Table 1.
The first five principal components (PCs) of the data retain approximately 88% of the data variability
Boruta ranking | Vascular features (variability captured) | PC1 (35.27%) | PC2 (22.57%) | PC3 (17.20%) | PC4 (7.79%) | PC5 (5.80%) |
---|---|---|---|---|---|---|
1 | MeanThickness | − 0.1582 | − 0.4747 | 0.1035 | 0.0651 | − 0.0089 |
2 | MeanTortuosity | 0.0002 | 0.0575 | 0.5347 | − 0.0979 | 0.0013 |
3 | MurrayL1FitError | − 0.256 | − 0.3903 | 0.0438 | 0.0139 | 0.0397 |
4 | StdThickness | − 0.1566 | − 0.4762 | 0.0701 | − 0.0046 | 0.0196 |
5 | StdDevTortuosity | 0.0029 | 0.0812 | 0.5912 | − 0.0641 | 0.1449 |
6 | MaxTortuosity | 0.0948 | 0.0724 | 0.5459 | − 0.0264 | 0.1709 |
7 | MeanAngle | − 0.0611 | 0.0704 | 0.2028 | 0.2135 | − 0.936 |
8 | NumEndPoints | 0.4251 | − 0.0298 | − 0.0132 | 0.0153 | − 0.005 |
9 | ArcLength | 0.3773 | − 0.1259 | − 0.0035 | − 0.0163 | 0.0116 |
10 | NumBranchPoints | 0.4254 | − 0.0301 | − 0.0125 | 0.0146 | − 0.0038 |
11 | MurrayBranchesUsed | 0.4254 | − 0.0301 | − 0.0125 | 0.0146 | − 0.0038 |
12 | Volume | 0.1444 | − 0.4823 | 0.065 | 0.0502 | − 0.0368 |
13 | NumGenerations | 0.3182 | − 0.0237 | 0.014 | 0.2178 | − 0.0619 |
14 | MeanDistEndPointToPerim | 0.0055 | − 0.0323 | 0.0545 | 0.905 | 0.2124 |
15 | VesselToDiscPercent | 0.255 | − 0.3502 | 0.0031 | − 0.2561 | − 0.1457 |
The absolute value of the attributes within each PC gives a measure of contribution. The higher the value, the bigger the contribution. Specifically, NumEndPoints, NumBranchPoints, and MurrayBranchesUsed contributed the most to PC1, Thickness, StdThickness, and Volume contributed the most to PC2, MeanTortuosity, StdDevTortuosity, MaxTortuosity contributed the most to PC3, MeanDistEndPointToPerim contributed most to PC4, and MeanAngle contributed most to PC5