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The major histocompatibility complex (MHC) plays a key role in vertebrate

immunity, and pathogen-mediated selection often favours certain allelic com-

binations. Assessing potential mates’ MHC profiles may provide receivers

with genetic benefits (identifying MHC-compatible mates and producing

optimally diverse offspring) and/or material benefits (identifying optimally

diverse mates capable of high parental investment). Oscine songbirds learn

songs during early life, such that song repertoire content can reflect population

of origin while song complexity can reflect early life condition. Thus birdsong

may advertise the singer’s genetic dissimilarity to others in the population

(and, presumably, compatibility with potential mates), or individual genetic

diversity (and thus condition-dependent material benefits). We tested whether

song repertoire content and/or complexity signal MHC class IIb dissimilarity

and/or diversity in male song sparrows (Melospiza melodia). Pairwise dissim-

ilarity in repertoire content did not predict MHC dissimilarity between

males, suggesting that locally rare songs do not signal rare MHC profiles.

Thus, geographical variation in song may not facilitate MHC-mediated

inbreeding or outbreeding. Larger repertoires were associated with inter-

mediate MHC diversity, suggesting intermediate rather than maximal MHC

diversity is optimal. This could reflect trade-offs between resisting infection

and autoimmune disorders. Song complexity may advertise optimal MHC

diversity, a trait affecting disease resistance and capacity for parental care.
1. Introduction
The major histocompatibility complex (MHC) plays a fundamental role in ver-

tebrate immunity. MHC molecules recognize exogenous peptides (antigens)

and present them to T cells, initiating an immune response [1]. Because MHC

genotype determines the suite of antigens that can be recognized, pathogen-

mediated selection often favours particular alleles or allelic combinations.

Evolutionary arms races with pathogens can impose selection favouring rare

alleles, while balancing selection (e.g. heterozygote advantage) often favours

individuals with multiple alleles at MHC [2]. Thus, receivers should benefit by

assessing potential mates’ MHC profiles [1–3]. Choosing mates with MHC alleles

that are dissimilar to one’s own or locally rare should yield offspring that are

MHC-diverse or possess rare alleles, conferring genetic benefits via disease resist-

ance [1–4]. Choosing mates that are themselves MHC-diverse may also enhance

offspring MHC diversity [5] and/or inheritance of rare alleles [6]. Moreover,

MHC-diverse mates may provide enhanced parental investment [7] owing to

superior condition. Signals of locally rare MHC profiles, and of individual

diversity at MHC, are thus likely to be salient to mating decisions [3].

In mammals, fish and seabirds, groups with well-developed chemical communi-

cation, receivers identify specific (e.g. locally rare) MHC alleles through olfactory

cues from sweat, urine or preen oil [8–10]. Conversely, because individual diversity

at MHC affects disease resistance, condition-dependent ornaments may signal MHC

diversity [11,12]. In oscine songbirds, however, learned birdsong could theoretically
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reflect similarity to the surrounding population as well as indi-

vidual diversity at MHC. Song learning is generally restricted

to early life, meaning that song repertoire content can advertise

population of origin [13]. Conversely, song complexity can

advertise early life condition [14] and/or adult immunocompe-

tence [15]. Thus, song repertoire content and complexity may

signal the singer’s MHC similarity versus dissimilarity to

others in the population (and, presumably, compatibility with

potential mates), and/or individual diversity at MHC (and,

presumably, condition and capacity for parental care).

In song sparrows (Melospiza melodia), males learn song

during early life. Song varies geographically, and locally

typical repertoires are associated with locally typical micro-

satellite genotypes [16], suggesting that repertoire content

reflects population of origin. Females prefer local over non-

local song [17], and larger over smaller song repertoires

[18]. We characterized the peptide-binding region of MHC

class IIb to test whether pairwise dissimilarity in song reper-

toire content reflects MHC dissimilarity to other males in the

population (a proxy for locally rare alleles), and whether song

repertoire size reflects individual diversity at MHC.

2. Material and methods
(a) Field sampling
The subjects were 32 male song sparrows at a single breeding

site (less than 1 km diameter, and not physically isolated

from other suitable habitat) near Newboro, Ontario, Canada

(44.6338 N, 76.3308 W). Between 13 April and 3 May 2015, we

captured sparrows in seed-baited traps, collected blood for

genetic analysis, applied individually unique colour band

combinations for field identification, then released birds.

(b) Song analysis
We recorded song onto Marantz Professional PMD 671 recor-

ders using Telinga Twin Science Pro parabolic microphones.

Recording 200 songs per individual, not necessarily consecu-

tive, is sufficient in most cases to characterize complete

repertoires in this population [19]. To be conservative, we

recorded 300 songs per individual and confirmed by accumu-

lation curves that a plateau had occurred. We digitized

recordings in Raven Pro 1.5 (Cornell Lab of Ornithology),

inspected spectrograms to identify song types, and noted

song repertoire size as the number of different song types

each individual produced. We identified a total of 235 sylla-

bles (i.e. one or more traces on a spectrogram that always

occurred together [16]) across all song types. As detailed else-

where [16], we screened each individual’s repertoire for each

syllable, constructed a presence–absence syllable matrix and

calculated pairwise Jaccard dissimilarity coefficients adjusted

for differences in syllable repertoire size.

(c) Genetic analysis
We used primers SospMHCint1f [20] and Int2r.1 [21] to amplify

MHC class II, exon 2 (b subunit). Details of polymerase chain

reaction (PCR) and sequencing conditions are available in

Dryad, and hereafter referred to as ‘electronic supplementary

material’ [22]. We sorted sequences into stacks of identical

reads using a pipeline [23] and removed chimeras using

UCHIME [24]. As detailed elsewhere [20,25], we used a 1%

threshold frequency to remove rare reads that could represent

PCR or sequencing errors, and compared a subset of reads to
complementary DNA (cDNA)-derived sequences to confirm

transcription of at least some alleles.

We trimmed sequences to remove introns, translated them

into amino acid sequences of 70–74 codons, and removed

apparent pseudogenes based on premature termination

codons. Based on a maximum-likelihood allele phylogeny

with WAG substitution and five discrete gamma categories,

we used the unweighted UniFrac algorithm in the R package

GUniFrac [26] to calculate pairwise genetic distances between

individuals. Alleles in the same clade are presumably similar

functionally, so to be conservative in estimating genetic

diversity, we clustered them into ‘superalleles’ based on well-

defined clade membership [25]. We scored each individual’s

MHC diversity as the number of different superalleles.

(d) Data analysis
To test whether song dissimilarity signals MHC dissimilarity

to other males in the population, we assessed the correlation

between Jaccard dissimilarity and UniFrac genetic distance,

using a Mantel test with 9999 permutations (mantel in

VEGAN [27]).

To test whether song complexity varies with MHC diver-

sity, we compared support for three models predicting song

repertoire size: a linear model (number of superalleles), a

quadratic model (number of superalleles þ squared number

of superalleles), and a null model. We ranked models using

Akaike’s corrected information criterion (AICc), setting a

threshold of 2 AICc units for model averaging. We checked

models for highly influential points, and confirmed Cook’s

distance was less than 0.5 in all cases.

Analyses were performed in R v. 3.4.0 [28]; values reported

are means+ s.e.m.
3. Results
We detected 186 unique alleles at MHC IIb, which clustered

to 91 superalleles (electronic supplementary material, fig. S1

[22]; 13.6+ 0.5 superalleles per individual). Repertoire size

ranged from 5 to 12 song types (7.8+0.3 per individual).

Song dissimilarity was not associated with genetic

distance at MHC (Mantel’s r ¼ 20.01, p ¼ 0.55).

In predicting song repertoire size, the quadratic model

received 5–16 times more support than the null or linear

models (table 1; parameter estimates in table 2). The largest

song repertoires occurred in males with intermediate MHC

diversity (figure 1). Excluding one individual with low reper-

toire size and high MHC diversity (figure 1, upper leftmost

point) did not qualitatively alter significance of results

(electronic supplementary material, tables S1 and S2 [22]).
4. Discussion
MHC-related mating preferences have been observed in all ver-

tebrate classes [3], raising the question of how animals assess

MHC profiles. Cues of compatibility and diversity are gener-

ally studied in the contexts of chemosignalling [8–10] and

visual ornaments [6,11,12], respectively. We investigated bird-

song, an acoustic ornament, as a signal of MHC class IIb

dissimilarity to other individuals in the population (a proxy

for locally rare genotypes), and individual genetic diversity.

Geographical variation in song has long been proposed to



Table 1. Ranked set of candidate models predicting song sparrow song repertoire size. Predictors were number of MHC superalleles and squared number of
MHC superalleles.

model d.f. logLik AICc DAICc model weight

quadratic: no. MHC þ (no. MHC)2 4 254.8 119.0 0 0.78

null: intercept only 2 258.9 122.2 3.20 0.16

linear: no. MHC 3 258.8 124.4 5.40 0.05

Table 2 Parameter estimates from the best-supported model predicting
song sparrow song repertoire size. Repertoire size increased with number of
MHC class IIb superalleles, but decreased with squared number of
superalleles. R2 ¼ 0.23, F2,29 ¼ 4.24.

parameter b+++++ s.e. 95% CI

intercept 25.27+ 4.97 215.4, 4.89

no. MHC 2.12+ 0.76 0.56, 3.67

(no. MHC)2 20.082+ 0.029 20.14, 20.02 4 6 8 10 12
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Figure 1. Relationship between song repertoire size and MHC class IIb
superallele diversity. Curve depicts best-supported model described in
tables 1 and 2.
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advertise population of origin, suggesting receivers might use

song to achieve an optimal balance between inbreeding and

outbreeding [13,29]. Finding no relationship between song

and MHC dissimilarity could reflect low genetic differentiation

at MHC in this system [25]: if MHC does not vary with popu-

lation of origin, song is unlikely to signal MHC dissimilarity.

However, we examined only one class of MHC and cannot

rule out associations between song repertoire content

and class I loci, whose products interact with intracellular

pathogens such as viruses [1].

Whereas MHC class IIb dissimilarity to other males at the

site was not associated with song dissimilarity, individual

diversity at MHC explained 23% of the variation in song reper-

toire size. This supports previous findings that MHC diversity

influences ornamentation [6,11,12], but an association with

an acoustic ornament is novel (although see [15] for evidence

that song repertoire size advertises cell-mediated immunity

in this species). Also notable is the nonlinear nature of this

relationship: larger song repertoires were associated with

intermediate, not maximal, MHC diversity. This might reflect

trade-offs between susceptibility to pathogens versus auto-

immune disorders [1,2], or a dilution effect whereby overly

diverse MHC profiles have too few copies of protective alleles.

In choosing social mates with complex song, females may

obtain material benefits through increased paternal invest-

ment. To the extent that males with optimal MHC diversity
produce optimally diverse offspring, preferences for complex

song may also confer genetic benefits.
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