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Asymmetrical intraguild predation (AIGP), which combines both predation

and competition between predator species, is pervasive in nature with relative

strengths varying by prey availability. But with species redistributions associ-

ated with climate change, the response by endemic predators within an AIGP

context to changing biotic–abiotic conditions over time (i.e. seasonal and dec-

adal) has yet to be quantified. Furthermore, little is known on AIGP dynamics

in ecosystems undergoing rapid directional change such as the Arctic. Here,

we investigate the flexibility of AIGP among two predators in the same trophic

guild: beluga (Delphinapterus leucas) and Greenland halibut (Reinhardtius
hippoglossoides), by season and over 30 years in Cumberland Sound—a

system where forage fish capelin (Mallotus villosus) have recently become

more available. Using stable isotopes, we illustrate different predator responses

to temporal shifts in forage fish availability. On a seasonal cycle, beluga con-

sumed less Greenland halibut and increased consumption of forage fish

during summer, contrasting a constant consumption rate of forage fish by

Greenland halibut year-round leading to decreased AIGP pressure between

predators. Over a decadal scale (1982–2012), annual consumption of forage

fish by beluga increased with a concomitant decline in the consumption of

Greenland halibut, thereby indicating decreased AIGP pressure between pre-

dators in concordance with increased forage fish availability. The long-term

changes of AIGP pressure between endemic predators illustrated here high-

lights climate-driven environmental alterations to interspecific intraguild

interactions in the Arctic.

1. Introduction
Asymmetrical intraguild predation (AIGP), a combination of predation and com-

petition, is widespread in nature and occurs when a relatively larger-bodied

predator consumes a sympatric smaller-bodied predator while both compete

for a shared prey resource [1]. The availability of this shared resource is a key

factor that modulates the extent of predation versus competition between preda-

tors and thus the intensity of AIGP; i.e. decreasing prey availability can lead to

increased AIGP and vice versa [2]. In turn, the interplay between competitive

and predatory AIGP elements can have profound effects on population and com-

munity dynamics through altering trophic guild structure [1] and dampening

top–down trophic cascades [2]. But how temporal (i.e. seasonal and decadal)

changes in the availability and composition of a shared prey resource influence

AIGP dynamics between predators has received limited attention.

The Arctic is the fastest-warming ecosystem on the planet, with climate velocities

driving marked ecological changes through shifting prey preferences and
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Table 1. Summary of mean d13C and d15N (‰) for beluga and Greenland halibut by tissue and time-period.

common name species name n tissue d13C+++++ s.d. (‰) d15N+++++ s.d. (‰)

1982 – 2002

beluga Delphinapterus leucas 63 muscle 218.1+ 0.3 17.5+ 1.0

57 skin 217.9+ 0.3 17.0+ 0.6

Greenland halibut Reinhardtius hippoglossoides 14 muscle 219.6+ 0.7 16.6+ 0.4

2004 – 2012

beluga Delphinapterus leucas 25 muscle 218.3+ 0.4 15.9+ 0.8

21 skin 217.9+ 0.4 16.2+ 0.5

Greenland halibut Reinhardtius hippoglossoides 21 muscle 219.2+ 0.4 16.4+ 0.7

21 liver 219.1+ 0.8 15.1+ 0.6

Table 2. Mean of d13C and d15N (‰) for potential prey items and their median contribution (95% Bayesian credible interval) to beluga and Greenland
halibut diet by time-period. Bold font represents dietary estimates derived from beluga skin and Greenland halibut liver.

common name species name n d13C+++++ s.d. d15N+++++ s.d.
contribution to
beluga diet (%)

contribution to Greenland
halibut diet (%)

1982 – 2002

squid Gonatid sp. 7 220.3+ 0.9 11.4+ 0.9 1 (0 – 2) 6 (0 – 18)

51 (47 – 55) —

shrimp Pandalus borealis 10 218.7+ 0.5 13.3+ 1.0 21 (7 – 33) 13 (0 – 38)

2 (0 – 6) —

Arctic cod Boreogadus saida 8 219.2+ 0.5 14.1+ 1.2 12 (1 – 29) 79 (55 – 97)

5 (0 – 11) —

Greenland halibut Reinhardtius

hippoglossoides

14 219.6+ 0.7 16.6+ 0.4 67 (55 – 78) —

42 (37 – 47) —

2004 – 2012

squid Gonatid sp. 5 219.8+ 0.6 11.2+ 1.3 14 (0 – 31) 2 (0 – 8)

34 (19 – 48) 16 (5 – 28)

shrimp Lebbeus polaris 7 218.2+ 0.2 13.9+ 0.4 8 (0 – 18) 2 (0 – 10)

2 (0 – 10) 7 (0 – 21)

Arctic cod/capelin Boreogadus saida/

Mallotus villosus

22 220.0+ 0.4 13.7+ 0.8 35 (3 – 58) 95 (87 – 100)

56 (30 – 77) 76 (58 – 92)

Greenland halibut Reinhardtius

hippoglossoides

21 219.4+ 0.4 16.4+ 0.7 42 (27 – 63) —

7 (0 – 18) —
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abundances, and poleward shifts of more-temperate species [3,4].

For example, the forage fish capelin (Mallotus villosus) is con-

sidered a sea ‘canary’ for a warming climate because of their

ability to use varying depths (1–600 m) and spawning tempera-

tures (2–148C), and this has led to northward movements

coincident with temperature change [5]. Given these conspicuous

environmental changes across the Arctic, understanding how

endemic predators respond to seasonal and long-term shifts in

prey availability and how predator–prey dynamics such as

AIGP can influence ecosystem functioning is required.

Two predators in the Arctic, beluga (Delphinapterus leucas)
and Greenland halibut (Reinhardtius hippoglossoides), are in

the same trophic guild and co-occur in a well-monitored

system providing a model to investigate the plasticity of

AIGP between predators. Specifically, beluga consume forage

fish, Greenland halibut and invertebrates, while Greenland
halibut consume forage fish and pelagic invertebrates [6,7].

These predator–competitor dynamics, under a scenario of a

northward shift in a temperate forage fish, provide a frame-

work to investigate the plasticity of AIGP between predators

with a changing prey species composition over a 30-year

time-period. Cumberland Sound, Nunavut, Canada

(658130000 N, 658450000 W) is a system where capelin have

become increasingly abundant since the mid-2000s (A. Fisk

2007, personal observation; R. Kilabuk from Pangnirtung,

Nunavut 2011, personal communication; see electronic sup-

plementary material, figure S1). Traditional ecological

knowledge on beluga whales inhabiting waters off Southeast

Baffin Island does not report the occurrence of capelin in

beluga stomachs in the 1990s [6], supporting a recent shift in

capelin availability. Here, we measure time-integrated

resource-use of beluga and Greenland halibut over two
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Figure 1. Median contributions (95% Bayesian credible interval) to beluga and Greenland halibut diet estimated from stable isotope mixing models from
1982 – 2002 and 2004 – 2012 in an AIGP context derived from skin – liver (summer) (a,b) and muscle (annual) (c,d), respectively. Symbols represent beluga
(grey), Greenland halibut (green) and forage fish (Arctic cod 1982 – 2002, and capelin/Arctic cod 2004 – 2012; yellow).
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temporal scales (seasonal and decadal), through stable isotope

analysis. We provide the first empirical evidence of seasonal

and decadal (1982–2012) shifts in AIGP dynamics between

predators coincident with changing prey availability.
2. Material and methods
Predator/prey samples were sourced from tissue archives for two

time-periods: 1982–2002 and 2004–2012. These time-periods were

selected based on increased availability of capelin (after 2004) and

a significant change in beluga d15N and sympagic carbon source-

use in the early 2000s [8]. A two-tissue approach was adopted to

discern seasonal (summer, winter) differences in predator diets

based on the premise of shorter stable isotope half-lives of cetacean

skin (beluga; 14–17 days) [9] and fish liver (Greenland halibut;

approx. 39 days) compared to fish and mammal muscle
(Greenland halibut: approx. 98; beluga: approx. 202 days based

on average adult body mass—1400 kg) [10,11]. Decadal trends

were examined using muscle tissue isotope values only. All pred-

ator and primary prey (Gonatid squid, shrimp (Pandalus borealis,
Lebbeus polaris), Arctic cod (Boreogadus saida) and capelin) tissue

samples were collected during Arctic summer/autumn months

(May to October) within and near Cumberland Sound (table 1;

electronic supplementary material). Anadramous Arctic char

(Salvelinus alpinus), a generalist fish predator that co-occurs in

the system, were used as a sentinel species to measure shifting

prey composition over the study period. Arctic char stomach con-

tent data were analysed from fish sampled between 2002–2004

and 2011 (see electronic supplementary material).

Seasonal and decadal contributions of primary prey to beluga

and Greenland halibut diet were estimated using Bayesian mixing

model analysis in SIAR v. 4.2.2 [12] in R [13] v. 3.3.2 set at 500 000

iterations, a burn-in of 300 000 and thinned by 100. The posterior

distribution from the mixing models (2000) was used to estimate



rsbl.royals

4
the probability (ep) that contributions of a prey item increased/

decreased in the predator diet by season (summer versus winter)

and time-periods (between 1982–2002 and 2004–2012). See elec-

tronic supplementary material for model specifics on diet–tissue

discrimination factors and prey groups.
 ocietypublishing.org
Biol.Lett.13:20170433
3. Results and discussion
Between 2002 and 2011 there was a marked increase in the

abundance of capelin in the stomach contents of Arctic char

(0% to 77%; electronic supplementary material, figures S2

and S3), supporting previous observations of their increased

presence in Cumberland Sound. Concomitantly, with increas-

ing availability of capelin, the estimated contributions of

forage fish to the diet of beluga also showed a marked temporal

shift (table 2 and figure 1). On a seasonal basis, beluga

increased consumption of forage fish during summer in

2004–2012 based on skin–muscle half-lives (i.e. muscle, year-

integrated value; skin, summer-integrated value; ep—89%).

Equally, between both time-periods, beluga also increased

their consumption of forage fish (ep 86% for muscle and

more than 99% for skin), with an associated decline in the con-

sumption of Greenland halibut (ep 98% and more than 99%

based on muscle and skin, respectively). For sympatric Green-

land halibut, forage fish was identified as the dominant

prey over both temporal scales, similar to [14] (table 2 and

figure 1; see electronic supplementary material, figures S4

and S5 for stable isotope bi-plots by time-period).

Our study, for the first time to our knowledge, provides

data to illustrate the temporal (seasonal and decadal) plasticity

of AIGP between predators with a change in the availability of

a shared prey resource as a result of climate change. Previous

studies have typically examined AIGP dynamics during a

single time-period [1,2], but given species redistributions

across the globe [3,5], we demonstrate associated impacts on

interspecific intraguild interactions between endemic preda-

tors over time. Northward-expanding capelin, a prevalent

forage fish in Cumberland Sound since 2004, promotes oppor-

tunistic, flexible foraging behaviour among predators to take

advantage of increased capelin abundance in the system. As

a result, a decrease in AIGP pressure, which acts as a stabilizing

mechanism in ecological communities by hindering trophic

cascades [15,16], has occurred between beluga and Greenland

halibut. This decrease in AIGP pressure and increased reliance

on pelagic forage fish by both predators could, in theory,

increase the susceptibility for ecosystem perturbations in the

pelagic energy channel.

The degree of AIGP between beluga and Greenland

halibut increased with season as beluga shifted from primarily

consuming forage fish in the summer to consuming more

Greenland halibut in late-autumn/winter. Our estimates of sea-

sonal prey contributions are further supported by telemetry
data. Beluga dive to shallower depths (0–100 m) during the

summer than late-autumn and winter, when dives deeper

than 400 m are more common [17]. These dive data suggest a

seasonal switch from foraging on capelin in the summer to

Greenland halibut in the winter [17]. As such, beluga likely

expend more energy on foraging during the less-productive

winter compared to summer, but may acquire a higher

energy pay-off due to Greenland halibut being larger, on aver-

age, than capelin despite similar energy densities (4.7 and

5.5 kJ g21) [18].

From 1982 to 2012, beluga consumed less Greenland halibut,

while their diet of forage fish increased. Given increased

accessibility to capelin in shallower waters during summer,

beluga likely select not to expend high amounts of energy

deep-diving for Greenland halibut. The cost of deep-diving to

reach Greenland halibut, which typically reside at depths

of approximately 1000 m in the summer [19], likely drives

reduced predation pressure on Greenland halibut at this time.

Greenland halibut are primarily piscivorous [7] and feed on a

high proportion of forage fish when compared with beluga.

Greenland halibut consequently represent a superior competitor

than beluga to exploit shared forage fish resources—a common

attribute in AIGP systems that promotes co-existence between

predators [2]. Furthermore, with a declining Cumberland

Sound beluga population [20], their increased reliance on

forage fish through increased capelin availability and an increase

in Greenland halibut abundance over time [21], Greenland

halibut have likely undergone a mesopredator release.

Our data suggest a warming Arctic will continue to lead to

altered interspecific intraguild interactions, thereby modifying

predator–competitor–prey dynamics between endemic Arctic

species. These ecosystem modifications have the potential to

have reverberating effects across all trophic guilds in the

Arctic, with ramifications on its ecosystem-level processes in

our rapidly warming world.
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