The greatest number of statistically 
enriched pathways were associated with the large number of differentially expressed genes from day 2 to day 3 
in the chemotherapeutic model (Supplementary Files S2, S3). This grouping of differentially expressed genes 
also had the highest degree of network connectivity amongst enriched protein-protein interaction networks via 
Reactome (Supplementary Figure S4). Increased connectivity suggests a concerted effort to differentially regulate 
multiple agents of a given biological process in the chemotherapeutic model.

Our initial assessment of statistically enriched immune pathways from Reactome (p < 0.001) in the chemo-
therapeutic model from day 2 to day 3 identified increased expression of “cytokines and receptors” (51 genes), and 
“chemokines and receptors” (39 genes) (Supplementary File S3). Of specific note was the statistical enrichment of 
Tnf-α (26 genes), IL-23 (14 genes), IL-12 (12 genes), and IL-2 (11 genes) signaling pathways, as well as broader 
Jak-STAT signaling (25 genes), NFκB signaling (16 genes), and nod-like receptor signaling (12 genes).

Differentially expressed genes in steroid model from day 2 to day 3 statistically enriched “Cytokine-cytokine 
receptor interaction” (15 genes), and “Chemokine signaling pathway” (11 genes). These genes also only statisti-
cally enriched TNF-α (6 genes) and IL-23 (4 genes) signaling pathways. Comparison of differentially expressed 
genes between the two models on day 3 revealed statistically enriched “Cytokine-cytokine receptor interaction” 
(34 genes) and “chemokines and receptors” (20 genes) for the chemotherapeutic model. Elevated expression of 
differentially expressed genes for the chemotherapeutic model in comparison to the steroid model also statisti-
cally enriched the Jak-Stat (25 genes), toll-like (18 genes), and nod-like (12 genes) innate immunity pathways.

Analysis of Immunologically Relevant Genes.  To further understand immune signaling patterns 
amongst the steroid and chemotherapeutic models we clustered 672 immunologically relevant genes (IRGs) 
(FPKM > 1 for at least one model and time point) based on gene expression on day 2 and day 3 in the steroid and 
chemotherapeutic models (Fig. 2, Supplementary Table S2). Gene expression patterns fell into 9 categories with 
group 9 being largest in size (245 members) followed by groups 1,7,6, and 2 (68–102 members) (Fig. 2a,b). Gene 
expression pattern for group 9 was characterized by strong expression in the chemotherapeutic model on day 3. 
Other groups, such as Group 6, 2, and 7, were characterized by strong expression for more than one model and/
or day.

We then independently analyzed several genes, predominately cytokines and transcription factors, known 
to be hallmarks and drivers of T-cell differentiation (Supplementary Figure S5). Our analysis of transcript levels 
from early stage cytokines of T-helper (Th) cell differentiation suggest a predominantly mixed Th1, Th17, Th2, 
Th9, and TfH response. For Th1, Th2, and Th17 associated transcription factors (TFs), only one TF (Stat4, Stat3, 
Stat6, Stat5) was expressed, while their counterpart transcription factors (Tbx21, Rorc, Gata3, Foxp3) remained 
generally repressed or lowly expressed for the chemotherapeutic and steroid models. Secondary stage cytokines 
suggested Th9 and TfH signaling events were not occurring in both models while Th17 associated cytokines were 
largely mitigated in the steroid model and non-existent in the chemotherapeutic. The Th1 associated cytokine 
Tnf-α was differentially increasing in the chemotherapeutic model, while consistent in the steroid model from 
day 2 to day 3. Our analysis demonstrates a partial activation of Th1, Th2, and Th17 transcription factors, fol-
lowed by a low number and diminutive level of secondary stage cytokines associated with these specific Th cell 
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responses. The exception of course being the elevated expression of Tnf-α, which can also be viewed as an early 
phase or broadly pro-inflammatory cytokine. Both models resulted in an incomplete Th1, Th17, and Th2 sign-
aling when factoring in expression levels of both known transcription factors and their associated secondary 
stage cytokines. It is important to note that leukocyte populations only make up a small portion of the total cell 
numbers and low expression of select cytokines and TFs could be due to lack of capturing these gene expression 
changes. Expression of cytokines (IL-33, Tnf-α, etc.) and TFs (STAT family) in relatively large cell populations, 
such as endothelial, epithelial, and airway smooth muscle cells would result in a greater number of reads.

We subsequently identified these transcription factors and cytokines amongst our IRG groupings (Fig. 2c) 
as well as Tlrs, Clecs, and Nlrs to gain insight into trends in gene expression of IRGs in relation to cytokine and 
transcription factor expression. Many of the expressed Clecs and Nlrs have no previous association with inva-
sive pulmonary aspergillosis, while others such as Dectin-1 (Clec7a), Dectin-2 (Clec4n/Clec6a), and MINCLE 
(Clec4e) are well studied or associated with IPA or fungal infection37–41. Using the same total RNA we used for 
RNA-Seq, we then analyzed the expression of 23 of these genes using RT-qPCR (Fig. 3). Of the 31 instances of 
differential expression identified by our Cufflinks pipeline, only 22 met the additional criteria of being greater 
than 1-fold in difference. Of these 22 instances of differential expression, 20 were verified to be differentially 

Figure 2.  Transcript profiles of immunologically relevant murine genes. (a) hierarchical clustering of murine 
immunological relevant genes (IRGs) based on transcript expression during steroid and chemotherapeutic 
models of invasive pulmonary aspergillosis on day 2 and 3 post inoculation. (b) relative transcript expression 
for a given IRG. (c) Summary table of identified genes that cluster together based on expression. Identification 
of notable early stage cytokines, later stage cytokines, and transcription factors associated with T-cell 
differentiation, toll-like receptors (Tlrs), C-type lectins (Clecs), and Nod-like receptors (Nlrs) amongst clustered 
IRG groupings. Steroid Model, S; Chemotherapeutic Model, L; Day 2, D2; Day 3, D3.
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Figure 3.  RT-qPCR analysis of murine genes differentially expressed during IPA. Fold change was determined 
for differentially expressed and expressed (a,d) Toll-like receptors, (b,e) Nod-like proteins, (c,f) and C-type 
lectins via FPKM analysis and RT-qPCR analysis respectively. Fold-change for RT-qPCR was normalized 
using β-tubulin, and related to LD2 gene expression (comparator) using the ΔΔCT method. For FPKM based 
analysis, data is presented in relation to LD2 gene expression (comparator). Statistical significance is indicated 
for instances where p < 0.05. A/B statistically significant differential expression between day 2 and day 3 for 
the chemotherapeutic/steroid model respectively. C/D, statistically significant differential expression between 
the chemotherapeutic and steroid model for day 2/day 3 respectively. Underlined letters indicate statistical 
significance by both FPKM and RT-qPCR. (g) Summary of total instances of differential gene expression 
between FPKM and RT-qPCR based methods. Gene expression of (h) Nlrp12 and (i) Nlrx1 in inoculated and 
mock (−M) inoculated samples. Statistical significance (*) is indicated where p < 0.05 for comparisons between 
a mock and inoculated sample. (j) Summary of analyzed genes from mock samples not expressed or expressed 
at a significantly lower level (>10-fold decrease in expression in comparison to inoculated sample). Steroid 
Model, S; Chemotherapeutic Model, L; Day 2, D2; Day 3, D3.
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expressed via RT-qPCR, while the remaining 2 were not considered differentially expressed. An additional 14 
were further identified as differentially expressed via RT-qPCR. For 9 of these 14 instances, the relative transcript 
levels determined by RT-qPCR were in general agreement with the relative FPKM transcript level, but due to the 
sensitivity of RT-qPCR were now considered statistically significant. It will be interesting to compare the remain-
ing 5 instances with FPKM based isoform abundances, as RT-qPCR maybe biased towards specific isoforms.

We then analyzed 10 genes for expression in control samples, where mice were respectively immunosuppressed 
and then mock inoculated with sterile PBS. RNA was extracted on day 2 and day 3 post mock inoculation and ana-
lyzed via RT-qPCR. Tlr1, Tlr7, Tlr8, and Tlr13 as well as Clec4d, Clec5a, Clec15a, and Nlrc4 were all found to be 
differentially expressed or expressed amongst the A. fumigatus inoculated samples, but could not be detected or were 
>10-fold lower in expression in the mock inoculated samples. Nlrp12, which was highly expressed in the in the A. 
fumigatus inoculated steroid model, was lowly expressed in the mock inoculated samples for both models (Fig. 3h). 
This puts forth the notion that Nlrp12 expression is context specific to both A. fumigatus and steroid treatment. Nlrx1, 
which we had found to be expressed in both models, was statistically elevated in mock samples for both models and 
days (Fig. 3i). The contrasting expression from day 2 to day 3 for Nlrx1 between inoculated and mock inoculated sam-
ples suggests it may be impacted by a number of concurrent events that shape its role as an attenuator of inflammation.

Simulating CD4+ T-cell Differentiation.  Our qualitative analysis of expressed stage 1 and stage 2 
cytokines and transcription factors associated with Th-cell differentiation suggested strongly tempered and par-
tial Th mediated responses that were due to either biological phenomena or inability to capture reads from this 
relatively low population of cells. We utilized an established predictive model of CD4 Th differentiation built on 
ordinary differential equations to understand the effect of specific immune molecules on initial and cross-talk 
signaling in the chemotherapeutic model and steroid model of IPA. This computational modeling approach has 
been utilized successfully to predict differentiation and plasticity of CD4+ T cells in the gastrointestinal tract of 
mice in response to pharmacological activation of PPARγ that were then validated in vivo42–45. The computational 
models were based on the overall transcript levels of a number of cytokines (IL-18, IL-12, IFN-γ, IL-21, IL-6, 
IL-17, IL-23, IL-4, TGF-β, IL-2, IL-10), receptors (IL-18r, IL-12r, IFN-γr, Il-6r, IL-17r, IL-23r, IL-4r, TGF-βr, IL-2r, 
IL-10r), and a subset of transcription factors (Tb21, Gata3, Foxp3, Rorc) from our RNA-Seq study to determine 
the likelihood for each CD4+ subset and overall CD4+ subset composition throughout the course of infection 
(Fig. 4, Supplementary Figure S6). In silico modeling resulted in early and overall Th2 response for the steroid 
model with marginal instances of Th1, Th7, and Treg cell populations (Fig. 4a–c). The modeling also predicted an 
early, but ablating Th2 response, a low yet rapidly increasing Th1 response, a weak though slowly increasing Th17 
response, and a steady initial Treg response that then decreased for the chemotherapeutic model.

To determine if our in silico analysis provided accurate insight into Th cell response, we analyzed BALF and 
interstitial leukocyte populations for IL-4, IL-12, IFN-γ, and/or IL-17 production on day 3 post inoculation 
(Fig. 5). We observed statistically significant (p < 0.05) decrease in interstitial CD4+, CD8+, NK, and dendritic 
cell populations for the chemotherapeutic model in comparison to the steroid model with the exception of inter-
stitial monocytes and neutrophils, which were significantly higher in the chemotherapeutic model (p < 0.05) 
(Fig. 5). In addition, we also noted a characteristic increase in neutrophil counts in BALF samples for the steroid 
model in comparison to the chemotherapeutic model (p < 0.05) (Fig. 5a). Analysis of CD4+ cells in the steroid 
model indicated a significantly large number of cells were positive for IL-4 production in comparison to a small 
number of cells were positive for IFN-γ or IL-17 production (p < 0.05) (Fig. 5d). A large number of NK cells were 
also positive for IL-4 and IFN-γ production in the steroid model in comparison to IL-17 (p < 0.05), while the few 
CD8+ cells positive for cytokine production indicated an evenly mixed Th response.

Analysis of CD4+ cells in the chemotherapeutic model indicated a near 5-fold statistically significant reduc-
tion in number of cells in comparison to the steroid model (p < 0.05) (Fig. 5c). Very few CD4+ T cells (< 20) 
were positive for IL-4, IFN-γ or IL-17 (Fig. 5d). NK cells from the chemotherapeutic model were significantly 
depleted in comparison the steroid model (p < 0.05). The few NK cells from the chemotherapeutic model that 
were positive for a given cytokine were skewed towards IL-17, then IL-4 and then IFN-γ production. CD8+ T 
cells from the chemotherapeutic model were also depleted in relation to the steroid model and the few cells posi-
tive for cytokine production suggest a mixed response.

We then analyzed IL-4 and IL-12 production by specific dendritic cells populations (monocytoid, plasma-
cytoid, conventional, and CD103+) to determine how these APCs were contribution to the overall immune 
response. Analysis of cell populations indicated CD103+ dendritic cells were significantly depleted, over 
100-fold, in the chemotherapeutic model in comparison to the steroid (p < 0.05) (Fig. 5e). Further analysis of 
this subset and other dendritic cell subsets clearly indicated a 5–10x fold statistical increase in number of den-
dritic cells positive for IL-4 in comparison to IL-12 for both models (p < 0.05) (Fig. 5f). The overall response and 
larger number of IL-4+ dendritic cells in the steroid model would favor a predominately strongly Th2 response 
observed by Th cells as predicted by our in silico modeling. Due to the depleting nature of cyclophosphamide we 
were unable to confidently validate if our in silico populations were indeed representative of the CD4+ response. 
However, we did observe preferential elevated IL-4 production by DC population in comparison to IL-12. This 
finding further insinuates a skewed Th2 response that we observed in the in silico chemotherapeutic model for 
CD4+ T cell differentiation.

Analysis of Metabolic Genes.  Based on the large number of differentially expressed genes associated 
with metabolic processes (Table 1), we overlaid these differentially expressed gene groupings onto the KEGG 
mouse metabolic pathways36 (Supplementary Figure S7). Analysis of differentially expressed genes from day 2 
to day 3 in the chemotherapeutic model identified functionally related enzymes, L-amino-acid oxidase, argin-
ase, argininosuccinate synthetase 1, and nitric oxide synthase, that provide a pathway for L-aspartate medi-
ated arginine biosynthesis and metabolism as a precursor for nitric oxide or urea generation via the urea cycle 
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(Supplementary Figure S7A). These specific genes were also differentially expressed in the steroid model from 
day 2 to day 3 (Supplementary Figure S7C); however, further analysis indicates these genes are significantly more 
highly expressed in the chemotherapeutic model (Supplementary Figure S7F). Differentially expressed genes 
from day 2 to day 3 in the chemotherapeutic models also enriched oxidative phosphorylation pathways associated 
with the TCA cycle, nucleotide metabolism, lipid metabolism, and complex sugar metabolism (Supplementary 
Figure S7A), suggesting important immunometabolic interactions. Analysis of statistically enriched genes in the 
steroid model on day 3 identified genes associated with fatty acid oxidation, connections from glycolysis and the 
TCA cycle to fatty acid oxidation, and aspects of sugar and starch metabolism (Supplementary Figure S7H).

To advance our understanding of metabolic changes during the steroid and chemotherapeutic models, 
we identified 1,317 genes from the KEGG primary metabolic pathway to cluster based on gene expression 
(Supplementary Table S3). We initially filtered these genes based on minimum gene expression (FPKM > 1) for at 
least one of the four model/timepoints, and then clustered the resultant 1,001 genes based on expression patterns 
from the steroid and chemotherapeutic models of IPA. The resulting hierarchical clustering resulted in 9 groups 
varying in size from 31 to 244 members (Fig. 6b). These groupings were then overlaid onto the KEGG meta-
bolic pathway and visually assessed for association with broad and specific processes (Fig. 6a–c, Supplementary 
File S4). These groupings were also used for specific statistical enrichment (p < 0.001) of biological processes 
associated with the gene ontology (BINGO) and Reactome (Supplementary File S5). Group 1 consisted of genes 
highly expressed in the chemotherapeutic model on day 3 and statistically enriched a substantial portion of TCA 
cycle, urea cycle, pentose phosphate metabolism, nucleotide metabolism and the metabolism of cofactors and 
vitamins. Several group 1 genes also linked the urea cycle to the TCA cycle. Groups 7, 8 and 9 represented genes 
generally highly expressed in the steroid model over the chemotherapeutic model. These genes were associated 
with inositol phosphate metabolism, fatty acid oxidation, terpenoid biosynthesis, thiamine biosynthesis, sulfur 
relay, and oxidative phosphorylation. Group 2 generally represented genes being turned on in both the chemo-
therapeutic and steroid model from day 2 to day 3. These genes were associated with the biosynthesis of amino 
acids and pyrimidine metabolism. Group 5 represented gene expression decreases in both models from day 2 to 
day 3, with an emphasis on larger decrease in the chemotherapeutic model. These genes were associated with fatty 
acid biosynthesis, connections from pentose phosphate pathway to fatty acid biosynthesis, and specific aspects of 
first and second carbon oxidation in the TCA cycle.

Figure 4.  Predictive systems modeling of CD4+ T cell differentiation. Cytokine (IL-18, IL-12, IFN-γ, IL-21, 
IL-6, IL-17, IL-23, IL-4, TGF-β, IL-2, IL-10) and receptor (IL-18r, IL-12r, IFN-γr, Il-6r, IL-17r, IL-23r, IL-4r, 
TGF-βr, IL-2r, IL-10r), and transcription factor (Tbx21, Gata3, Foxp3, Rorc) expression data was compiled 
and used as input for computational simulations. In silico models were separately calibrated using the particle 
swarm method. (a,b) The overall predicted CD4+ subset composition for day 2 and day 3 for both the 
steroid and chemotherapeutic models. (c,d) Model specific time course predictions from 0 to 240 hours post 
inoculation for the steroid and chemotherapeutic model. Steroid Model, S; Chemotherapeutic Model, L; Day 2, 
D2; Day 3, D3.
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Figure 5.  Determination of in vivo leukocyte and intracellular cytokine production. Freshly harvested A. 
fumigatus conidia (CEA10, 12 × 109) were delivered via aerosolization to immunosuppressed C57BL/6 mice. 
Mice in the steroid model were immunosuppressed via subcutaneous injection of cortisone acetate, while mice 
in the chemotherapeutic model were immunosuppressed via subcutaneous injection of cortisone acetate and 
intraperitoneal injection of cyclophosphamide three days prior to inoculation. Leukocyte populations and 
counts were determined from (a) bronchoalveolar lavage fluid (BALF) and (b–f) lung tissue. Cell counts were 
determined for (c) CD4+, CD8+, and NK cell populations and (d) for positive intracellular staining of IL-17, 
IL-4, or IFN-γ. Cells counts were also determined (e) CD103+, monocytoid (mDC), plasmocytoid (pDC), 
and conventional (cDC) dendritic cells and for (f) positive intracellular staining of IL-12 and IL-4. Statistical 
significance was determined use the student t-test. Statistical significance (p < 0.05) between the two models for 
a given cell type is indicated by an asterisk. Statistical significance via Duncan’s multiple range test (p < 0.05) for 
CD4+ T cells stained positive IL-4, IL-17, and IFN-γ is indicated with ‘A’ (steroid model). Statistical significance 
via Duncan’s multiple range test (p < 0.05) for NK cells stained positive IL-4, IL-17, and IFN-γ is indicated 
with ‘B’ (steroid model). Statistical significance (p < 0.05) between a given dendritic cell population for count 
of cells positive for IL-12 versus IL-4 production is indicated with an ‘C’ in the steroid model, and a ‘D’ for the 
chemotherapeutic model. All experiments were run in independent replicates, n = 8.
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We then specifically looked at changes in gene expression between the two models in glycolysis, the citric 
acid (TCA) cycle, and the arginine biosynthesis (urea cycle) pathway (Supplementary Figure S8, Supplementary 
Table S3). Analysis of genes involved in glycolysis in the chemotherapeutic model from day 2 to day 3 suggested 
increased expression of lactate dehydrogenase (Ldha, from ~211 to ~465 FPKM, respectively) converting pyru-
vate to lactate, and minimal changes in gene expression of pyruvate dehydrogenase (Pdha1, 67–70 FPKM), the 
first component enzyme in converting pyruvate to acetyl-CoA (Supplementary Figure S8A–C, Supplementary 

Figure 6.  Overlay of gene clusters onto the KEGG primary metabolism for mice. Clusters were generated 
from gene expression during steroid and chemotherapeutic models of invasive pulmonary aspergillosis on 
day 2 and 3 post inoculation. Filtered, paired-end reads with a FPKM > 1 were (b) hierarchically clustered 
based on transcript expression. (a) Resultant groupings were color coded and overlaid onto the KEGG primary 
metabolism for mice36. (c) Summary table of identified groups: overlay color, number of genes in cluster, 
expression pattern, visual enrichments. Steroid Model, S; Chemotherapeutic Model, L; Day 2, D2; Day 3, D3.
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Table S3). Genes associated with the conversion of ethanol to acetyl-CoA (Adh1, Aldh3a1, Aldh7a1, and Acss2) 
were also significantly down regulated (>0.5-fold) in the chemotherapeutic model. Additionally, we observed an 
increase in expression (>0.3-fold) from day 2 to day 3 in genes (Hk1, Hk2, Hk3, Adpgk, and Gpi1) associated 
with the isomerization and/or phosphorylation of α/β-glucose to α-D-glucose-6-phosphate and β-D-fructose-
6-phosphate. Similar expression patterns were apparent in the steroid model from day 2 to day 3 as these same 
genes were respectively increased or decreased in expression.

Direct comparison of gene expression on day 3 between the two immunologically distinct models suggest 
stronger gene expression of specific sugar kinases for each model, while both models were consistent for very 
elevated Ldha (465–480 FPKM) and moderate Pdha1 expression (~72 FPKM). Specific increased expression 
of Phosphoenolpyruvate carboxykinase (Pck1, 4-fold) was also noted in the steroid model suggesting activa-
tion of gluconeogenesis or replenishment of phosphoenolpyruvate in this model. Analysis of fructose bisphos-
phate (Fbp2), another important driver of gluconeogenesis, indicated moderate expression (~40 FPKM), while 
glucose-6-phosphatases (G6pc, G6pc2) were not considered expressed (FPKM < 1).

Analysis of the TCA cycle from day 2 to day 3 in the chemotherapeutic model suggested a diminished expres-
sion in a part of the pathway from the conversion of isocitrate to succinyl-CoA encompassing isocitrate dehydro-
genase (Idh1, Idh3g) and oxoglutarate dehydrogenase (Ogdh). This decrease in gene expression was also observed 
for fumarate hydratase 1, which is responsible for the conversion of fumarate to malate (Supplementary Figure 
S8D–F). These specific changes result in a “broken TCA cycle,” which is defined as build up of TCA intermedi-
aries for alternate biological functions46. The precursor substrates at the site of these breaks, are known interme-
diaries to amino acid biosynthesis pathways particularly arginine biosynthesis, alanine, aspartate, tyrosine and 
glutamate metabolism. Gene expression analysis of the TCA cycle during the steroid model from day 2 to day 3 
reveals minor increased expression for various enzymes. Analysis of gene expression between the chemothera-
peutic and steroid model on day 3 reiterated the broken TCA cycle in the chemotherapeutic model, but not the 
steroid model.

Examination of the gene expression changes in the arginine biosynthesis pathway from day 2 to day 3 in the 
steroid and chemotherapeutic model suggested increased expression of nearly all intermediaries from the TCA 
cycle to the urea cycle as well as 4 of 5 enzymes in the urea cycle (Supplementary Figure S8G–I). Of importance is 
the increased expression of both nitric oxide synthase (Nos2 and Nos3) and arginase (Arg1) that are involved in 
the production of nitric oxide and urea respectively. In both models, the amount of Arg1 expression was signif-
icantly greater than that of Nos2 on day 3 (3.5-fold for the chemotherapeutic model and 5.3-fold for the steroid 
model) (Supplementary Table S3). We then looked at known cationic amino acid transporter genes to determine 
if it was possible for arginine to reach these respective enzymes47 (Supplementary Figure S8J). CAT-1 and CAT-2 
were increasingly differentially expressed in both models and had moderate FPKMs (5–22 FPKM), while CAT-3 
and CAT-4 were fairly low in expression for both models and time points (FPKM <  = 1.3). The light chain sub-
unit of the cationic amino acid transporter y+Lat1 and y+Lat2 were also moderately expressed while the heavy 
chain subunit 4F2HC was highly expressed. Our analysis implies host arginine transport is likely not constrained 
in either model during IPA.

Conserved and Unique Fungal Genes Across Models.  Fungal gene expression was initially analyzed 
via the Cufflinks pipeline and resulted in skewing of gene expression due to a higher abundance of fungal reads 
in the chemotherapeutic samples. This overall skewing of reads was in accord with our measurement of fungal 
load as samples with lower RNA-Seq counts also had lower relative fungal burden and vice versa (Supplementary 
Figure S1, Supplementary Table S1). Supplementary Figure S9 additionally highlights this finding in regards to 
RT-qPCR validation of 9 putative secreted fungal proteins, where we observed the fold normalization of FPKM 
gene expression was skewed towards lower values in the steroid model. Based on this apparent discord between 
the fold normalized FPKM and RT-qPCR fold changes, we then utilized the HTSeq. 2/DeSeq. 2 pipeline to deter-
mine normalized counts and differential expression for fungal genes (Fig. 7, Supplementary Table S4). Histogram 
distribution of normalized counts resulted in a selected cut-off for basal expression at 10 (Supplementary 
Figure S3B). 3,345 unique A. fumigatus genes were identified with a normalized count > 10 for the steroid and 
chemotherapeutic models on day two and day three (Fig. 7a), while 128–204 genes were uniquely expressed for 
a given model and day. 5,175 A. fumigatus genes were not expressed with a normalized count > 10. Hierarchical 
clustering analysis of each sample for a given model and day indicates samples were highly similar with a mini-
mum correlation of 0.811 between samples (range −1 to 1). Given this close correlation, individual samples for 
a given model and day did not always cluster directly with their respective replicates. This was the case for both 
SD3_1 and LD3_2 (Fig. 7c). Hierarchical clustering analysis indicated an overall initial separation by model and 
then by date. PCA analysis resulted in similar clustering and suggested the vast majority of variance (91.8%) was 
explained by only 1 principal component. The greatest variance was found between chemotherapeutic model on 
day 2 and steroid model on day 3, while the chemotherapeutic model on day 3 and steroid model on day 2 had 
lower variance (Fig. 7d). Integration of gene expression (RPKM > 10) of vegetative growth from Gibbons et al.23 
indicates a higher number of expressed genes shared with biofilm growth in comparison to planktonic growth 
(Fig. 7e,f).

Enrichment and Categorization of A. fumigatus DEGs.  A. fumigatus differentially expressed gene 
groupings (Fig. 7b, Supplementary File S6) were analyzed by FunCat, and GO for statistical enrichment and 
categorization of biological processes, pathways, and protein classification (padj < 0.05) (Supplementary Files S7, 
S8). Genes enriched in the steroid model on day 2 were associated with translation, cation (transmembrane) 
transport, and glutamate catabolic metabolism to 2-oxoglutarate. Genes enriched in the chemotherapeutic model 
on day 2 were associated with oxidation-reduction and fatty acid biosynthesis, tetracyclic and pentacyclic trit-
erpenes (cholesterin, steroids and hopanoids) metabolism, and triterpenes metabolism. Genes enriched in the 
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steroid model on day 3 include those annotated to be involved in oxidation-reduction, secondary metabolism, 
siderophore-iron transport, metabolism of thioredoxin, glutaredoxin, glutathione, heavy metal ion transport 
(Cu+, Fe3+, etc.), homeostasis of metal ions (Na, K, Ca etc.), and non-ribosomal peptide synthesis. As the 
importance of gliotoxin production was previously reported to be relevant to the steroid model of IPA and not 

Figure 7.  A. fumigatus transcript profiles during steroid and chemotherapeutic models of Invasive pulmonary 
aspergillosis day 2 and 3 post inoculation. Filtered, paired-end reads murine associated reads were analyzed by 
HTSeq. 2/DeSeq. 2 pipeline. Transcripts with a normalized count greater than 10 were considered adequately 
expressed. (a) Venn diagram of A. fumigatus transcript expression between the two models. (b) Diagram 
of number of unique A. fumigatus transcripts expressed and number of identified transcripts considered 
differentially expressed between the two models. (c) Hierarchical clustering and (d) principal component 
analysis of samples based on filtered gene expression. Venn diagram of fungal gene expression incorporating 
gene expression data sets of (e) biofilm (BF) and (f) planktonic (PL) growth (RPKM > 10). Steroid Model, S; 
Chemotherapeutic Model, L; Day 2, D2; Day 3, D3.
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the chemotherapeutic model (for murine survival), we analyzed the normalized counts of genes associated with 
gliotoxin biosynthetic pathway (Supplementary Figure S10). In several cases, specifically GliI, GliJ, GliC, GliN, 
GliF, the transcript levels were diminished in the chemotherapeutic model while increased in the steroid model 
from day 2 to day 3. Differential regulation of the gliotoxin biosynthesis cluster reiterates the notion of host con-
text specific gene expression by A. fumigatus.

Analysis of A. fumigatus Secreted Proteins by Gene Expression.  We identified a predicted 
secretome of A. fumigatus through a signalP based pipeline. This secretome was then concurrently clustered via 
gene expression for a given model and time and fell into 8 broad categories (Fig. 8a,b). RPKM values for plank-
tonic growth from the Gibbons et al. study23 were then integrated with normalized count data for a given A. fumig-
atus gene predicted to encode a secreted protein. We identified 199 highly expressed genes in both PL and IPA 
conditions and 59 genes that were highly expressed only during IPA (Fig. 8c). We then clustered our predicted 
secreted proteins from A. fumigatus based on similarity in primary amino acid sequence using the mature peptide 
sequence (Supplementary File S9). The 760 proteins clustered into predominantly 2–4 member tribes (105 tribes), 
while 20 tribes were greater than 4 members in size (Fig. 8f). Integration of gene expression into a visualization 
of clusters demonstrated diversity in gene expression grouping amongst all clusters (Fig. 8e). Larger tribes con-
tained sporadic group members who were expressed uniquely during IPA (diamond) or expressed highly in both 
PL growth and IPA (triangle) (Fig. 8e, Supplementary Table S5, Supplementary File S10). A subset of these puta-
tive secreted proteins (9 in total) were analyzed by RT-qPCR (Fig. 9) to verify their changes in gene expression. 
These proteins were predominantly uncharacterized proteins (AFUB_080630, AFUB_80700, AFUB_032940, 
AFUB_084250, AFUB_015640, AFUB_038990), a putative anti-microbial peptide (AFUB_085860), a putative 
chitin binding protein (AFUB_013970), and the major allergen aspf2 (AFUB_066690). None of the genes were 
considered statistically differentially expressed via DeSeq. 2 even though several differed in expression by 0.5- to 
1-fold amongst the models. RT-qPCR analysis indicated all 9 genes shared similar expression patterns as the 
DeSeq. 2 analysis via the normalized count method. Analysis of RT-qPCR also identified 17 instances of differ-
ential gene expression (Fig. 9).

Additional analysis of the 21 annotated major allergens from A. fumigatus identified only 4 allergens with a 
count below 10 per model, 2 with a count between 10–100, and the remaining 15 with a count between 100–1000 
(Supplementary Table S6). The gene encoding Aspf2 was also the most abundant transcript present for all models 
while several other fungal allergens were in the top 50 expressed genes across all fungal genes for a given model. 
Seven of 8 putative secreted highly expressed allergens from IPA expression data set were also highly expressed 
in the planktonic growth data set. Only Aspf2 was modestly expressed in the planktonic growth suggesting its 
levels may be increased due to stress or host factors in vivo. Global analysis of gene expression of these putative 
secreted proteins suggests A. fumigatus responds in a model specific manner with specific expression of genes 
unique to IPA.

Discussion
The form of immune suppression sets the foundation for the progression of invasive pulmonary aspergillosis. 
Prolonged glucocorticoid treatment reduces inflammation through trans-activation, trans-repression, and direct 
protein-protein interactions with the glucocorticoid receptor. Ultimately these molecular phenomena result in an 
anti-inflammatory effect, curtailed immune signaling, decrease function of neutrophils, lymphocytes, monocytes, 
and macrophages (reviewed in48). In the chemotherapeutic model, cyclophosphamide (CTX) induced leukope-
nia results in depletion of leukocytes and aberrant leukocyte functionality. Low dose treatment with CTX has 
been shown to specifically deplete CD4+ CD25+ Tregs and diminish their suppressive functionality as well as 
drive a Th17 response49–51. CTX also results in profound leukopenia; however, adoptive cell therapy post CTX 
treatment suggests transplanted cells are able to exploit the present immune milieu of type I interferons and 
cytokines (IFN-γ, IL-1β, IL-2, IL-7, IL-15, and IL-21), and promote both B- and T-lymphocyte homeostatic pro-
liferation and activation with a predominately Th17 signature49,52. Our data agrees with these general assessments 
of immunosuppressive host responses as we observed statistical enrichment and elevated expression of cytokines, 
chemokines, and their receptors in lungs of mice in the chemotherapeutic model, but not in the steroid model. 
Similar to the CTX treatment model, we observed a large depletion of host leukocytes in our IPA chemotherapeu-
tic model. Our systems level perspective proposes that the steroid models fail to appropriately elicit a robust Th1 
and Th17 response, while the latent Th1 and Th17 signaling in the chemotherapeutic model cannot be effectively 
amplified in a timely manner due to the lack of or functionality of leukocytes. It will be interesting to determine 
if adoptive transfer of naïve T cells, CD8+ T cells, neutrophils or natural killer cells would respond and amplify 
the initial signaling events. Adoptive transfer of ex vivo primed dendritic cells against A. fumigatus has proven 
successful in immune suppressed murine models53. More promising, ex vivo priming of PMNs from healthy 
donors successfully reduced fungal infection in clinical trials involving patients receiving T-cell depleted grafts54.

Invasive pulmonary aspergillosis is primarily associated with a Th17 CD4+ T cell response and also to a 
lesser extent Th 1 response55–57. Contrastingly, APBA, a hypersensitive response to chronic A. fumigatus exposure, 
induces a primarily Th2 and Th9 response resulting in a contrasting pulmonary pathology58,59. Murdock et al. 
(2011) and Shriener et al. (2012) postulated a co-evolving mixed Th1, Th2, and Th17 in their repeated exposure 
model using immune-competent C57BL/6 mice60,61. In the context of IPA, loss or neutralization of Th17 and Th1 
drivers results in increased mortality, while decrease in Th2 drivers results in diminished fungal burden40,62–64.

Based on this importance of CD4+ T cell signaling, we incorporated an ordinary differential equation based 
modeling approach to gain insight into how CD4+ T cells would differentiate and respond to the observed expres-
sion of cytokines and chemokines during steroid and chemotherapeutic models of IPA. This computational 
modeling approach has been utilized successfully to predict differentiation and plasticity of CD4+ T cells in the 
gastrointestinal tract of mice in response to pharmacological activation of PPARγ that were then validated in 
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vivo42–45. Our in silico and experimental results suggest a predominately Th2 response in the steroid model. Though 
CD4+ T cells were too depleted in the chemotherapeutic model to accurately analyze, the few NK and CD8+ 
suggested Th1/Th2 and Th1/Th2/Th17 mixed responses respectively. Further dendritic cell signaling indicated a 

Figure 8.  Clustering and expression analysis of the putative secretome from Aspergillus fumigatus. (a) 
Hierarchical clustering of the putative secretome of A. fumigatus Af1163 by gene expression during the steroid 
and chemotherapeutic models of invasive pulmonary aspergillosis on day 2 and day 3 post inoculation. (b) 
Hierarchical clustering based upon gene expression during the steroid and chemotherapeutic models on day 2 
and day 3 post inoculation for the putative secretome of A. fumigatus Af1163. (c) Scatter plot of putative secreted 
protein gene expression (normalized counts) at LD2 (Blue), LD3 (Orange), SD2 (Gray), and SD3 (Yellow) versus 
expression during planktonic growth (RPKM). (d) Summary table of gene expression groupings: size of groupings, 
color code for clustering, and relative expression. (e) Clustering of putative secreted proteins based on sequence 
similarity. Color of nodes indicate grouping from gene expression (a,b) see (d,e). (f) Distribution of clusters based 
on size. Steroid Model, S; Chemotherapeutic Model, L; Day 2, D2; Day 3, D3.
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strong preference to secretion of IL-4 over IL-12 in both models. Our modeling efforts and experimental validation 
suggest a strong bias towards a Th2 mediated response as well as mitigated Th17 and Th1 response, which have both 
been shown to be detrimental in resolving IPA40,62–64. These findings also shed light onto why ex vivo primed den-
dritic cells, which were shown to secret IL-12, provided a protective role during invasive aspergillosis.

Gene Expression of Tlrs, Clecs, and Nlrs.  The recognition of A. fumigatus occurs through pattern rec-
ognition receptors including the C-type lectins Dectin-1, Dectin-2, DC-SIGN, and the toll-like receptors Tlr2, 
Tlr4, and Tlr965–73. Tlr4 was found to be decreasing in both models from day 2 to day 3, while Tlr2 was fairly 
consistent in gene expression across both models on day 2 and day 3. This loss of Tlr4 expression could be due to 
the enhanced germination of conidia as Tlr4 is thought to be an important receptor for conidial recognition, but 
not hyphae71. Our data also identifies Tlr1, Tlr6, Tlr7, Tlr8, and Tlr13 as additional Tlrs expressed during IPA. 
Specificity of expression during IPA, but not in control inoculations, was observed for Tlr1, Tlr7, Tlr9, and Tlr13 
(Tlr6 was not tested). The elevated expression of these extracellular and endocytic Tlrs across both models hints at 
successful initial recognition of A. fumigatus. The expression of Tlrs by PMNs in response to A. fumigatus suggests 
specific responses are shaped upon initial recognition74. As Tlr expression was fairly consistent between the two 
models it seems unlikely that loss of Tlr expression is a cause for fungal infection in these models.

C-type lectins, an important family of pattern recognition receptors, were relatively more divergent in expres-
sion between the chemotherapeutic and steroid models. The increased expression of Dectin-1 (Clec7a), Dectin-2 
(Clec4n/Clec6a), and MINCLE (Clec4e) in the chemotherapeutic model implies activation in response to fungi 

Figure 9.  RT-qPCR analysis of A. fumigatus genes expressed during chemotherapeutic and steroid treatment 
mouse models of invasive pulmonary aspergillosis on day 2 and 3 post inoculation. Fold change was determined 
for expressed putative A. fumigatus secreted proteins via (a) Count based analysis and (b) RT-qPCR analysis. 
Fold-change was normalized for RT-qPCR using β-tubulin and TefA, and presented in relation to LD2 gene 
expression (comparator) using the ΔΔCT method. For count based analysis data is presented in relation to LD2 
gene expression (comparator). Statistical significance is indicated for instances where p < 0.05. A/B statistically 
significant differential expression between day 2 and day 3 for the chemotherapeutic/steroid model respectively. 
C/D, statistically significant differentially expression between the chemotherapeutic and steroid model for 
day 2/day 3 respectively. Standard deviation from the mean is presented. Steroid Model, S; Chemotherapeutic 
Model, L; Day 2, D2; Day 3, D3.
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by DCs, monocytes, and/or macrophages41,75,76. The lack of increased Dectin-1 expression in the steroid model 
suggest recruited neutrophils may not be fully mature or functional as glucocorticoids are known to blockade 
neutrophil and monocyte recruitment into tissue from the vasculature and dampen inflammatory signaling. 
Clec5a had similar expression patterns in both models as Dectin-1, and was not detected in the control immuno-
suppressed samples on day 2 or day 3. Clec5a is currently known to be an important receptor on macrophages for 

Table 1.  Enrichment of gene ontology biological processes specific for mice based upon differentially expressed 
gene groupings. Enrichment of primary (tier 1) biological functions from the gene ontology (BINGO32,33) 
based upon differentially expressed genes in the steroid and chemotherapeutic models of invasive pulmonary 
aspergillosis from day to day 3. LD, chemotherapeutic model; SD, steroid model; 2–3, from day 2 to 3; Up, 
differentially expressed genes increasing in expression; Down, differentially expressed genes decreasing in 
expression; Enriched, differentially expressed genes of higher transcript expression for the identified model 
in comparison to the alternate model for a given day; cDEGs Up, differentially expressed genes increasing in 
expression from day 2 to day 3 in both models; cDEGS Down, differentially expressed genes decreasing in 
expression from day 2 to day 3 in both models. Color code gradient from null (black) to 1 (red) to 100 (yellow).
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dengue virus resulting in down stream activation of proinflammatory cytokines77. Clec14a, Clec1a, and Clec2d 
were all decreasing in expression in both models. The decreased Clec14a transcript levels may indicate a con-
certed effort in both models to induce angiogenesis and diminish cell-to-cell adhesion78. Clec1a is known to 

Table 2.  Categorization of differentially expressed genes based on PangtherDB protein class. Categorical 
binning of PantherDB35 protein classes based upon differentially expressed genes in the steroid and 
chemotherapeutic models of invasive pulmonary aspergillosis from day to day 3. LD, chemotherapeutic model; 
SD, steroid model; 2–3, from day 2 to 3; Up, differentially expressed genes increasing in expression; Down, 
differentially expressed genes decreasing in expression; Enriched, differentially expressed genes of higher 
transcript expression for the identified model in comparison to the alternate model for a given day; cDEGs 
Up, differentially expressed genes increasing in expression from day 2 to day 3 in both models; cDEGS Down, 
differentially expressed genes decreasing in expression from day 2 to day 3 in both models. Color code gradient 
from null (black) to 1 (red) to 30 (yellow).
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be a receptor found inside myeloid cells and is up regulated in response to TGF-β79,80. The decreased Clec1a 
expression may be an important marker for lack of NK cells as these populations are expected to be depleted in 
the chemotherapeutic model. Clec2d is associated with inhibition of osteoclasts, and an important in facilitating 
missing-self recognition by Natural Killer Cells81. Clec4d (MCL) was found elevated in the steroid model, was 
increasing in expression in the chemotherapeutic model, and was not detected in the control samples. Recently, 
Clec4d has been shown to be a key molecule in anti-mycobacterial host defense82. Both Clec4d and Clec5a are of 
high relevance as they contribute to the recognition of tuberculosis and dengue virus respectively77,82. It is not yet 
known if these two C-type lectins play important roles in the recognition and defense against A. fumigatus similar 
to that of Dectin-1; however, both their expression is dependent on inoculation with A. fumigatus in comparison 
to control mock inoculations.

The Nlr family of genes are comprised of approximately 20+ members in humans and mice. Nlrs are thought 
to function broadly as sensors for pathogen encoded molecular patterns or danger associated molecular patterns 
and play crucial roles in infectious and immune-mediated diseases. Seven of these genes were expressed or dif-
ferentially expressed during the steroid or chemotherapeutic model of IPA. Recognition of A. fumigatus results in 
the stimulation of the NLRP3 inflammasome83. NOD1 and NOD2 are also upregulated in response to A. fumiga-
tus84,85. Our results identify the novel expression or differential expression of 7 Nlrs (Nlrc3, Nlrc4, Nlrc5, Nlrp1a, 
Nlrp3, Nlrp12, and Nlrx1) during mouse models of IPA. Of particular interest is the model specific expression 
of Nlrp12 and Nlrc5. Nlrp12 was found to be highly elevated in the steroid model, but marginally expressed in 
the chemotherapeutic. It has been shown that Nlrp12 is an important negative regulator of pro-inflammatory 
cytokines, NF-κB and MAPK signaling in response to Brucella abortus86. Nlrp12 also attenuates colonic inflam-
mation through the promotion of commensal bacterial growth87. Our results show highly elevated Nlrp12 expres-
sion only in the presence of A. fumigatus and steroid treatment. This suggests the immune system is primed for 
activation of Nlrp12 in response to A. fumigatus under steroid treatment. Nlrc5 was decreasing in expression 
in the steroid model relative to chemotherapeutic. Nlrc5−/− mice have strongly impaired MHC class I- medi-
ated CD8+ T cell activation post challenge with Listeria monocytogenes, suggesting the expression of Nlrc5 is 
important for CD8+ T cell defense response88. CD8+ T cells are believed to be amongst an important class of 
lymphocytes for defense against A. fumigatus89,90. The steady expression of Nlrx1 in the steroid model and chem-
otherapeutic model suggests Nlrx1 is relevant to both models of IPA and provides an avenue to link immune 
responses with metabolism. Recently, it has been shown loss of Nlrx1 results in increased proliferation and dif-
ferentiation of CD4+ T cells into a pro-inflammatory state91. This occurs through decreased responsiveness to 
immune check point pathways such as those mediated by PD-1 and CTLA-4, enhanced lactate dehydrogenase 
signaling, and increased expression of HIF-1α in normoxic and hypoxic environments. The decreased expression 
of Nlrx1 during IPA in both models in comparison to mock inoculations suggests this immune check point is 
down-regulated in response to A. fumigatus in these immune suppressive host contexts. Additional dissection of 
Nlrs will provide new mechanistic insight into how these genes contribute to IPA disease outcomes.

Host Metabolism.  Our global and specific analysis of metabolic differences between the steroid and chem-
otherapeutic model suggested distinct expression patterns of metabolic pathways. The activation of the TCA 
cycle, urea cycle and their intermediaries may suggest a robust production of reactive nitrogen species in the 
chemotherapeutic model via Nos2 and Nos3. Nos2 expression is also an indicator of macrophage activation92, 
while Nos3 is associated with endothelial nitric oxide production93. The increase in Nos2, an inducible nitric 
oxide synthase, has been associated with M1 inflammatory phenotype in macrophages and is a requirement for 
effector/pro-inflammatory responses to bacteria and tumors92. However, the greater expression of arginase (Arg1) 
suggests a more tolerogenic response94. Elevated arginase expression has been associated with wound healing, 
limits the inflammatory potential and proliferation of effector T cells95,96, and increased the severity of HIV and 
visceral leishmaniasis97. Response to and killing of A. fumigatus conidia by alveolar macrophages requires the 
production of reactive oxygen species98. Reactive nitrogen species could not be measured or identified during 
these challenge experiments. Recently, a detailed series of in vitro experiments clearly demonstrate Blastomyces 
dermatitidis actively inhibiting nitric oxide production99. Though the inhibitory factor was not identified, the 
authors ruled out blockade of arginine transport and reduction in Nos2 gene expression as mitigating agents. Our 
study reveals moderate expression of a number of arginine transports and elevated expression of Nos2. No pub-
lished study to our knowledge indicates loss of Nos2 results in increased virulence or fungal load during IPA. It 
will be essential to determine if the Arg1 and Nos2 expression along with arginine transporter expression occurs 
in distinct populations, or if Nos2 function is inhibited at a post transcriptional level100.

Other aspects of the global metabolic gene expression analysis suggested both models are reducing pyruvate to 
lactate via Ldha in response to anaerobic respiration or to recycle NADH and maintain NADH/NAD+ balance. 
This is in agreement with observations of hypoxic domains at sites of infection during both chemotherapeutic and 
steroid models of IPA31. Intriguingly, myeloid HIF-1α is essential for protection against IPA and these data sug-
gest one potential mechanism is a requirement for HIF-1α to maintain metabolic homeostasis101. The decreased 
expression of fatty acid synthesis genes in the steroid and particularly the chemotherapeutic model suggests 
diminished cell proliferation46. The increase in transcripts associated with fatty acid degradation in the steroid 
model proposes a preference toward a non-inflammatory and tolerogenic status46. The elevated expression of 
phosphoenolpyruvate carboxykinase Pck1 in the steroid model would also facilitate gluconeogenesis and a means 
for glucose independent cell growth and metabolic stress resistance102. This stress resilience is not apparent in the 
chemotherapeutic model as we found evidence for a broken TCA cycle. Our analysis of metabolism suggests these 
processes may play important roles in shaping the immune suppression, and understanding these mechanisms 
may yield new therapeutic targets to mitigate host damage. These findings also provide clues to the metabolic 
environment the invading fungus is exposed too during IPA in the respective models. An increase in lactate and 
processes associated with gluconeogenesis likely suggests the fungus is exposed to a hypoxic microenvironment 
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and alternative carbon sources as disease progresses as previously has been suggested31,103. Moreover, it has been 
shown that loss of the AcuM gluconeogenesis associated transcriptional regulator in A. fumigatus decreases fun-
gal virulence104.

Though our data provides novel insight into the metabolic and immune response during IPA, an important 
caveat emerged on determining from what cell type gene expression changes were occurring. The lung is made 
up of three major compartments and each compartment is composed of a variety of cell types. Recruitment of 
leukocytes adds complexity, as these diverse cell types make up a small percentage of total cell population. The use 
of RNA-Seq, on total lung tissue provides an averaged response on gene expression across all cell types, and would 
inherently better capture gene expression changes in more abundant cell types, such as airway cells, alveolar unit 
cells, and pulmonary vascular cells. Consequently, our RNA-Seq study is inherently biased for capturing gene 
expression changes from more abundant cell types, and does not retain or factor in gene expression changes for 
a given cell type.

These experimental limitations became more evident when we analyzed fungal transcripts during models 
of IPA. Fungal transcripts accounted for a small percentage of total reads and varied by model. The generally 
decreased number of fungal transcripts in the steroid model and increased number of fungal transcripts in the 
chemotherapeutic model masked and skewed fungal gene expression changes when analyzed through a FPKM 
based strategy. Only through a normalization of counts, which factors in the total number of counts for a given 
sample, were we able to look at fungal gene expression changes while factoring in the relative amount of fungus. 
RT-qPCR of fungal genes validated these changes in gene expression using the count-based method, but not the 
FPKM based method. The advent of single-cell sequences methods would remove many of the challenges asso-
ciated with RNA-Seq analysis of complex tissue samples comprised of small heterogeneous cell populations of 
interest, and the recent development of a reversible fixative method to preserve gene expression changes would 
facilitate such single cell studies105–107. Notwithstanding, our data set provides an overview of the gene expres-
sion changes occurring in the host in response to A. fumigatus in the setting of different immune suppression 
regimens.

Secreted proteins of A. fumigatus.  The role of secreted proteins from fungi and oomycetes in facilitating 
symbiosis is clearly evident108,109. A number of such proteins function in extracellular spaces, while others are 
translocated into host cells. When clustered by protein sequence similarity, A. fumigatus generated unique and 
diverse sized tribes. The predicted secreted proteins of A. fumigatus also clustered into unique groupings associ-
ated with both murine model and day of infection based on gene expression. Overlaying of gene expression data 
on clustered tribes identified both instances of temporal gene expression redundancy and specificity amongst 
tribe members. The notion of temporal and organ specific gene expression of secreted proteins is well under-
stood for a number of plant pathogenic fungi and oomycetes110–112. Here we showcase the temporal specificity 
of gene expression from 9 different putative secreted proteins. Of note are the expression of a putative secreted 
anti-microbial peptide and putative secreted chitin binding protein. Microbial derived chitin binding proteins 
have been shown to play major role in virulence by several plant pathogenic fungi113–115. The increased gene 
expression of a putative anti-microbial peptide in both the chemotherapeutic and steroid models may suggest 
an effort to neutralize microbial communities that may also be vying for growth in an immunocompromised 
host or more likely that environmental conditions in the lung induce expression of fungal AMPs. For example, 
hypoxia is known to induce production of AMPs from host cells in a HIF dependent mechanism116. Importantly, 
however, these AMP gene functions are dependent on annotation and not currently experimentally supported 
for this fungal protein. The gene encoding the major fungal allergen AspF2 was found to be the highest expressed 
gene in 3 of 4 models and third highest in the other. AspF2 and other allergenic proteins have been shown to stim-
ulate a predominantly Th1 response in healthy human PBMCs, while inducing a Th2 response in PBMCs from 
individuals with ABPA117. The elevated expression of these allergens suggests they may function as an important 
peptide based stimulatory factors for the observed Th1 response in our models, though the mechanism and host 
receptors remain unknown. Finally, the differential expression of several components of the gliotoxin biosynthe-
sis cluster also provides additional evidence of context specific responses associated with a given model of IPA. 
Forthcoming molecular and computational analysis of these tribes and expression groupings will provide insight 
into the mechanism by which these secreted proteins and secreted metabolites facilitate pathogenesis in a context 
specific manner.

This RNA-Seq study provides a systems level understanding of the murine immune and metabolic signaling 
processes in response to established A. fumigatus infections under different immune suppressing regimens. Our 
findings suggest conserved processes such as induction of host anaerobic respiration via Ldha and HIF signaling 
pathways in response to presumably lower oxygen previously reported to be an important component of IPA 
microenvironments31. However, the identification of a reduced TCA cycle in the chemotherapeutic model show-
cases key divergences exist between the models. Analysis of immune signaling pathways suggests both models are 
biased towards a Th2 cell based response and beneficial aspects of early cytokine signaling towards Th1 and Th17 
responses are near completely depleted. Furthermore, this RNA-Seq study identifies the specific expression of 
several novel Clecs, Tlrs and Nlrs previously unassociated with IPA. Analysis of putative fungal secreted proteins 
reinforces the notion of temporal and model specific activation of secreted proteins indicating A. fumigatus is 
responding to contrasting environments through specific molecular mechanisms that remain to be functionally 
interrogated. Overall, the data set generated herein provides fertile ground for testing biological significance of 
the observed changes in host and fungal gene expression during IPA in two immunologically distinct murine 
models of infection.
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Materials and Methods
Mouse models of IPA.  Standardized steroid and chemotherapeutic mouse models of invasive pulmonary 
aspergillosis were used for this study31. For RNA-Seq experiments, female mice (CD1), 6–8 weeks of age, were 
housed 4 animals per cage in a controlled environment in the Dartmouth CCMR facility consisting of HEPA 
filtered air, autoclaved food ad libitum. Steroid model mice received a single dose of Kenalog (Bristol-Myers 
Squibb Company, Princeton, NJ, USA) injected subcutaneously (s.c.) at 40 mg/kg 1 day prior to inoculation. 
Chemotherapy model mice received intraperitoneal (i.p.) injections of cyclophosphamide (Baxter Healthcare 
Corporation, Deerfield, IL, USA) at 175 mg/kg 2 days prior to inoculation and a subcutaneously (s.c.) injection 
of Kenalog at 40 mg/kg 1 day prior to inoculation. Mice were inoculated via the intranasal route with 2 × 106 A. 
fumigatus strain CEA10 (also called CBS144.89) conidia per mouse on day 0. Mock samples were inoculated with 
sterile phosphate buffer saline. Mouse lungs were harvested from each animal on day 2 and 3 post inoculation. 
All animal studies were carried out in strict accordance with the recommendations in the Guide for the Care and 
Use of Laboratory Animals of the National Institute of Health, and were approved by the respective Virginia Tech 
and Dartmouth IACUCs.

Extraction of RNA, library preparation, and sequencing.  Whole mouse lung tissue was lyophilized 
and processed through triazol extraction followed by Qiagen clean-up. Library preparation was performed 
using the TruSeq RNA preparation kit (Illumina, FC-122-1001/1002) from purified RNA (100 ng-1 μg of total 
RNA with RIN ≥ 8.0). Generated libraries were validated using Agilent 2100 Bioanalyzer and quantified using 
Quant-iT dsDNA HS Kit (Invitrogen) and qPCR. Twelve individually indexed cDNA libraries were pooled 
and designed to acquire 30 million paired end reads (60 M reads) per sample using an Illumina HiSeq-2500 
(Supplementary Table S1).

RNA-Seq data analysis.  Read quality control was initially performed by FastQC. Adaptor sequences were 
trimmed and filtered based on phred score (>33) and length (>36) using Trimmomatic-0.35118. One of the repli-
cate for the LD2 sample did not pass quality control due to overall low base call quality and was dropped, leaving 
LD2 sample with two biological replicates. Three remaining samples (LD3, SD2, SD3) all had three biological 
replicates. A master GTF was created using the GRCm38 mouse genome build and the Af1163 genome scaffolds. 
Filtered pair-ended RNA-Seq reads were mapped to the merged reference genome using the splice-aware short 
read mapping tool TopHat 2.1.0 with Bowtie2 2.2.7119. RNA sequencing data was then reassessed by FASTQC and 
QualiMap120. Abundance estimation and differential expression analysis for the reference genes and transcripts 
were performed using Cufflinks 2.2.1 and visualized in part via CummRbund121. Based on histogram distribution 
of mouse gene expression a gene is considered expressed when its FPKM > 1. Murine genes were considered 
differentially expressed when q-value < 0.05 and the log2-fold change was > 1. Counts for fungal genes were nor-
malized based on both housekeeping genes and overall model normalization using DESeq. 2122. A given fungal 
genes was considered differentially expressed when either of the two compared normalized count were ≥ 10 and 
padj < 0.05. A given fungal genes was considered expressed when the normalized count was ≥ 10.

Functional Computational Analysis.  Groupings of mouse differentially expressed genes were ana-
lyzed for functional classification using PantherDB.org online server35. These groupings were then analyzed 
for functional enrichment of Gene Ontology Mouse specific Biological Processes terms using the BINGO app32 
in Cytoscape33. Groupings were further analyzed using the ReactomeFIViz34 in Cytoscape. A list of IRGs was 
generated from innateDB123 and a list of metabolic genes was generated from KEGG36. These genes were inde-
pendently clustered based on FPKM values using GENE-E [http://www.broadinstitute.org/cancer/software/
GENE-E/index.html]. IRG clusters were then analyzed in Cytoscape and the Reactome FIVIZ app. Groupings of 
metabolic genes were overlaid onto the KEGG Metabolic Pathway through the online web portal36 and through 
Cytoscape using KEGGScape124 to read in KEGG KGML files for a given pathway. Groupings of A. fumigatus 
differentially expressed genes based on normalized counts were analyzed for enrichment (Hypergeometric test, 
Benjamini & Hochberg False Discovery Rate (FDR) correction, p < 0.05) by FungiFun2 using both FunCat and 
GO ontologies125.

A list of candidate fungal secreted proteins from the predicted proteins of A. fumigatus 1163 were generated 
using SignalP4.0126 and further filtered using TMHMM2.0127. Proteins were then compared at the amino acid level 
using command line Blast+128. Blast results were pooled and analyzed by the Markov clustering algorithm with 
various I cut-offs from 14 to 60129. These I14 clusters were then analyzed and visualized using Cytoscape. Temporal 
clusters were determined based on the FPKM values of the predicted secreted proteins from A. fumigatus.

Computational modeling.  Simulations of CD4+ T cell differentiation were run using a previously 
described model42. The model was implemented within the Complex Pathway Simulator (COPASI) software as 
a system of ordinary differential equations43. RNA-Seq data for cytokines (IL-18, IL-12, IFNγ, IL-21, IL-6, IL-17, 
IL-23, IL-4, TGF-β, IL-2, IL-10) and receptor (IL-18r, IL-12r, IFNγr, Il-6r, IL-17r, IL-23r, IL-4r, TGF-βr, IL-2r, 
IL-10r), and transcription factors (Tbx21, Gata3, Foxp3, Rorc) was compiled in triplicate for steroid model day 
2, steroid model day 3, and chemotherapeutic model day 3 and in duplicate for chemotherapeutic model day 2. 
The model was then calibrated for time course simulation using a particle swarm algorithm for the optimization 
of parameter fitting for the steroid and chemotherapeutic models separately. Time course simulations used an 
LSODA method for the deterministic solution of the system.

RT-qPCR.  Purified total RNA (500 ng) was used to construct a cDNA library (qScript cDNA Synthesis Kit, 
Quantas) in a total volume of 20 μL using the following parameters: 22 °C for 5 min; 42 °C for 30 min; 85 °C for 
5 min; hold 4 °C. The cDNA was further diluted with 20 μL of supplied nuclease free water. Template cDNA, 2 μL, 

http://www.broadinstitute.org/cancer/software/GENE-E/index.html
http://www.broadinstitute.org/cancer/software/GENE-E/index.html
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was used for a qPCR reaction (20 μL) and run in triplicate per sample using 250 nM primers (final concentration) 
and SsoAdvanced Universal SYBR green Supermix (Bio-Rad) using the following polymerization parameters: 
Activation: 30 sec at 95 °C; Amplification: 41 cycles of: 10 sec at 95.0 °C, 30 sec at 60 °C; Melting Analysis 60 °C to 
95 °C with 0.5 °C increments every 5 sec. A standard curve using custom gblocks (IDTDNA) as template was used 
to assess PCR efficiency (Supplementary Table S7). Primers were designed using the IDT RealTime PCR Tool or 
prior published primer pairs (Supplementary Table S7). Differences in gene expression was calculated using the 
ΔΔCT method. β-actin was utilized a control for mouse gene expression studies. TefA and β-tubulin expression 
were used as a control for fungal gene expression studies.

Characterization of leukocyte populations.  For immunological studies, female mice (C57BL/6), 6–8 
weeks of age were housed 3–5 animals per cage in a controlled environment in the Virginia Tech Vivarium 
consisting of HEPA filtered air, autoclaved food ad libitum, and purified filtered water. Steroid model mice 
received a single dose of cortisone acetate at 250 mg/kg injected subcutaneously on day 3 prior to inoculation. 
Chemotherapy model mice received an intraperitoneal injection of cyclophosphamide, at 250 mg/kg, on day 3 
prior to inoculation and a subcutaneous injection of cortisone acetate at 250 mg/kg on day 3 prior to inoculation. 
Mice were inoculated with A. fumigatus (CEA10) via aerosolization as described in Sheppard et al.130. Mouse 
lungs and BALF fluid was collected on day 3 post inoculation.

Cells were obtained from lung tissue and bronchoalveolar lavage fluid (BALF). BALF was generated 
through cannulation of the trachea postmortem using a gavage needle and washed three times with 1 mL of 
room-temperature PBS that was then pooled and treated with protein transport inhibitor (BD #554724). Lungs 
tissue was processed and also treated with protein transport inhibitor. Red blood cells were removed through 
hypotonic lysis and filtration. Remaining cells were resuspended in 1 mL of PBS + 5% fetal bovine serum +0.09% 
sodium azide at a concentration 6 × 105 cells per well in a 96 well plate. Plated cells were treated with antibody 
cocktail (anti-CD16/anti-CD32) to remove non-specific binding. Cells were then incubated with antibodies tar-
geting extracellular receptors for 20 min at 4 °C (Supplementary Table 7). Cells were then fixed and permeabilized 
for intracellular staining. Cells were then incubated with intracellular antibodies in permeabilization buffer. Cell 
phenotyping was performed after live cell analysis (FSC vs SSC), doublet exclusion (FSC-H vs FSC-W and SSC-H 
vs SSC-W) and positive selection of CD45+ events. Approximately 30,000 CD45+ cells were acquired and sub-
sequently analyzed for cell phenotyping. Flow cytometry experiments were conducted using a custom LSRII flow 
cytometer (Becton Dickinson). All experiments were independently repeated, with a N = 8.

Data availability statement.  The raw read data and computed count files for this study are available in the 
NCBI Gene Expression Omnibus repository under the accession number GSE104290. Datasets generated during 
and/or analyzed for this study are available as Supplementary Files. Additional information is readily available 
from the corresponding author with reasonable request.
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