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Biodiversity varies from place to place due to environmental and historical

factors. To improve our understanding of how history and the environment

influence observed patterns, we need to address the limitations of the most

commonly used biodiversity metric, species richness. Here, we show that

scale-dependent dissections of species richness into components of total abun-

dance, species relative abundances and spatial aggregations of species reveal

that two well-known biogeographic reef fish species richness gradients

emerge from very different underlying component patterns. Latitudinal rich-

ness is underpinned by scale-independent patterns of total and relative

abundances, suggesting ecological constraints scale up to determine abun-

dances within communities. In contrast, the longitudinal gradient of species

richness typically attributed to historical biogeography only emerges at the lar-

gest scale and is accompanied by a similar pattern of relative abundances,

suggesting that site-to-site compositional variation leading to species aggrega-

tion (i.e. a component of b-diversity) underlies this gradient. Examining

relationships among the components that underpin biodiversity gradients

reveals new patterns that can better identify processes influencing patterns

of biodiversity.
1. Introduction
The heterogeneous distribution of biodiversity on the planet has been a topic of

keen interest for centuries [1,2]. For example, why do some areas of the world

have very few species (e.g. boreal forests with only a few species in several thou-

sand hectares), whereas the same basal area in other parts of the world can have a

great many species (e.g. tropical forests that can have hundreds or thousands of

tree species in only a few hectares)? We know that both contemporary factors,

such as energy availability and temperature (e.g. [3]), and historical factors,

such as evolutionary time and diversification rates [4], play central roles in driving

this heterogeneity, and that they can interact [5]. However, the continued use of

species richness as the most common indicator of biodiversity has constrained

our descriptions of observed patterns of biodiversity and weakened tests of

possible mechanisms underlying the observed patterns [6,7].

Species richness is simply the number of unique species in a sample. For reef

fishes, when species richness is quantified at the scale of ecoregions (i.e. scales at

which macroecological studies are usually conducted), two strong and well-

known biogeographic gradients in species richness emerge (figure 1). First,

there is a strong latitudinal gradient, which is often attributed to historical

(e.g. time for speciation) as well as ecological drivers, such as energy availability

[9,10]. Second, there is an equally strong longitudinal gradient centred in the tro-

pics around the biodiversity hotspot in the Indo-Australian Archipelago (IAA),

sometimes called the ‘coral triangle’ [11,12]. This pattern is typically explained

as originating from historical processes such as high diversification rates
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Figure 1. Geographical gradients of reef fish species richness. (a) Map of total observed species richness within ecoregions [8]. (b) Declining species richness with
increasing distance from the equator (i.e. absolute latitude). (c) Declining species richness with increasing distance from the centre of the coral triangle (absolute
longitude centred on 1208E). Note that (a) shows the total species richness within ecoregions for the full dataset, whereas the points on panels (b) and (c) show
only Indo-Pacific Ocean species richness within the 10 000 m2 ecoregion-scale grains used in all subsequent analyses; lines are predictions at the ecoregion scale
from the best-fitting simultaneous autoregressive models. The colour scale is consistent for all panels.
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and/or refugia during periods of environmental stress

[9,12,13], and is not typically associated with contemporary

gradients in energy or habitat. However, despite its ease of

measurement and popularity, species richness is an extremely

coarse metric, and such gradients can arise through changes in

a number of components that determine species richness.

The components that underlie species richness include the

numbers of individuals, as well as the relative abundances and

spatial aggregations of species [7,14]. Through changes in these

components, there are many pathways that can create variation

in species richness (figure 2). For example, species richness can

be higher in one community compared with another simply as

a result of differences in the number of individuals and by

sampling a high number of species, known as the ‘more indi-

viduals’ hypothesis (figure 2a) [16,17]. Species richness can

also be higher in one community relative to another simply

because of the presence of many rare species (figure 2b) [18].

Likewise, within a given sampling area, species richness will

be higher when communities are more even (i.e. where no

one species is overly dominant), because higher evenness

leads to scale-dependent differences in species richness

(figure 2c) [15]. Finally, changes in the spatial distribution of
species (e.g. random versus aggregated) can result in changes

to species richness (figure 2d) [7,15]. Because changes in

any of these components may result in similar changes to

species richness, traditional analyses would not differentiate

them. Importantly, each of these pathways indicates a very

different underlying structure of biodiversity, and examining

them will provide new insights into the processes generating

biodiversity gradients.

In addition, species richness is a notoriously scale-

sensitive metric that increases nonlinearly with sampling area

(i.e. the ubiquitous species–area relationship). As a result of

this nonlinear scaling, species richness is neither extensive nor

intensive [19], meaning that species richness at large scales

cannot simply be calculated as the sum of richness estimated

at smaller scales (i.e. as an extensive variable), nor as a weighted

average of small-scale richness estimates (i.e. as an intensive

variable). This greatly limits traditional comparisons of species

richness that are scale-agnostic, and that do not account for

the components underlying species richness (e.g. total abun-

dance of individuals, species relative abundances [7,19]).

Here we directly examine the components of species rich-

ness to gain deeper insight into the fundamental factors
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Figure 2. Species richness as a function of the number of individuals (rarefaction curves). (a) Species in communities A and B have similar relative abundances (quantified
in our analyses using the effective number of species conversion of the probability of interspecific encounter, ENSPIE), but different total numbers of species (black dots) due
to more individuals in community A. (b) Communities A and C have similar total and relative abundances, but different species richness due to more rare species in
community A. (c) Species in communities A and D have different relative abundances, leading to scale-dependent differences in species richness. (d ) Individual-
based rarefaction can also be used to infer within-species aggregation when relative abundances become more even with increasing scale [7,15].
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determining heterogeneity in biodiversity across broad biogeo-

graphic gradients. To do this, we used a unique dataset from a

global survey of reef fishes on shallow hard substrate habitats

from all major marine realms which contains individual-

level, spatially explicit information on species abundances

(i.e. the Reef Life Survey [20]). We dissected the latitudinal

and longitudinal richness gradients into three main com-

ponents: (i) changes to the total number of individuals;

(ii) changes to the probability of interspecific encounter (a

measure of the relative abundance of species, i.e. evenness

[6]); and (iii) changes in richness. All components were calcu-

lated at four spatial scales to examine any scale dependencies.

We show that these two well-known biogeographic gradients

have divergent, scale-dependent changes in the components

of species richness. Our results reveal that understanding the

environmental and historical factors that promote patterns of

biodiversity will be improved by scale-dependent quantifi-

cation of the component changes that underpin large-scale

biodiversity gradients.
2. Material and methods
(a) Marine biogeographic species richness gradients
We used the Reef Life Survey (RLS) data [20,21] to dissect the

latitudinal and longitudinal biogeographic gradients of marine
fish species richness into component parts: numbers of individ-

uals, relative abundance of species and the spatial aggregation

of species. The RLS data represent standardized quantitative esti-

mates of reef fish abundance collected by trained recreational

scuba divers on shallow hard-substrate habitats worldwide.

Details of fish census methods, data quality and diver training

are available in [20] and online at reeflifesurvey.com.

RLS data document the abundance of all individual fish along

500 m2 transects (2 � 250 m2 blocks). As we were interested in dis-

secting patterns of species richness, we discarded records where

taxa were not recorded to species level. This resulted in a final data-

set documenting 9 569 195 individuals from 2542 species observed

along 8166 transects at 2804 sites worldwide, representing 89 ecor-

egions and 12 realms [8]. To simplify our analyses, we used

absolute values of latitude (centred on the equator), and absolute

longitude centred on 1208E. As (longitudinal) distance from the

centre of the coral triangle (i.e. 1208E) may not be ecologically or

evolutionarily relevant for fishes in the Atlantic Ocean, all

models were fitted to data from the Indo-Pacific only (i.e. the

Atlantic Ocean realms: the tropical Atlantic, temperate Northern

Atlantic, temperate South America, and Arctic and Southern

Ocean realms were removed before analysis). These Indo-Pacific

data represent 8 946 214 individuals from 2203 species, observed

along 7588 transects at 2492 sites within 66 ecoregions in 7 realms.

We quantified the total number of individuals as the sum of the

abundance of all individuals of all species observed at a given scale

(see below). Relative abundance was quantified using the effective

number of species (ENS [22]) conversion of the probability of inter-

specific encounter (PIE [6]) so that ENSPIE ¼ 1=PIE ¼ 1=
PS

i¼1 p2
i ,
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where S is the number of species and pi is the proportion of the com-

munity represented by species i. The PIE represents the probability

that two individuals randomly sampled from a community are

different species [6], and is equal to the slope of the rarefaction

curve at its base [23]. Our conversion to an effective number

of species (or Hill number) means that it can be equivalently inter-

preted as the number of common species (i.e. ENSPIE is a diversity

index of order q ¼ 2 and the equivalent of the ENS conversion of

Simpson’s concentration [22]). While PIE (and therefore ENSPIE)

are generally insensitive to sample grain and extent when individ-

uals are randomly distributed through space, sample grain and

extent can influence their values when individuals are spatially

aggregated, resulting in scale-dependent estimates of PIE (and

ENSPIE [7,23]). Accordingly, examining scale dependencies in

ENSPIE along geographical gradients allows us to infer an effect of

spatial aggregation on species richness patterns. Finally, species

richness was quantified as the observed number of species at a

given scale, and we additionally examined whether our results

were sensitive to the number of undetected species using a

non-parametric asymptotic richness estimator [24].

To examine scale dependencies of species richness patterns and

of our dissected components, we aggregated transect-scale data to

create samples at larger scales. Four scales were used for all

analyses: 500 m2 (transect scale, no aggregation), 1000 m2 and

2000 m2 (aggregated within sites) and 10 000 m2 (aggregated

within ecoregions). To control for the effects of bias associated

with unequal sampling effort at the larger scales, we used

sample-based rarefaction with 200 resamples at each of the site

scales (1000 m2 and 2000 m2), and the ecoregion (10 000 m2) scale.

To aggregate data at the site scales, the data were first reduced to

sites with at least two (1000 m2) or four (2000 m2) unique transects.

Then, either two or four transects were randomly resampled from

these reduced data 200 times (without replacement), to create a

new sample; species abundances were then aggregated at the

new scale, and species richness and our dissection components

(numbers of individuals, ENSPIE) were then calculated as the

average over all of the resamples. Similarly, at the ecoregion-scale

(10 000 m2), data were first reduced to ecoregions where at least

20 transects were sampled; 20 transects were then randomly

resampled 200 times (without replacement), species abundances

aggregated at the new larger scale, and diversity components

calculated as the average over all of the resamples.
(b) Statistical analyses
As we were interested in comparing the biogeographic patterns of

species richness with its component parts (total abundance,

ENSPIE), we wanted all response variables to be on the same

scale. Preliminary analyses showed log-transformed response vari-

ables to better meet the assumptions of our statistical models

(particularly homoscedasticity) compared with untransformed

response variables. Accordingly, we present results and analyses

where all response variables were log-transformed before model fit-

ting. Additionally, as our response variables were spatially auto-

correlated, we used simultaneous autoregressive (SAR) models

[25] to examine how they change with latitude, longitude and

scale. We fitted SAR models that incorporate a spatially dependent

error term that assumes the autoregressive process is found only in

the error term. We used Aikaike’s information criterion (AIC) to

compare the fit of models with different spatial weights matrices

constructed using different cut-off distances for determining

neighbours; specifically, all neighbours within (i) the mean distance

to nearest neighbour (3.75 km), (ii) 50 km, (iii) 100 km and

(iv) 200 km. Preliminary analyses showed that all distances

removed spatial autocorrelation in model residuals (electronic

supplementary material, table S1), but that the 50 km cut-off

distance for determining neighbours was strongly supported

(AIC weight .99% support) as providing the best-fitting spatial
weights matrix for all of our diversity components (electronic

supplementary material, table S1).

To examine scale dependencies in biogeographic patterns of

species richness and its component parts, we fitted SAR models

with parameters for interactions between latitude and scale, and

between longitude and scale. Preliminary analyses of linear

models showed that there were nonlinear patterns remaining in

the residuals, so we fitted second-order trend surfaces [26]

with the additional scale-dependent parameters. This resulted in

statistical models of the form

z ¼ b0 þ b1xþ b2yþ b3x2 þ b4y2 þ b5xyþ b6sþ b7xsþ b8ys

þ lWuþ 1,

where the covariates x, y and s represent absolute longitude, absol-

ute latitude and a categorical variable denoting scale (four levels:

500 m2, 1000 m2, 2000 m2, 10 000 m2), respectively; the b-values

are estimated regression coefficients, l is the estimated spatial auto-

regressive coefficient, W is the spatial weights matrix, u the spatially

dependent error term and e the (spatially) independent error term.

To examine scale dependencies of geographical patterns (i.e. along

longitudinal and latitudinal gradients), we set specificb coefficients

to zero (e.g. setting b7 ¼ 0 or b8 ¼ 0 removes the scale dependency

of the longitudinal and latitudinal gradients, respectively); as these

models are nested within our full model, we used likelihood ratio

tests assuming chi-square error and a p-value threshold of 0.05 to

evaluate the significance of individual terms. Similarly, we used

likelihood ratio tests to simplify our full model and to determine

the simplest model for each response (see electronic supplementary

material, tables S2–S4 for model selection statistics and parameter

estimates from simplified models).

To further examine the role of species aggregation in driving

the observed patterns of species richness, we quantified the log-

ratio of species richness and ENSPIE estimated at increasing scales

[7,23]. To calculate the ratios, we first calculated the mean values

of species richness and ENSPIE at the smaller scales (500 m2,

1000 m2 and 2000 m2) within each ecoregion, and then calculated

the ratio for each ecoregion where we had observations at every

scale (30 ecoregions in 9 realms). Similar to previous analyses, data

were reduced to Indo-Pacific ecoregions for the fitting of models

with both longitude and latitude, resulting in an analysis of 26 ecor-

egions in 7 realms. We examined the geographical patterns

of log(S1000 m2=S500 m2 Þ, logðS2000 m2=S500 m2 Þ, logðS10000 m2=S500 m2 Þ,
log(ENSPIE1000 m2

=ENSPIE500 m2
), log(ENSPIE2000 m2

=ENSPIE500 m2
) and

log(ENSPIE10000 m2
=ENSPIE500 m2

) using linear models. Preliminary ana-

lyses showed that the residuals of linear models of were not spatially

auto-correlated, but were heteroscedastic with respect to scale;

additionally, the species richness model showed some residual

non-linearity. Therefore, we fitted models with interactions between

latitude and scale, longitude and scale, and latitude and longitude

with a variance covariate for scale to deal with heteroscedasticity

[27]; and the species richness log-ratio model additionally included

second-order terms on latitude and longitude to address the non-

linearity of the observed patterns. Models were fitted using maxi-

mum likelihood, and we assessed the significance of model terms

using likelihood ratio tests (see electronic supplementary material,

tables S5–S8 for model selection statistics and parameter estimates

of simplified models).

As we used a resampling process to generate our dissection

metrics, differences in the total number of sites within the largest

(ecoregion) scale meant that the geographical area (i.e. the extent)

from which we resampled differed between ecoregions. To examine

whether these differing extents influenced our results, we refitted

all models with extent included as an additional covariate. Only

sites in the RLS dataset have a unique geographical coordinate,

so we could only calculate geographical extent at the ecoregion

scale (where we resampled from multiple sites). At the ecoregion

scale, extent was calculated as geographical area (i.e. area on an

ellipsoid) within a convex hull that bounded all the sites from
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which we resampled within each ecoregion. Extent was log-trans-

formed prior to model fitting. Including extent had no qualitative

effect on our main results (electronic supplementary material,

table S9).

All data manipulation and analyses used R 3.3.1 [28]. We used

the dplyr package for data manipulation [29]; data analyses were

conducted in spdep [30,31] and nlme [32]; and plots were generated

using AICcmodavg [33], ggplot2 [34] and meowR packages [35].
3. Results
Across latitudes, we find the expected decrease in species rich-

ness (figure 3a) accompanied by a similar pattern in the total

numbers of individuals (figure 3c). Latitudinal decreases in

both the total numbers of individuals and species richness are

scale-independent (i.e. the latitude � scale interaction was

not significant: likelihood ratio test; individuals: x2 ¼ 4.91,
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d.f.¼ 3, p ¼ 0.18; species richness: x2 ¼ 1.18, d.f. ¼ 3, p ¼ 0.76),

meaning that across all scales a sampling effect (i.e. the more

individuals hypothesis) is an important component of the

observed latitudinal gradient in marine fishes species richness.

In contrast, total numbers of individuals do not change across

longitudes or with scale (figure 3d; longitude � scale inter-

action: x2 ¼ 1.01, d.f.¼ 3, p ¼ 0.8), confirming that the

longitudinal gradient in richness is not formed by gradients

in the total numbers of individuals, and is not likely to be

associated with changes in energy or habitat availability (elec-

tronic supplementary material, figures S2–S3).

At local scales, community composition and evenness are

thought to reflect the outcome of environmental (abiotic) and

biotic filters, which act to determine which members of the

regional species pool occupy a given community, and in

what proportions [36]. Higher values of ENSPIE indicate

more even communities, and changes in the ENSPIE at small

scales indicate that the outcomes of species coexistence are

changing to affect evenness. Here, we find contrasting patterns

across latitudes (figure 3e) and longitudes (figure 3f ). Across

latitudes, patterns of the ENSPIE closely resemble the latitudi-

nal gradients of the total numbers of individuals and species

richness (figure 3a,c,e), and are scale-independent (x2 ¼ 4.94,

d.f. ¼ 3, p ¼ 0.18). Combined, this lack of strong scale-depen-

dence suggests that latitudinal gradients are most likely to be

driven by constraints imposed by contemporary ecological fac-

tors that act similarly across scales to determine the size of, and

relative abundances within, communities. In contrast, there is

no change in the ENSPIE at local scales across longitudes

(figure 3f ). The similar longitudinal patterns of our dissection

components imply that fish communities observed along

single transects in the IAA biodiversity hotspot and, for

example, in the comparatively species poor French Polynesia

may be remarkably similar in terms of total abundance, relative

species abundances and species richness.

Across longitudes both species richness (figure 3b) and the

ENSPIE (figure 3f) show marked scale dependence (species rich-

ness: x2 ¼ 14.25, d.f.¼ 3, p ¼ 0.003; ENSPIE: x2 ¼ 16.42, d.f. ¼ 3,

p ¼ 0.001). Such scale-dependent patterns in species richness,

whereby gradients only emerge at large scales, are due to

changes to one or both of two of the underlying diversity com-

ponents: rare species being sampled with increases in

scale and/or large-scale within-species aggregation. Increasing

values of the ENSPIE with increasing sample grain means that

new, relatively common species are being sampled as scale

increases. Species contributing to such a scale-dependent pat-

tern of the ENSPIE are probably aggregated in space [7,23].

Here, we found ENSPIE and species richness show similar,

scale-dependent patterns across longitudes (i.e. only decreasing

with increasing distance from the IAA at the largest scale),

suggesting that both within-species aggregation and rare

species are contributing to the longitudinal diversity gradient.

We further visualized how the spatial aggregation of

common and rare species factors into species richness gradients

by quantifying the ratios of species richness (figure 4a,b) and

ENSPIE (figure 4c,d) at increasing scales. The species richness

ratio is multiplicative b-diversity (i.e. the ratio of g/a), and

is more sensitive to rare species than the ENSPIE ratio [22]; posi-

tive values mean that new, relatively rare species are being

sampled as the scale of the sample increases. The ENSPIE ratio

measures how evenness is changing as the scale of the sample

grain increases (termed ‘beta-evenness’ by Olszewski [23],

and conceptually related to the beta-diversity of common
species [22]). Positive values of the ENSPIE ratio indicate that

new, relatively common species are being sampled as the

scale of the sample increases. We find that both ratios are

more strongly scale-dependent across longitudes than latitudes

(figure 4; species richness: longitude � scale: x2 ¼ 9.2, d.f. ¼ 2,

p ¼ 0.01; latitude � scale: x2 ¼ 0.58, d.f.¼ 2, p ¼ 0.75; ENSPIE:

longitude � scale: x2 ¼ 7.3, d.f. ¼ 2, p ¼ 0.03; latitude � scale:

x2 ¼ 5.84, d.f. ¼ 2, p ¼ 0.05). Additionally, we find that the

rate of decay with increasing longitudinal distance from the

coral triangle is greater for the ENSPIE ratio (figure 4d) com-

pared with the species richness ratio (figure 4b). The steep

gradient of the ENSPIE ratio suggests that within the IAA biodi-

versity hotspot, each site may contain different species with

relatively high abundances that contribute to the high spatial

turnover in community structure, while sites at more remote

pacific islands (e.g. Easter Island) may all be dominated by

the same few species. Moreover, these analyses show that

spatial turnover of both common and rare species contributes

to the longitudinal decline in species richness, and emphasi-

zes the contributions of regional-scale aggregation to the

longitudinal, but not the latitudinal, diversity gradient.
4. Discussion
Our dissection of richness into components of the numbers of

individuals and species relative abundances shows that at the

scales examined here, the latitudinal richness gradient is

underpinned by scale-insensitive component patterns. This

means that processes affecting the total numbers of individuals

and species relative abundances are changing similarly across

scales. In particular, the pattern of richness increasing with

the total number of individuals emphasizes a role for contem-

porary ecological factors, such as available energy [16,37,38],

and higher evenness at low latitudes is associated with pro-

cesses that allow more species to coexist at small scales. For

example, resource partitioning and ecological specialization

are often thought to be greater in the tropics (e.g. [39]),

though empirical evidence for this is mixed and there have

been very few tests of this hypothesis in marine systems [40].

The strong complementary patterns between species richness

and both evenness and the number of individuals make

alternative, historical hypotheses for latitudinal gradients in

marine fishes species richness (such as differences in evolution-

ary time or diversification rates [4]) less plausible. Nevertheless,

the latitudinal patterns of total abundance and evenness

observed here could also result from higher diversification

rates at low latitudes that allow for finer niche partitioning by

constituent species, and hence more individuals overall.

When gradients of species richness are scale-dependent

and emerge only at larger spatial scales, we can infer that

they are caused by some combination of rare species and/

or within-species aggregation. Teasing apart such changes

in the components of richness is essential for increasing our

understanding of contemporary biodiversity patterns. In par-

ticular, different processes probably drive increased numbers

of rare species versus within-species aggregations. Increased

numbers of rare species at low latitudes have been hypoth-

esized to be associated with a greater availability of niches,

increased specialization, and temperature-dependence of eco-

logical and evolutionary rates [37,38]. In contrast, large-scale

aggregation is associated with very different processes, such

as habitat heterogeneity, spatial frequency dependence,
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allopatric speciation and/or dispersal limitation [41,42].

Here, our finding of scale-dependent longitudinal patterns

of species richness and ENSPIE, and their ratios, means that

new species, both rare and common, are sampled with

increases in scale near the IAA biodiversity hotspot. Hence,

both common and rare species are more spatially aggregated

near the IAA biodiversity hotspot, and both within-

species aggregation and rare species are contributing to the

longitudinal diversity gradient of marine fish.

Our scale-dependent dissections of species richness

allowed us to show that similar large-scale richness gradients

of reef fishes are underpinned by very different component

patterns. Importantly, the identification of different scale-

dependent changes in the components indicates that divergent

underlying processes probably drive the latitudinal and longi-

tudinal gradients in reef fish species richness. While it is

accepted that historical processes of diversification dynamics

as well as range expansion from refugia cause longitudinal

diversity gradients [9,13], the scale dependence of the ENSPIE

shows that for reef fishes, these processes mostly promote coex-

istence regionally through a component of b-diversity,

quantified as within-species aggregation (e.g. via spatial
niche partitioning, dispersal limitation, allopatric speciation),

and do not trickle down to influence local-scale patterns. In

contrast, latitudinal gradients are largely insensitive to scale,

and imply that bottom-up constraints on total and relative

abundance (e.g. available energy) scale up to shape the species

pool.

There are three main sources of patchiness in our data. The

first is that the number of observations (transects) is different in

the different regions. This was controlled for with the resam-

pling process used to generate the larger scales, which is the

equivalent of sample-based rarefaction, and effectively stan-

dardizes sampling within scales. The second source of

patchiness is the location of transects within regions. For

example, for a given sampling effort, regions that are larger

may sample more of the environmental heterogeneity and

hence contain higher spatial turnover and aggregation. We

examined this effect of patchiness at the largest (ecoregion)

scale (where geographical extent of the region from which we

resample may differ) by refitting the models including the

different extents from which the data were resampled. Model

selection presented in the supplementary material suggests

that the differing extents do not qualitatively alter our main
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findings (electronic supplementary material, table S9). The

third source of patchiness is the large gaps, where we have

no data from entire regions. For example, we do not have

data from Borneo and the Philippines. While it is undeniable

including data from these regions would be desirable, we

have no reason to believe that adding these missing locations

would have changed the results.

In all, we have demonstrated that understanding vari-

ation in biodiversity is a more complex endeavour than

simply measuring and comparing patterns of species richness

at a single spatial scale. Our results illustrate that examining

how species-relative abundances and spatial aggregations

change will be required to truly understand how species

richness varies across the planet, as well as to open a

window onto why those values are changing. Knowing

which components underpin variation in species richness is

vital for improving how we conserve and manage biodiver-

sity, as well as for understanding its potential response in

the face of ongoing environmental change. For example, if

regional species richness is largely maintained by rare species

or intraspecific aggregations, protected areas will need to be

larger relative to situations where species richness is simply
a function of more individuals randomly dispersed in

space. Quantifying patterns in the components of richness

provides important information for distinguishing among

competing hypothesized processes driving biodiversity

gradients, and promises to improve our understanding of

the relative roles of contemporary and historical factors in

shaping heterogeneous distributions of biodiversity.
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