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Abstract

Contextual bandits have become popular as they offer a middle ground between very simple 

approaches based on multi-armed bandits and very complex approaches using the full power of 

reinforcement learning. They have demonstrated success in web applications and have a rich body 

of associated theoretical guarantees. Linear models are well understood theoretically and preferred 

by practitioners because they are not only easily interpretable but also simple to implement and 

debug. Furthermore, if the linear model is true, we get very strong performance guarantees. 

Unfortunately, in emerging applications in mobile health, the time-invariant linear model 

assumption is untenable. We provide an extension of the linear model for contextual bandits that 

has two parts: baseline reward and treatment effect. We allow the former to be complex but keep 

the latter simple. We argue that this model is plausible for mobile health applications. At the same 

time, it leads to algorithms with strong performance guarantees as in the linear model setting, 

while still allowing for complex nonlinear baseline modeling. Our theory is supported by 

experiments on data gathered in a recently concluded mobile health study.

1 Introduction

In the theory of sequential decision-making, contextual bandit problems (Tewari & Murphy, 

2017) occupy a middle ground between multi-armed bandit problems (Bubeck & Cesa-

Bianchi, 2012) and full-blown reinforcement learning (usually modeled using Markov 

decision processes along with discounted or average reward optimality criteria (Sutton & 

Barto, 1998; Puterman, 2005)). Unlike bandit algorithms, which cannot use any side-

information or context, contextual bandit algorithms can learn to map the context into 

appropriate actions. However, contextual bandits do not consider the impact of actions on 

the evolution of future contexts. Nevertheless, in many practical domains where the impact 

of the learner’s action on future contexts is limited, contextual bandit algorithms have shown 
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great promise. Examples include web advertising (Abe & Nakamura, 1999) and news article 

selection on web portals (Li et al., 2010).

An influential thread within the contextual bandit literature models the expected reward for 

any action in a given context using a linear mapping from a d-dimensional context vector to 

a real-valued reward. Algorithms using this assumption include LinUCB and Thompson 

Sampling, for both of which regret bounds have been derived. These analyses often allow 

the context sequence to be chosen adversarially, but require the linear model, which links 

rewards to contexts, to be time-invariant. There has been little effort to extend these 

algorithms and analyses when the data follow an unknown nonlinear or time-varying model.

In this paper, we consider a particular type of non-stationarity and non-linearity that is 

motivated by problems arising in mobile health (mHealth). Mobile health is a fast 

developing field that uses mobile and wearable devices for health care delivery. These 

devices provide us with a real-time stream of dynamically evolving contextual information 

about the user (location, calendar, weather, physical activity, internet activity, etc.). 

Contextual bandit algorithms can learn to map this contextual information to a set of 

available intervention options (e.g., whether or not to send a medication reminder). However, 

human behavior is hard to model using stationary, linear models. We make a fundamental 

assumption in this paper that is quite plausible in the mHealth setting. In these settings, there 

is almost always a “do nothing” action usually called action 0. The expected reward for this 

action is the baseline reward and it can change in a very non-stationary, non-linear fashion. 

However, the treatment effect of a non-zero action, i.e., the incremental change over the 

baseline reward due to the action, can often be plausibly modeled using standard stationary, 

linear models.

We show, both theoretically and empirically, that the performance of an appropriately 

designed action-centered contextual bandit algorithm is agnostic to the high model 

complexity of the baseline reward. Instead, we get the same level of performance as 

expected in a stationary, linear model setting. Note that it might be tempting to make the 

entire model non-linear and non-stationary. However, the sample complexity of learning 

very general non-stationary, non-linear models is likely to be so high that they will not be 

useful in mHealth where data is often noisy, missing, or collected only over a few hundred 

decision points.

We connect our algorithm design and theoretical analysis to the real world of mHealth by 

using data from a pilot study of HeartSteps, an Android-based walking intervention. 

HeartSteps encourages walking by sending individuals contextually-tailored suggestions to 

be active. Such suggestions can be sent up to five times a day–in the morning, at lunchtime, 

mid-afternoon, at the end of the workday, and in the evening–and each suggestion is tailored 

to the user’s current context: location, time of day, day of the week, and weather. HeartSteps 

contains two types of suggestions: suggestions to go for a walk, and suggestions to simply 

move around in order to disrupt prolonged sitting. While the initial pilot study of HeartSteps 

micro-randomized the delivery of activity suggestions (Klasnja et al., 2015; Liao et al., 

2015), delivery of activity suggestions is an excellent candidate for the use of contextual 

bandits, as the effect of delivering (vs. not) a suggestion at any given time is likely to be 
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strongly influenced by the user’s current context, including location, time of day, and 

weather.

This paper’s main contributions can be summarized as follows. We introduce a variant of the 

standard linear contextual bandit model that allows the baseline reward model to be quite 

complex while keeping the treatment effect model simple. We then introduce the idea of 

using action centering in contextual bandits as a way to decouple the estimation of the above 

two parts of the model. We show that action centering is effective in dealing with time-

varying and non-linear behavior in our model, leading to regret bounds that scale as nicely 

as previous bounds for linear contextual bandits. Finally, we use data gathered in the 

recently conducted HeartSteps study to validate our model and theory.

1.1 RelatedWork

Contextual bandits have been the focus of considerable interest in recent years. Chu et al. 

(2011) and Agrawal & Goyal (2013) have examined UCB and Thompson sampling methods 

respectively for linear contextual bandits. Works such as Seldin et al. (2011), Dudik et al. 

(2011) considered contextual bandits with fixed policy classes. Methods for reducing the 

regret under complex reward functions include the nonparametric approach of May et al. 

(2012), the “contextual zooming” approach of Slivkins (2014), the kernel-based method of 

Valko et al. (2013), and the sparse method of Bastani & Bayati (2015). Each of these 

approaches has regret that scales with the complexity of the overall reward model including 

the baseline, and requires the reward function to remain constant over time.

2 Model and Problem Setting

Consider a contextual bandit with a baseline (zero) action and N non-baseline arms (actions 

or treatments). At each time t = 1, 2,…, a context vector st̄ ∈ ℝd′ is observed, an action at ∈ 
{0,…, N} is chosen, and a reward rt(at) is observed. The bandit learns a mapping from a 

state vector st,at depending on s ̄t and at to the expected reward rt(st,at). The state vector st,at ∈ 
ℝd is a function of at and s̄t. This form is used to achieve maximum generality, as it allows 

for infinite possible actions so long as the reward can be modeled using a d-dimensional st,a. 

In the most unstructured case with N actions, we can simply encode the reward with a d = 

Nd′ dimensional  where I(·) is the indicator function.

For maximum generality, we assume the context vectors are chosen by an adversary on the 

basis of the history ℋt−1 of arms aτ played, states sτ̄, and rewards rτ (s̄τ, aτ) received up to 

time t − 1, i.e.,

Consider the model E[rt(s̄t, at)|s̄t, at] = f̄t(s̄t, at), where f̄t can be decomposed into a fixed 

component dependent on action and a time-varying component that does not depend on 

action:
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where f̄t(s̄t, 0) = gt(s̄t) due to the indicator function I(at > 0). Note that the optimal action 

depends in no way on gt, which merely confounds the observation of regret. We hypothesize 

that the regret bounds for such a contextual bandit asymptotically depend only on the 

complexity of f, not of gt. We emphasize that we do not require any assumptions about or 

bounds on the complexity or smoothness of gt, allowing gt to be arbitrarily nonlinear and to 

change abruptly in time. These conditions create a partially agnostic setting where we have a 

simple model for the interaction but the baseline cannot be modeled with a simple linear 

function. In what follows, for simplicity of notation we drop s̄t from the argument for rt, 

writing rt(at) with the dependence on s̄t understood.

In this paper, we consider the linear model for the reward difference at time t:

(1)

where nt is zero-mean sub-Gaussian noise with variance σ2 and θ ∈ ℝd is a vector of 

coefficients. The goal of the contextual bandit is to estimate θ at every time t and use the 

estimate to decide which actions to take under a series of observed contexts. As is common 

in the literature, we assume that both the baseline and interaction rewards are bounded by a 

constant for all t.

The task of the action-centered contextual bandit is to choose the probabilities π(a, t) of 

playing each arm at at time t so as to maximize expected differential reward

(2)

This task is closely related to obtaining a good estimate of the reward function coefficients 

θ.

2.1 Probability-constrained optimal policy

In the mHealth setting, a contextual bandit must choose at each time point whether to deliver 

to the user a behavior-change intervention, and if so, what type of intervention to deliver. 

Whether or not an intervention, such as an activity suggestion or a medication reminder, is 

sent is a critical aspect of the user experience. If a bandit sends too few interventions to a 

user, it risks the user’s disengaging with the system, and if it sends too many, it risks the 

user’s becoming overwhelmed or desensitized to the system’s prompts. Furthermore, 

standard contextual bandits will eventually converge to a policy that maps most states to a 

near-100% chance of sending or not sending an intervention. Such regularity could not only 

worsen the user’s experience, but ignores the fact that users have changing routines and 
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cannot be perfectly modeled. We are thus motivated to introduce a constraint on the size of 

the probabilities of delivering an intervention. We constrain 0 < πmin ≤ 1 − ℙ(at = 0|s̄t) ≤ 

πmax < 1, where ℙ(at = 0|s̄t) is the conditional bandit-chosen probability of delivering an 

intervention at time t. The constants πmin and πmax are not learned by the algorithm, but 

chosen using domain science, and might vary for different components of the same mHealth 

system. We constrain ℙ(at = 0|s̄t), not each ℙ(at = i|s̄t), as which intervention is delivered is 

less critical to the user experience than being prompted with an intervention in the first 

place. User habituation can be mitigated by implementing the nonzero actions (a = 1,…, N) 

to correspond to several types or categories of messages, with the exact message sent being 

randomized from a set of differently worded messages.

Conceptually, we can view the bandit as pulling two arms at each time t: the probability of 

sending a message (constrained to lie in [πmin, πmax]) and which message to send if one is 

sent. While these probability constraints are motivated by domain science, these constraints 

also enable our proposed action-centering algorithm to effectively orthogonalize the baseline 

and interaction term rewards, achieving sublinear regret in complex scenarios that often 

occur in mobile health and other applications and for which existing approaches have large 

regret.

Under this probability constraint, we can now derive the optimal policy with which to 

compare the bandit. The policy that maximizes the expected reward (2) will play the optimal 

action

with the highest allowed probability. The remainder of the probability is assigned as follows. 

If the optimal action is nonzero, the optimal policy will then play the zero action with the 

remaining probability (which is the minimum allowed probability of playing the zero 

action). If the optimal action is zero, the optimal policy will play the nonzero action with the 

highest expected reward

with the remaining probability, i.e. πmin. To summarize, under the constraint 

, the expected reward maximizing policy plays arm at with 

probability π*(a, t), where

(3)
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3 Action-centered contextual bandit

Since the observed reward always contains the sum of the baseline reward and the 

differential reward we are estimating, and the baseline reward is arbitrarily complex, the 

main challenge is to isolate the differential reward at each time step. We do this via an 

action-centering trick, which randomizes the action at each time step, allowing us to 

construct an estimator whose expectation is proportional to the differential reward rt(āt) − 

rt(0), where āt is the nonzero action chosen by the bandit at time t to be randomized against 

the zero action. For simplicity of notation, we set the probability of the bandit taking 

nonzero action ℙ(at > 0) to be equal to 1 − π(0, t) = πt.

3.1 Centering the actions - an unbiased rt(āt) − rt(0) estimate

To determine a policy, the bandit must learn the coefficients θ of the model for the 

differential reward  as a function of āt. If the bandit had access at each 

time t to the differential reward rt(āt) − rt(0), we could estimate θ using a penalized least-

squares approach by minimizing

over θ, where rt(a) is the reward under action a at time t (Agrawal & Goyal, 2013). This 

corresponds to the Bayesian estimator when the reward is Gaussian. Although we have only 

access to rt(at), not rt(āt) − rt(0), observe that given āt, the bandit randomizes to at = āt with 

probability πt and at = 0 otherwise. Thus

(4)

Thus (I(at > 0) − πt)rt(at), which only uses the observed rt(at), is proportional to an unbiased 

estimator of rt(āt) − rt(0). Recalling that āt, at are both known since they are chosen by the 

bandit at time t, we create the estimate of the differential reward between āt and action 0 at 

time t as

The corresponding penalized weighted least-squares estimator for θ using rt̂(āt) is the 

minimizer of

Greenewald et al. Page 6

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5)

where for simplicity of presentation we have used unit penalization , and

The weighted least-squares weights are πt(1 − πt), since 

 and the standard deviation of r̂t(āt) = (I(at > 

0) − πt)rt(at) given ℋt−1, āt, s̄t is of order gt(s̄t) = O(1). The minimizer of (5) is θ̂ = B−1b̂.

3.2 Action-Centered Thompson Sampling

As the Thompson sampling approach generates probabilities of taking an action, rather than 

selecting an action, Thompson sampling is particularly suited to our regression approach. 

We follow the basic framework of the contextual Thompson sampling approach presented by 

Agrawal & Goyal (2013), extending and modifying it to incorporate our action-centered 

estimator and probability constraints.

The critical step in Thompson sampling is randomizing the model coefficients according to 

the prior (θ̂, v2B−1) for θ at time t. A θ′ ~ (θ̂, v2B−1) is generated, and the action at 

chosen to maximize . The probability that this procedure selects any action a is 

determined by the distribution of θ′; however, it may select action 0 with a probability not in 

the required range [1 − πmax, 1 − πmin]. We thus introduce a two-step hierarchical 

procedure. After generating the random θ′, we instead choose the nonzero āt maximizing 

the expected reward

Then we randomly determine whether to take the nonzero action, choosing at = āt with 

probability

(6)
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and at = 0 otherwise, where θ̃ ~ (θ̂, v2B−1).  is the probability that the expected 

relative reward  of action āt is higher than zero for θ̃ ~ (θ̂, v2B−1). This probability is 

easily computed using the normal CDF. Finally the bandit updates b̂, B and computes an 

updated θ̂ = B−1 b̂. Our action-centered Thompson sampling algorithm is summarized in 

Algorithm 1.

Algorithm 1

Action-Centered Thompson Sampling

1: Set B = I, θ̂ = 0, b̂ = 0, choose [πmin, πmax].

2: for t = 1, 2,… do

3:  Observe current context s̄t and form st,a for each a ∈ {1,…, N}.

4:  Randomly generate θ′ ~ (θ̂, v2B−1).

5:  Let

at = arg max
a ∈ {1, …, N}

st, a
T θ′ .

6:  Compute probability πt of taking a nonzero action according to (6).

7:  Play action at = āt with probability πt, else play at = 0.

8:  Observe reward rt(at) and update θ̂

B = B + πt(1 − πt)st, at
st, at
T , b = b + st, at

(I(at > 0) − πt)rt(at), θ = B−1b .

end for

4 Regret analysis

Classically, the regret of a bandit is defined as the difference between the reward achieved by 

taking the optimal actions , and the expected reward received by playing the arm at chosen 

by the bandit

(7)

where the expectation is taken conditionally on at, , ℋt−1. For simplicity, let 

 be the probability that the optimal policy takes a nonzero action, and recall 

that πt = 1 − πt(0, t) is the probability the bandit takes a nonzero action. The probability 

constraint implies that the optimal policy (3) plays the optimal arm with a probability 

bounded away from 0 and 1, hence definition (7) is no longer meaningful. We can instead 

create a regret that is the difference in expected rewards conditioned on āt, πt, , ℋt−1, but 

not on the randomized action at:
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(8)

where we have recalled that given āt, the bandit plays action at = āt with probability πt and 

plays the at = 0 with differential reward 0 otherwise. The action-centered contextual bandit 

attempts to minimize the cumulative regret  over horizon T.

4.1 Regret bound for Action-Centered Thompson Sampling

In the following theorem we show that with high probability, the probability-constrained 

Thompson sampler has low regret relative to the optimal probability-constrained policy.

Theorem 1—Consider the action-centered contextual bandit problem, where f ̄t is 
potentially time varying, and st̄ at time t given ℋt−1 is chosen by an adversary. Under this 
regime, the total regret at time T for the action-centered Thompson sampling contextual 
bandit (Algorithm 1) satisfies

with probability at least 1 − 3δ/2, for any 0 < ε < 1, 0 < δ < 1. The constant C is in the proof.

Observe that this regret bound does not depend on the number of actions N, is sublinear in 

T, and scales only with the complexity d of the interaction term, not the complexity of the 

baseline reward g. Furthermore, ε = 1/log(T) can be chosen giving a regret of order 

.

This bound is of the same order as the baseline Thompson sampling contextual bandit in the 

adversarial setting when the baseline is identically zero (Agrawal & Goyal, 2013). When the 

baseline can be modeled with d′ features where d′ > d, our method achieves 

regret whereas the standard Thompson sampling approach has  regret. 

Furthermore, when the baseline reward is time-varying, the worst case regret of the standard 

Thompson sampling approach is O(T), while the regret of our method remains .

4.2 Proof of Theorem 1 - Decomposition of the regret

We will first bound the regret (8) at time t.

(9)
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(10)

where the inequality holds since  and  by definition. Then

Observe that we have decomposed the regret into a term I that depends on the choice of the 

randomization πt between the zero and nonzero action, and a term II that depends only on 

the choice of the potential nonzero action āt prior to the randomization. We bound I using 

concentration inequalities, and bound II using arguments paralleling those for standard 

Thompson sampling.

Lemma 1—Suppose that the conditions of Theorem 1 apply. Then with probability at least 

 for some constant C given in the proof.

Lemma 2—Suppose that the conditions of Theorem 1 apply. Then term II can be bounded 

as

where the inequality holds with probability at least 1 − δ.

The proofs are contained in Sections D and E in the supplement respectively. In the 

derivation, the “pseudo-actions” āt that Algorithm 1 chooses prior to the πt baseline-nonzero 

randomization correspond to the actions in the standard contextual bandit setting. Note that I 

involves only āt, not , hence it is not surprising that the bound is smaller than that for II. 
Combining Lemmas 1 and 2 via the union bound gives Theorem 1.

5 Results

5.1 Simulated data

We first conduct experiments with simulated data, using N = 2 possible nonzero actions. In 

each experiment, we choose a true reward generative model rt(s, a) inspired by data from the 

HeartSteps study (for details see Section A.1 in the supplement), and generate two length T 
sequences of state vectors st,a ∈ ℝNK and s̄t ∈ ℝL, where the s̄t are iid Gaussian and st,a is 

formed by stacking columns I(a = i)[1; s̄t] for i = 1,…, N. We consider both nonlinear and 

nonstationary baselines, while keeping the treatment effect models the same. The bandit 
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under evaluation iterates through the T time points, at each choosing an action and receiving 

a reward generated according to the chosen model. We set πmin = 0.2, πmax = 0.8.

At each time step, the reward under the optimal policy is calculated and compared to the 

reward received by the bandit to form the regret regret(t). We can then plot the cumulative 

regret cumulative regret

In the first experiment, the baseline reward is nonlinear. Specifically, we generate rewards 

using rt(st,at, s̄t, at) = θT st,at +2I(|[s̄t]1| < 0.8)+nt where nt = (0, 1) and θ ∈ ℝ8 is a fixed 

vector listed in supplement section A.1. This simulates the quite likely scenario that for a 

given individual the baseline reward is higher for small absolute deviations from the mean of 

the first context feature, i.e. rewards are higher when the feature at the decision point is 

“near average”, with reward decreasing for abnormally high or low values. We run the 

benchmark Thompson sampling algorithm (Agrawal & Goyal, 2013) and our proposed 

action-centered Thompson sampling algorithm, computing the cumulative regrets and taking 

the median over 500 random trials. The results are shown in Figure 1, demonstrating linear 

growth of the benchmark Thompson sampling algorithm and significantly lower, sublinear 

regret for our proposed method.

We then consider a scenario with the baseline reward gt(·) function changing in time. We 

generate rewards as  where nt = (0, 1), θ is a fixed 

vector as above, and ηt ∈ ℝ7, s̄t are generated as smoothly varying Gaussian processes 

(supplement Section A.1). The cumulative regret is shown in Figure 2, again demonstrating 

linear regret for the baseline approach and significantly lower sublinear regret for our 

proposed action-centering algorithm as expected.

5.2 HeartSteps study data

The HeartSteps study collected the sensor and weather-based features shown in Figure 3 at 5 

decision points per day for each study participant. If the participant was available at a 

decision point, a message was sent with constant probability 0.6. The sent message could be 

one of several activity or anti-sedentary messages chosen by the system. The reward for that 

message was defined to be log(0.5 + x) where x is the step count of the participant in the 30 

minutes following the suggestion. As noted in the introduction, the baseline reward, i.e. the 

step count of a subject when no message is sent, does not only depend on the state in a 

complex way but is likely dependent on a large number of unobserved variables. Because of 

these unobserved variables, the mapping from the observed state to the reward is believed to 

be strongly time-varying. Both these characteristics (complex, time-varying baseline reward 

function) suggest the use of the action-centering approach.

We run our contextual bandit on the HeartSteps data, considering the binary action of 

whether or not to send a message at a given decision point based on the features listed in 
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Figure 3 in the supplement. Each user is considered independently, for maximum 

personalization and independence of results. As above we set πmin = 0.2, πmax = 0.8.

We perform offline evaluation of the bandit using the method of Li et al. (2011). Li et al. 

(2011) uses the sequence of states, actions, and rewards in the data to form an near-unbiased 

estimate of the average expected reward achieved by each algorithm, averaging over all 

users. We used a total of 33797 time points to create the reward estimates. The resulting 

estimates for the improvement in average reward over the baseline randomization, averaged 

over 100 random seeds of the bandit algorithm, are shown in Figure 4 of the supplement 

with the proposed action-centering approach achieving the highest reward. Since the reward 

is logarithmic in the number of steps, the results imply that the benchmark Thompson 

sampling approach achieves an average 1.6% increase in step counts over the non-adaptive 

baseline, while our proposed method achieves an increase of 3.9%.

6 Conclusion

Motivated by emerging challenges in adaptive decision making in mobile health, in this 

paper we proposed the action-centered Thompson sampling contextual bandit, exploiting the 

randomness of the Thompson sampler and an action-centering approach to orthogonalize out 

the baseline reward. We proved that our approach enjoys low regret bounds that scale only 

with the complexity of the interaction term, allowing the baseline reward to be arbitrarily 

complex and time-varying.
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A HeartSteps feature list

Figure 3 shows the features available to the bandit in the HeartSteps study dataset, and 

Figure 4 shows the estimated average regret results with errorbars.

A.1 Simulation model

Figure 5 shows the coefficients θ used in the main text simulations. The coefficients shown 

in the figure associated with the first action are obtained via a linear regression analysis of 

the binary action (sending or not sending a message) HeartSteps intervention data, and the 

coefficients for the second action are a simple modification of those.

For the time varying simulation, Gaussian processes were used to generate the reward 

coefficient sequence ηt and the state sequence s̄t. We used Gaussian processes since if ηt is 

IID, then the baseline reward becomes an IID random variable, making the baseline reward 

not time varying.

We used the Gaussian process
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where η0 = 17, nt ~ (0, I7), and ρ = 0.1. The state sequence s̄t was generated in the same 

manner.

B Definitions

In order to proceed with the proof of Theorem 1, we make the following definitions.

Definition 1

Define a filtration ℱt−1 = {ℋt−1, s̄t} as the union of the history and current context.

Definition 2

Let

for all a = 1, …, N.

Definition 3

Define , and 

.

We divide the arms ā > 0 into saturated and unsaturated actions.

Definition 4 (Saturated vs. unsaturated actions)

Any arm ā > 0 for which  is called a saturated arm. If an arm is not 
saturated, it is called unsaturated. Let C(t) ⊆ {1, …, N} be the subset of saturated arms at 
time t.

Observe that the optimal arm ā* is unsaturated by definition.

We can now state the required concentration events and present bounds on the probability 

they occur.

B.1 Concentration events

Definition 5

Let Eμ(t) be the event that for all ā = 1, …, N

Similarly, let Eθ(t) be the event that for all ā = 1, …, N
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and  be the corresponding event that for all ā = 1, …, N

We can bound the probabilities of the events Eθ(t), Eθ(t)0, and Eμ(t) in the following 

lemmas. Observe that by definition ℘(Eθ(t)|ℱt−1) = ℘(Eθ(t)0|ℱt−1).

Lemma 3 (Agrawal & Goyal (2013))

For all t, and possible filtrations ℱt−1, .

For Eμ(t) we have

Lemma 4

For all t, 0 < δ < 1, .

The proof is given in Section G.

B.2 Supermartingales

Definition 6 (Supermartingale)

A sequence of random variables (Yt; t ≥ 0) is called a supermartingale corresponding to a 
filtration ℱt if, for all t, Yt is ℱt-measurable, and

for all t ≥ 1.

Lemma 5 (Azuma-Hoeffding inequality)

If for all t = 1, …, T a supermartingale (Yt; t ≥ 0) corresponding to filtration ℱt satisfies |Yt 

− Yt−1| ≤ ct for some constants ct, then for any a ≥ 0
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C Preliminary results

C.1 Lemma 7: Probability of choosing a saturated action āt ∈ C(t)

Lemma 6 (Agrawal & Goyal (2013) Lemma 2)

For any filtration ℱt−1 such that Eμ(t) is true,

We can now prove the following.

Lemma 7

For any filtration ℱt−1 such that Eμ(t) is true,

where .

Proof—Recall that āt is the action with the largest value of . Hence, if  is larger 

than  for all i ∈ C(t), then āt is one of the unsaturated actions. Hence

(11)

We know that by definition all saturated arms i ∈ C(t) have . Given an 

ℱt−1 such that Eμ(t) holds, we have that either Eθ(t) is false or for all i ∈ C(t)

implying
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where we have used the definitions of Eμ(t), Eθ(t), and the last inequality follows from 

Lemma 6 and Lemma 4. Substituting into (11) gives

and

C.2 Lemma 9 - Bound on Σt zt, āt

Lemma 8

For , we have that

where  is a contant.

Proof—We apply the following lemma from Auer et al. (2002) and Chu et al. (2011).

Lemma 9

Let , where xt ∈ ℝd is a sequence of vectors. Then, defining 

, we have

To apply this to Σt zt, āt, let . Then 

, and we have

Applying Lemma 9 we thus have
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where  is a constant.

D Proof of Lemma 1 - term I

Proof—We know that by definition of the optimal policy, . Hence under 

event Eμ(t),

Substituting in the definitions of ℓ(T), v and the bound in Lemma 3 on , we have

Summing over t and recalling that by Lemma 9 , we have that 

under event Eμ(t)

Since the probability that Eμ(t) holds is at least  by Lemma 4, the lemma results.

E Proof of Lemma 2: Bound on term II

Before commencing the proof, we first state the following result from Abbasi-Yadkori et al. 

(2011).
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Lemma 10 (Abbasi-Yadkori et al. (2011))

Let ( ; t ≥ 0) be a filtration, (mt; t ≥ 1) be an ℝd-valued stochastic process such that mt is 

( )- measurable, (ηt; t ≥ 1) be a real-valued martingale difference process such that ηt is 

( )-measurable. For t ≥ 0, define  and , where Id is 
the d-dimensional identity matrix. Assume ηt is conditionally R-sub-Gaussian.

Then, for any δ′ > 0, t ≥ 0, with probability at least 1 − δ′,

where .

We now prove Lemma 2.

Proof—Defining , we have the following lemma, which 

we prove in Section F.

Lemma 11

Let, for ,

(12)

(13)

Then (Yt; t = 0, …, T) is a super-martingale process with respect to filtration ℱt.

Given our results in Section G.1 and our concentration bounds, the proof is closely related to 

Agrawal & Goyal (2013) and is listed in Section F.

Using the definition of Xt, we have that 

. This allows us to apply the Azuma-

Hoeffding inequality listed in Section B.2, giving that
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with probability at least 1 − δ/2, where we recall that if āt ∉ C(t), then .

Substituting in the bound  from Lemma 9 and the definitions of 

g(T), p, ℓ(T), we obtain that

with probability at least , where C′ is a constant. Recall that by Lemma 4, Eμ(t) holds 

for all t with probability at least 1 − δ/2, and that  whenever Eμ(t) 
holds. By the union bound we then have that

with probability at least 1 − δ. The lemma results.

F Proof of Lemma 11

Proof—To prove that Yt is a super-martingale by the definition above, we need to prove 

that for all 1 ≤ t ≤ T and any ℱt−1, [Yt − Yt−1|ℱt−1] ≤ 0.

We first consider filtrations ℱt−1 for which Eμ(t) holds. By the definition of āt, 

. Under Eθ(t) and Eμ(t) we then must have that for all i = 1, …, N

Hence .
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For ℱt−1 such that Eμ(t) holds, we then can write

where we have used the facts that regret′(t) ≤ 1, the definition of unsaturated arms, and 

Lemma 4. Applying Lemma 7 and noting that since min eig(B(t)) ≤ 1, zt,i ≤ ||st,i||2 ≤ 1, we 

can show that

(14)

By definition,  is zero and the above inequality holds 

whenever Eμ(t) is not true. Since we have considered both cases, the lemma is proved.

G Proof of Lemma 4

Proof—We can apply Lemma 10 with ,

and with the filtration  effectively containing all the available 

information up to the current time.  is measurable by definition, and in Section G.1 we 

show

Lemma 12

Suppose that nt is R sub-Gaussian. Then ηt is a -measurable, R′-sub-Gaussian, martingale 

difference process where .

We then have
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Observe that these are the two primary components of the contextual bandit, specifically, Bt 

= Mt−1 and bt − [bt] = ξt. Hence, . Letting  for any 

vector y and matrix A ∈ ℝd×d, for all ā > 0 we have that since Mt is positive definite,

Applying Lemma 10, we have that for any δ′ > 0, t ≥ 1,

Then . Setting δ′ = δ/T2 implies 

that with probability 1 − δ/T2, for all ā,

G.1 Proof of Lemma 12: Martingale analysis of ηt

Proof—Recall
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since the rewards are all bounded by one and the πmin ≤ πt ≤ πmax are bounded. We have 

assumed that nt is R sub-Gaussian. Since a bounded random variable |X| < b is b sub-

Gaussian and the sum of independent b1 and b2 sub-Gaussian random variables is b1 + b2 

sub-Gaussian, we have that ηt is  conditionally sub-

Gaussian. Since πmin, πmax are bounded away from 0 and 1 by constants, R′is a constant.

Additionally, for all āt

where the third equality follows from (4). Thus [ηt|ℋt−1, s̄t] = 0 and ηt is a martingale 

difference process.
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Figure 1. 
Nonlinear baseline reward g, in scenario with 2 nonzero actions and reward function based 

on collected HeartSteps data. Cumulative regret shown for proposed Action-Centered 

approach, compared to baseline contextual bandit, median computed over 100 random trials.
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Figure 2. 
Nonstationary baseline reward g, in scenario with 2 nonzero actions and reward function 

based on collected HeartSteps data. Cumulative regret shown for proposed Action-Centered 

approach, compared to baseline contextual bandit, median computed over 100 random trials.
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Figure 3. 
List of features available to the bandit in the HeartSteps experiment. The features available 

to model the action interaction (effect of sending an anti-sedentary message) and to model 

the baseline (reward under no action) are denoted via a “Y” in the corresponding column.
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Figure 4. 
Unbiased estimates of the average reward received by the benchmark Thompson sampling 

contextual bandit and the proposed action-centered Thompson sampling contextual bandit, 

relative to the reward received under the pre-specified HeartSteps randomization policy. 

Also shown are one standard deviation error bars for the computed estimates. The superior 

performance of the action-centering approach is indicative of its robustness to the high 

complexity of the baseline subject behavior.
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Figure 5. 
Effect coefficients, based on HeartSteps data, used for simulation reward model.
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