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Evaluating Public Health Interventions: 7. Let the
Subject Matter Choose the Effect Measure: Ratio,

Difference, or Something Else Entirely

We define measures of effect
used in public health evalua-
tions, which include the risk
difference and the risk ratio,
the population-attributable risk,
years of life lost or gained,
disability-adjusted life years,
quality-adjusted life years,
and the incremental cost-
effectiveness ratio. Except for
the risk ratio, all of these are
absolute effect measures.
For constructing externally
generalizable absolute
sures of effect when there is
superior fit of the multiplicative
model, we suggest using the
multiplicative model to estimate
relative risks, which will often be
obtained in simple linear form with
no interactions, and then convert-
ing these to the desired absolute
measure. The externally generaliz-
able absolute measure of effect
can be obtained by suitably stan-
dardizing to the risk factor distri-
bution of the population to which
the results are to be generalized.
External generalizability will
often be compromised when
absolute measures are computed
from study populations with
risk factor distributions different
from those of the population to
whom the results are to be gen-
eralized, even when these risk
factors are not confounders of
the intervention effect. (Am J
Public Health. 2018:108:73-76.
doi:10.2105/AJPH.2017.304105)
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I n part 2 of this two-part
commentary, the seventh in
the series, “Evaluating Public
Health Interventions,” we fur-
ther consider factors informing
the choice of the measure for
quantifying the effects of public
health interventions and the
consequences of these choices for
study design, analysis, and in-
terpretation. In the first part,’ we
argued that the internal validity
and efficiency of results can often
be maximized in studies of
high-risk populations, pop-
ulations that can be expected to
provide optimal data, and pop-
ulations relatively homogeneous
with respect to risk from other
causes. Furthermore, we
reviewed evidence for the
widespread applicability of the
multiplicative model, leading to
relative risk (RR) estimates that,
ifinternally valid, are also likely to
be generalizable externally when
the multiplicative model fits the
data and there are no unmeasured
effect modifiers. We also noted
that the effect measures obtained
from the models that best fit the
data often will not correspond to
the effect measures that are of
greatest public health interest,
and thus that some conversion
may be needed. In this second
part of the commentary, we focus
more on this issue.

We discuss methods for
obtaining externally generaliz-
able absolute measures of effect
and estimate years of life gained in
the Nurses’ Health Study (NHS)
and in the US general population

illustrating this approach. The
approach we propose is (1) use
the statistical model that best fits
the data, often the multiplicative
model, to obtain preliminary
effect estimates and baseline
measures of outcome frequency;
(2) transform these estimates to
obtain the effect measure thatis of
public health interest; and (3)
standardize this estimate to the
risk factor distribution of the
target population. The risk factor
distribution will, in general, not
be estimable in the study pop-
ulation from which the RR es-
timates were calculated but will
need to be obtained from other
sources; in some cases, it may not
be available at all.

WHICH ADDITIVE
EFFECT MEASURE?

In 1959, in the context of the
debate about the causal role of
cigarette smoking in the etiology
of lung cancer, it was argued that
the RR provides the best evi-
dence for a causal effect. This was

said to be because, in many set-
tings, the metrics used to assess
sensitivity of estimates to un-
measured confounding are more
robust for the RR, whereas the
risk difference is best for assessing
public health impact.>” Since
then, difference measures, that is,
the risk or rate difference, have
often been described as more
relevant for assessing public
health impact.*®

When deciding which of two
subpopulations to intervene in to
maximize impact, choosing the
subpopulation with the largest
RR will not necessarily maxi-
mize the cases prevented; how-
ever, choosing the subpopulation
with the largest risk difference
will.*® Many regard this phe-
nomenon, the prevention para-
dox, as a central public health
strategy.” For example, high ex-
posure to vinyl chloride leads to
an RR for angiosarcoma of the
liver of 36.® Yet, because high
exposure to this substance is rare,
many more lives would likely be
saved by lowering exposure to air

pollution even by 10 micrograms
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per cubic meter because of the

widespread nature of this expo-
sure, despite an RR of 1.06 for
this increment.

Absolute effect measures in-
clude risk and rate differences,
population-attributable risks
(PARS), years of life lost, in-
cremental cost-effective ratios
(ICERs), disability-adjusted
life years (DALYs), and
quality-adjusted life years
(QALYs). Appendix A (available
as a supplement to the online
version of this article at http://
www.ajph.org) defines these
measures. Public health re-
searchers have offered a wide
range of views on which of these
parameters is best suited for de-
scribing the effect of public health
interventions. A former editor-
in-chief of AJPH, Mary North-
ridge, asserted, “If the goal is to
estimate the amount or pro-
portion of cases of a disease at-
tributable to a given risk factor, or
to predict the impact of medical
and public health interventions
on the health status of a pop-
ulation, then PARs are particu-
larly relevant,”?®!20%

By contrast, health and de-
velopment economists favor ab-
solute effect measures related to
years of life lost and functions
thereof, such as DALYs, QALYs,
and ICERs. In 2007, Peter
Orszag, former director of the
Congressional Budget Office,
emphasized the need for in-
creased research and evaluation
quantified by the ICER as
a means of containing rising
health care costs.'” The World
Health Organization, responsible
for setting standards and guide-
lines for health promotion and
disease prevention throughout
the world, focuses on DALYs and
QALYs for intervention effect
estimation,'! as does the Global
Burden of Disease Project.'” The
Environmental Protection
Agency’s publicly available

BENMAP tool for evaluating the
impact of various air pollution
rollback policies similarly focuses
on differences in life years lost and
saved (YLL)."?

As discussed in part 1 of this
commentary, when the multi-
plicative model fits the data,
the additive model without in-
teractions will not. Many in-
teractions and other nonlinear
representations of model cova-
riates will, thus, often be needed
to fit the data adequately on the
additive scale. We saw a striking
example of this in part 1 of this
commentary: the NHS dealing
with air pollution exposure’s ef-
fect on all-cause mortality risk.
Because of this, we advocate
using the statistical model that fits
the data best (which is often the
multiplicative model) and sub-
sequently transforming the esti-
mated coefticients of that model
to obtain whatever effect mea-
sure (e.g., risk difference, PAR,
life years lost) is of public health

relevance.

EXTERNALLY
GENERALIZABLE
RESULTS

PARs, ICERs, YLLs,
QUALYs, and DALY are re-
lated measures and have common
features in terms of their esti-
mation. When the multiplicative
model holds, it is often best to
estimate the RR using the mul-
tiplicative model, because if there
are no unmeasured effect modi-
fiers, the effect estimates may be
generalizable to other pop-
ulations. Causal inference ideas
and methods, as we began to
discuss in a previous commentary

14,15
can and should

in this series,
be used for internally valid esti-
mation of the intervention effect,
particularly when time-varying

confounding is a concern. These
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estimates of RR may sometimes
be obtained in a “high-risk”
epidemiological study. They may
also be obtained for an inter-
vention population in which
baseline characteristics are not
representative of a more general
population target to which
results are to be applied for policy
recommendations and for data-
informed decisions about allo-
cation of health care resources.
Therefore, externally generaliz-
able functions of this effect esti-

mate need to be put forward.

MODELING FOR
EXTERNAL
GENERALIZABILITY

When the multiplicative
model holds and there are no
unmeasured effect modifiers,
valid RR estimation can ignore
risk factors that are not con-
founders. In this setting, effect
modification will invariably be
induced on the absolute scale; this
holds even in fully randomized
studies, unless the study pop-
ulation has the same joint distri-
bution of these risk factors, which
would rarely be the case. More-
over, when converting to these
other effect measures (i.e., PARs,
ICERs, QUALYs, or DALYS),
risk factors that are not con-
founders must be included in the
multiplicative model; this is true
unless the risk factors’ joint dis-
tribution can be assumed to be
the same in the study population
used for RR estimation and the
general population to which the
absolute measure is to be applied.

Otherwise, to provide exter-
nally generalizable absolute
estimates of effect for the
identification of optimal public
health promotion and disease
prevention strategies, data need
to be available that accurately
characterize the age and risk

factor distributions in the target,
or general, population, along
with, for some measures, baseline
population-based outcome rates.
These data may be available, at
least in part, from national mor-
tality, morbidity, and disease in-
cidence registers—such as SEER
(Surveillance, Epidemiology, and
End Results)'® and the National
Death Index'’—and national
health surveys of risk factor
prevalence—such as US National
Health and Nutrition Examina-
tion Survey (NHANES)"® and
the National Health Interview
Survey (NHIS)."’

In some instances, data from
these sources can be pieced to-
gether to construct the externally
generalizable absolute measures
of interest, which must be ac-
companied by a comprehensive
uncertainty measure that takes
into account all sources of
uncertainty of the estimate.
Methods that take this ap-
proach have been given for
PARs,*® QUALYs and
DALYs,"" and ICERs.?' These
methods are closely related to
the concepts of standardization,
particularly direct standardiza-

. 2223
tion.

In other instances, the
necessary population-based data
may be unavailable, particularly
for outcomes with a complex risk
factor profile and for some
countries. In these cases, new
designs are needed to allow the
production of absolute estimators
that are generalizable to these

subpopulations and countries.

AIR POLLUTION AND
LIVES LOST

Continuing the example in-
troduced in part 1 of this two-part
commentary, we consider NHS
data used in examining the pro-
spective relationship between
fine particulate matter of 2.5
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micrograms or less (PM; 5) and
all-cause mortality; this involved
8617 deaths that occurred among
108 767 nurses between 2000
and 2006. For a moving average
exposure of 10 micrograms per
cubic meter or greater in PM, 5
compared with less, the fully
multivariable-adjusted RR was
1.08 (95% confidence interval
[CI] =1.01, 1.15); this is adjusted
for age, current smoking status,
pack years of cigarettes, US
census region, race, family history
of myocardial infarction and
hypercholesteremia, body mass
index, physical activity, alterna-
tive healthy eating index,
neighborhood income, mother’s
occupation, marital status, and
husband’s education if married.
Under the observed distribu-
tion of these risk factors during
the follow-up period, we calcu-
lated that there is an estimated
gain of 0.16 life years per person
associated with a reduction in air
pollution exposure to below 10
micrograms per cubic meter (95%
CI=-0.17, 0.48). This is gener-
alizable to populations with
a similar age and risk factor dis-
tribution as that of the NHS:
White college-educated women
born between 1918 and 1945.24%
Even in this quite large and
well-annotated study population,
although the P value for the RR
(P=.02) indicates evidence for an
association, the 95% Cls for the
years of life gained because of this
reduction in air pollution includes
the null; this illustrates a loss of
statistical power associated with
this more complex effect estimate.
Whether 0.16 life years gained
per person is substantial is difficult
to assess. One approach for doing
so is as follows. If we multiply this
value by the number of nurses
affected and then divide by the
approximate average life expec-
tancy of White females (taken
here to be 85 years), we find that
174 lives would have been saved.

January 2018, Vol 108, No. 1 AJPH

Alternatively, 14 790 nurses
would have lived an additional
year because of a reduction of air
pollution exposure to below 10
micrograms per cubic meter
among the 85% of nurses so ex-
posed. Let us further consider that
among the current US pop-
ulation of approximately

320 000 000, 15% are older than
65 years, 75% are female, 84%
have a high school education or
more, and 8.6% are exposed to
PM, 5 levels of more than 10
micrograms per cubic meter. It
might reasonably be assumed that
these results apply to approxi-
mately 0.15 X 0.75 X 0.84 X
0.086 = 0.81% of the US pop-
ulation, or 2600 640 people.

A 0.16 YLL per person among
this segment of the population
leads to more than 416 102 years
of life saved by reducing PM, 5 to
below 10 micrograms per cubic
meter; with an assumed 85-year
life expectancy, this is the
equivalent of more than 4895
lives saved because of this expo-
sure reduction in this de-
mographic sector. Whether
416 102 years of life saved is
substantial may require compar-
ing with the estimated impacts of
reductions of other adverse
but prevalent exposures and
taking the relative cost of alter-
native interventions into
account.

To construct a YLL that is
perhaps more externally gener-
alizable to all US women, rather
than those similar in their all-
cause mortality risk factor distri-
bution to NHS participants, we
reestimated the RR for all-cause
mortality in relation to PM; 5.
adjusting only for smoking status,
race, region, and marital status, to
obtain an RR of 1.07 (95%
CI=1.01, 1.14). This is
nearly identical to the full
multivariable-adjusted RR re-
ported above, suggesting no
confounding by the other risk

factors included in the full mul-
tivariable model. However, the
distribution of these risk factors in
the NHS is quite different from
that in the US general pop-
ulation, which is 67% White
rather than 94%, 18% from the
Northeast rather than 40%, 8%
never married versus 2%, and 9%
current smokers versus 12%.

‘When we standardized the
YLL to this distribution of these
risk factors, using the NHS dis-
tribution for the others, we ob-
tained a YLL of 0.28 (95%
CI=0.06, 0.51), with evidence
again for an association (P=.01);
this is nearly twice as high as the
YLL standardized to the NHS
risk factor distribution. Again, we
emphasize that, despite their
striking difference, we obtained
these two YLLs under the as-
sumption of no multiplicative
modification of the PM, 5 effect
by any other measured risk factor,
as there was no evidence for this
in the data for the measured risk
factors (although there may still
be some unmeasured modifiers).

This analysis could be further
refined by standardizing to the full
joint distribution of all risk factors
in the multivariable RR model.
However, NHIS appears to be
missing four risk factors (family
history of heart disease, hyper-
cholestermia, mother’s occupa-
tion, and healthy eating index),
whereas the NHANES is missing
two (family history of heart disease
and mother’s occupation). In ad-
dition, because these population-
representative risk factor surveys do
not jointly estimate the prevalence
of risk factors in the same group at
once, only a partial joint distribu-
tion of risk factors is available from
the very best and most represen-
tative data on these factors.

We presented these results to
illustrate the concepts of mod-
eling for external generalizability
and public health impact. They
should not be taken as firm
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estimates of the impact of air
pollution reductions on lives
gained in the United States.

CONCLUSIONS

In our review of these various
absolute measures of intervention
effects used by policymakers and
decision-makers, there is quite
a bit of room for more meth-
odological work. Existing
methods tend to use simple and
likely unrealistic parametric
models to describe survival dis-
tributions and may not fully take
into account all sources of un-
certainty. Because surveys may
lack data on all, or even most, risk
factors for an outcome, efficient
study designs need to be de-
veloped that allow estimation of
both the relative effect measure
and the joint distribution of target
population outcome risk factors
to construct a statistically efficient
and externally generalizable re-
sult. New developments in tar-
geted maximum likelihood
estimation may assist in modeling
efforts.*® Guidance is needed on
the impact of varying degrees of
misalignment of the baseline risk
factor distribution of the study
population with the target pop-
ulation on the external validity of
absolute effect measures. It is
possible that circumstances can be
delineated in which this concern
sometimes turns out to be sub-
stantively relatively unimportant.

Absolute effect estimates are
critical for evidence-based public
health decision-making. How-
ever, the external generalizability
of absolute measures thus far
presented needs to be carefully
examined and, in many cases, will
not hold when these measures are
calculated under methods and
data presently available. New
study designs need to be de-
veloped that allow internally
valid RR estimation alongside
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externally valid absolute effect
estimation. 4JPH
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