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Models to predict seasonal hydrogen sulfide (H2S) concentrations were constructed 
using neural networks. To this end, two types of generalized regression neural networks 
and radial basis function networks are considered and optimized. The input data for H2S 
were collected from August 2005 to Fall 2006 from a huge industrial complex located in 
Ansan City, Korea. Three types of seasonal groupings were prepared and one optimized 
model is built for each dataset. These optimized models were then used for the analysis 
of the sensitivity and main effect of the parameters. H2S was noted to be very sensitive to 
rainfall during the spring and summer. In the autumn, its sensitivity showed a strong 
dependency on wind speed and pressure. Pressure was identified as the most influential 
parameter during the spring and summer. In the autumn, relative humidity 
overwhelmingly affected H2S. It was noted that H2S maintained an inverse relationship 
with a number of parameters (e.g., radiation, wind speed, or dew-point temperature). In 
contrast, it exhibited a declining trend with a decrease in pressure. An increase in 
radiation was likely to decrease during spring and summer, but the opposite trend was 
predicted for the autumn. The overall results of this study thus suggest that the behavior 
of H2S can be accounted for by a diverse combination of meteorological parameters 
across seasons. 
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INTRODUCTION 

Hydrogen sulfide (H2S) is generally recognized as the key component of reduced sulfur compounds 

(RSCs)[1,2]. It is a colorless, poisonous gas with an odor of rotten eggs. A number of industrial sources, 

such as natural gas plants, have been identified along with the decomposition from sewage[3]. Exposure 

to high-level H2S can cause adverse health effects, such as respiratory stress or olfactory fatigue. There 

are a variety of meteorological parameters affecting the dispersion and distribution of H2S. They include 

temperature, relative humidity, dew point, pressure, radiation, direction and speed of wind, etc. A 
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parametric study was conducted using continuously monitored data or simulations. The Single Point 

Monitor (SPM) sensor measurements reported an increase in H2S concentration with the dew-point 

temperature[4]. A computational fluid dynamics–based study was carried out to predict the leakage and 

dispersion of H2S as a function of wind speed[5]. The computation predicted a slow dispersion of H2S in 

the leakage jet flow direction and an enhanced danger of exposed individuals in the perpendicular 

direction to the jet flow. The rate of the increase in H2S with the wind direction has also been reported[5].  

Due to complex interactions between the environmental parameters and H2S, it is very hard to assess 

the contribution of each parameter with respect to their effect on H2S behaviors under various 

environmental conditions. A viable means to accomplish this is to use a nonlinear regression technique 

named ―neural network‖. With a high learning and prediction accuracy, the neural network can capture 

any relationships between multiple parameters and an odorant. Another benefit of the neural network is a 

quick prediction suitable for a real-time monitoring system. Moreover, it provides an easy adaptation of 

variations in the environmental parameters by a process of retraining. There have been a number of 

prediction models constructed for forecasting environmental air pollutants. Neural networks and statistical 

regression models have been used to predict concentrations of particulate matter (PM 10) with an 

aerodynamic diameter of <10 µm[6,7,8,9]. The studies[6,7] reported improved predictions of the neural 

network models over the statistical models. In predicting daily maximum ozone levels as a function of the 

average air pollutant concentration, the neural network models yielded improved predictions over the 

statistical linear regression models[10]. A model combining statistical regression and neural network, 

trained with an extensive dataset including environmental pollutant concentrations and meteorological 

variables, has been developed to provide improved predictions of ozone concentrations in a lower 

atmosphere[11]. Neural network models in conjunction with the principal component analysis were built 

to forecast trends of the three major air pollutants: respirable suspended particulates, nitrogen oxides, and 

nitrogen dioxide[12]. Concentrations of inorganic airborne pollutants, such as H2S-SO2, NO-NO2—NOx, 

CO (CO2), and PM 10, have also been predicted using neural networks[13]. Use of neural networks is 

advantageous in that they can accurately ascertain any relationships between input and output patterns. 

Other benefits may include a quick response and an easy adaptation to a variation in environmental 

conditions. However, neural network models are limited in that they are unable to provide a causal 

relationship in an explicit way. 

The level and distribution of air pollutants are considerably influenced by environmental variables. 

Compared with other earlier works, this work is differentiated in that it proposes seasonal neural network 

models of H2S constructed with a large number of environmental variables. Another aspect of the new 

trial is the use of H2S models to assess and predict the effect of environmental variables. The H2S data 

were collected using an odor monitoring station built in a huge industrial complex located in Ansan City, 

Korea[14,15]. Two types of neural networks are evaluated as a function of their inherent training factors. 

Instead of constructing a model for the whole datasets, models are developed for seasonally grouped 

datasets, and applied to assess the parameters and processes affecting the behavior. The optimized models 

are thus evaluated by exploring the sensitivity and main effects of meteorological parameters. 

Furthermore, three-dimensional plots produced from the models are used to investigate seasonal effects of 

parameters on H2S.  

EXPERIMENTAL DETAILS 

Site Characteristics 

The target study site, the city of Ansan, is well known for the large industrial complex situated on its 

western side, which deals mainly with metal works, petrochemicals, electronics, and printing. As 

development proceeded, large apartment buildings were built in the large residential area on the eastern 

side of the city. Along with this development, traffic consequently expanded. With the air predominantly 

blowing from the west (industrial complex) towards the east (residential area), complaints grew regarding 



Kim et al.: Predicting H2S Seasonal Behavior using a Neural Network Model TheScientificWorldJOURNAL (2011) 11, 992–1004 

 

994 

 

the industrial processes as the main cause of malodor. In an effort to control odor problems in the city, the 

concentrations of some major odorant groups, including H2S, were monitored concurrently with such 

meteorological parameters as temperature, relative humidity, dew point, pressure, wind speed, wind 

direction, rainfall, and radiation. The analysis of wind direction data and/or its impact on H2S behavior 

was treated separately because of its nonscalar properties. The wind rose pattern, when examined using 

hourly wind direction data, was helpful to understand the common factors affecting the distribution of 

H2S at our study site. In addition, detailed evaluation of our datasets has been made in our recent 

publications to deal with the diurnal and seasonal variations of H2S, along with the analysis of its 

properties as an offensive odorant[16]. According to this study, H2S generally exhibited relative 

enhancement during the night-time period. Although such patterns were seen consistently throughout the 

seasons, it was most prominent during the summer. In contrast, other RSCs generally exhibited much 

weaker signals of temporal variations relative to H2S. 

Instrument Settings and Operation 

To continuously monitor several target compounds in ambient air, a monitoring station was established at 

the One-Four park district in Ansan, Korea. The station has been in operation since July 2005, and the 

concentration levels of H2S and several other offensive odorants were monitored at hourly intervals from 

August 2005 to Fall 2006 by an online GC system (with CP-Sill 5CB column pulsed flame photometric 

detector [PFPD]). In this study, we focus on the analysis of H2S, as it was detected most abundantly 

during the study period. 

Measurements of H2S in ambient air were made through a combination of an air server (AS) for the 

collection of air samples and a thermal desorption (TD) unit with a Peltier cooling for preconcentration 

(and cryofocusing). This combined AS/TD system (Unity/Air Server, Markes, U.K.) was interfaced with 

a GC system (Model 3800 GC, Varian, U.S.) equipped with PFPD. To acquire the optimum resolution 

between H2S and other RSCs, we used a CP-Sill 5CB column (60 m  0.32 mm, 5.0 µm, Chrompack, 

Varian) with each cycle to rotate at 60-min intervals (initial oven temperature of 60°C [5-min holding] 

and a final value of 220°C [ramping at 8°C min
-1

 for 15-min duration]). The measurements of H2S 

concentrations were made at hourly intervals. The basic GC conditions were set as follows: cold trap 

(carbopack B + silicagel) = -15 (low end) to  ~280°C (high end); holding time = 5 min; flow path temp = 

80°C; outlet split = 5.0 mL min
-1 

(3.2:1 split ratio); carrier gas/column flow (N2) = 2.2 mL min
-1

 (20 psi); 

detector temperature (PFPD) = 200°C; flow rate: air (1) = 17, air (2) = 10, and H2 = 14 mL min
-1

; square 

root mode = on; trigger level = 200 mV; PM tube voltage = 50 V; sampling delay = 6 msec; sampling 

width = 20 msec; gain factor = 20; range = 9; and autozero = no. The basis quality assurance (QA) 

information of this analysis has been reported elsewhere[16]. 

NEURAL NETWORKS 

Two types of neural networks were used to build prediction models of H2S. Their fundamentals are 

briefly introduced. 

Generalized Regression Neural Network 

A schematic of the generalized regression neural network (GRNN)[17] is depicted in Fig. 1A. As shown 

in Fig. 1A, the GRNN consists of four layers, including the input layer, pattern layer, summation layer, 

and output layer. Each input unit in the input layer corresponds to an individual process parameter. The 

input layer is fully connected to the second, pattern layer, where each unit represents a training pattern 

and its output is a measure of the distance of the input pattern from the stored patterns. Each pattern layer  
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FIGURE 1A. Schematic of GRNN. 

unit is connected to the two neurons in the summation layer: S- and D-summation neuron. The former 

computes the sum of the weighted outputs of the pattern layer, while the latter does the unweighted 

outputs of the pattern neurons. The connection weight between the ith neuron in the pattern layer and the 

S-summation neuron is yi, the target output value corresponding to the ith input pattern. For the D-

summation neuron, the connection weight is unity. The output layer merely divides the output of each S-

summation neuron by that of each D-summation neuron, yielding the predicted value to an unknown 

input vector x as 
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where p indicates the number of elements of an input vector. The xj and xj
i
 represent the jth element of x 

and x
i
, respectively. The ζ is generally referred to as the spread, whose optimal value is experimentally 

determined. It should be noted that in conventional GRNN applications, all spreads for the units in the 

pattern layer are identical. Despite the simplification of the training process, this may limit the 

improvement of the GRNN prediction performance. The limitation might be circumvented by adopting a 

multiparameterization of training factors. 
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Radial Basis Function Network 

Architecture of the radial basis function network (RBFN)[18] is sketched in Fig. 1B. The RBFN consists 

of three layers: input, pattern, and output. Each unit in the pattern layer, called pattern unit, calculates its 

activation using a radial basis function. The activation (oj) is computed as: 

]/)(exp[)(
22

jjj xxo          (3) 

where x is the input vector, and µj and σj represent the center and width of a receptive field. The receptive 

fields are the areas in the input space that activate local pattern units. In Fig. 1B, the RBFN is composed 

of three receptive fields in the input layer. Each receptive field is composed of a different number of input 

training patterns. The widths determine the radii of the areas around the centers, in which the activations 

from the pattern units are significant.  

 

FIGURE 1B. Schematic of RBFN. 

Training the RBFN consists of two separate stages. In the first stage, the weights between the input 

and pattern layers are determined given a specific number of pattern units (i.e., clusters). For this, an 

unsupervised, clustering algorithm called the k-means algorithm is typically used. In this algorithm, k 

training input patterns are first sampled from n training input patterns. These k vectors are regarded as the 

initial center vectors for the k clusters. For each of the remaining (n-k) training input patterns, Euclidean 

distance to each center vector is calculated. A training input pattern is then classified into a particular 

cluster, to which the Euclidean distance is minimized. The center vector of this cluster chosen is 

subsequently updated by calculating the mean of the center vector and the training input pattern classified. 

In this way, other training patterns are classified while continuously updating k center vectors. The first 

stage is completed by assigning each of all the training input patterns to a specific cluster by comparing 

Euclidean distances with respect to the final updates of the center vectors. In the second stage, the weights 

between the pattern and output layers are determined in a supervised way. A RBFN error to be minimized 

is defined as:  
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where yj and dj indicate the prediction from the jth output unit and the actual measurement given to that 

neuron. The E defined in Eq. 4 is typically minimized by the gradient descent algorithm, and the resulting 

weight update rule called the delta rule is expressed as: 

ijjijij odykWkW )()()1(          (5) 

where Wij represents the connection weight between the ith pattern unit and jth output neuron; oi indicates 

the output from the ith pattern unit. The remaining α is the learning rate and it was set to 0.1 in this study. 

The initial weights are randomly distributed within a predefined range of –1 to 1.  

RESULTS 

Optimization of Model Prediction Performance 

Using the GRNN, the H2S data are modeled. The range of spreads selected is 0.1 to 1.0. The spread was 

increased with an increment of 0.1 and one model was constructed at each spread. A total of 10 models 

were developed. Rather than developing one single model for the whole data, seasonal models were built 

separately for spring, summer, and autumn data. Each set of seasonal data was divided into three 

subdatasets for training, validation, and testing the models. The total number of patterns generated from 

the spring dataset is 3571 and this was divided into the same 1197 patterns comprising each of the three 

subdatasets. The total patterns of 3516 and 3501 corresponding to the summer and autumn datasets, 

respectively, were grouped into the three subdatasets of equal size of 1172 and 1167. The performance of 

the model is quantified by the root-mean square error (RMSE) and the result is shown in Table 1. In Table 

1, the training RMSE considerably increases with an increase of the spread from 0.1 to 0.3. In contrast, 

the corresponding validation and testing errors are decreased. In the remaining range of 0.4–1.0, the 

training RMSE increases slightly as the spread increases. This is similarly noted for the validation and 

testing errors. One optimized model with the smallest testing error (0.339) is obtained at 0.3 spread. For 

the summer and autumn models, the impact of varying the spread is similar in similar ranges. The 

summer model is optimized at 0.4 spread and the corresponding error is 0.652. For the autumn model, one 

optimized model is obtained at 0.2 and the corresponding error is 0.361. 

TABLE 1 
Performance Evaluation of GRNN Models 

Spread 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Spring Model           

Training  0.049 0.201 0.291 0.318 0.327 0.331 0.333 0.335 0.336 0.336 

Validation 0.386 0.321 0.309 0.311 0.312 0.314 0.315 0.315 0.316 0.316 

Testing 0.421 0.345 0.339 0.343 0.346 0.348 0.349 0.350 0.351 0.351 

Summer Model           

Training 0.119 0.327 0.455 0.510 0.530 0.537 0.541 0.544 0.545 0.547 

Validation 0.628 0.540 0.523 0.523 0.526 0.528 0.530 0.532 0.533 0.534 

Testing 0.704 0.661 0.653 0.652 0.653 0.654 0.655 0.656 0.656 0.657 

Autumn Model           

Training 0.091 0.234 0.294 0.316 0.325 0.329 0.331 0.333 0.334 0.335 

Validation 0.428 0.409 0.405 0.405 0.406 0.407 0.409 0.410 0.411 0.412 

Testing 0.369 0.361 0.372 0.376 0.378 0.379 0.381 0.382 0.383 0.384 
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The same H2S data are modeled using the RBFN. The performance of the RBFN model was 

optimized by experimentally increasing the number of cluster units from 2 to 10. The results are shown in 

Table 2. For all RBFN models, the training error appears to slightly increase with an increase in the 

cluster unit. This is true for other types of error. For the spring model, the smallest testing error (0.348) is 

obtained for four types of cluster units from 7 to 10. The testing error of an optimized model for the 

summer data is 0.653 and this is obtained for the cluster units more than 5. For the remaining autumn 

data, the optimized model occurs for the cluster units of 9 and 10, and the corresponding error is the same 

at 0.377. As the optimized errors are compared with those of the GRNN models, the latter model shows 

an improvement of about 2.58 and 4.24% for the spring and autumn data, respectively. Better prediction 

of the GRNN models over the RBFN models is demonstrated. For the summer data, the performances of 

the optimized models are comparable. The optimized GRNN models are then used for further analysis.  

TABLE 2 
Performance Evaluation of RBFN Models 

Clusters 2 3 4 5 6 7 8 9 10 

Spring Model          

Training  0.338 0.337 0.335 0.334 0.334 0.334 0.334 0.334 0.334 

Validation 0.354 0.351 0.349 0.349 0.349 0.348 0.348 0.348 0.348 

Testing 0.353 0.351 0.350 0.349 0.349 0.348 0.348 0.348 0.348 

Summer Model          

Training 0.551 0.545 0.544 0.544 0.543 0.541 0.540 0.538 0.538 

Validation 0.539 0.532 0.531 0.531 0.530 0.529 0.529 0.528 0.527 

Testing 0.658 0.655 0.655 0.653 0.653 0.653 0.653 0.653 0.653 

Autumn Model          

Training 0.338 0.336 0.333 0.333 0.332 0.331 0.331 0.331 0.331 

Validation 0.416 0.413 0.410 0.409 0.408 0.407 0.407 0.406 0.406 

Testing 0.386 0.383 0.381 0.380 0.378 0.378 0.378 0.377 0.377 

Analysis of Parametric Sensitivity and Main Effects 

The impact of a parameter can be quantified in terms of its average sensitivity and main effect. We 

propose an average sensitivity that is calculated for all sampled points of equal distance. This is simply 

computed by summing all the sensitivities for all the sampled points and subsequently dividing the sum 

by the number of sampled points. It is noted that the individual sensitivity has already been defined[19]. 

Here, the distance between two sample points is 0.01 and the total number of sampled points is 200. The 

average sensitivity is defined as: 
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where x is a vector of environmental parameters maintained at their medium values, Δxi is an incremental 

change of xi, and f is the functionality that the neural network learns. 

The sensitivity calculated from the optimized seasonal models is shown in Fig. 2A–C. The acronyms 

of T, RH, DP, P, WS, RF, and R are used to represent the temperature, relative humidity, dew-point 

temperature, pressure, wind speed, rainfall, and radiation, respectively. Fig. 2A reveals that during the spring, 
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FIGURE 2. Sensitivity analysis from the models: (A) spring model, (B) summer model, (C) autumn model. 

H2S is very sensitive to the variation of RF and R. A negative sign indicates that the sensitivity is 

applicable only where H2S decreases with an increase in either factor. To the variation of P and DP, H2S 

is not sensitive. As illustrated in Fig. 2B, H2S shows the most pronounced sensitivity to RF during the 

summer period. An insensitivity to the variation of DP, P, and WS is noted. RF is common in both 

periods of spring and summer. Fig. 2C shows that H2S is very sensitive to the variation of WS and P. 

Interestingly, WS exerts a higher sensitivity as compared to others. Another interesting feature is that they 

have an opposite sign. In other words, H2S is sensitive to WS as it is increased and decreased, 

respectively. 

To investigate the main effect of each parameter, the formula expressed in Eq. 6 was slightly 

modified not to contain the normalization factor. The main effects calculated using the modified formula 

are shown in Fig. 3A–C. As exhibited in Fig. 3A, H2S is the most strongly affected by P during the spring 

period. The parameter P is seen to exert the highest effect during the summer period. This contrasts with 

its sensitivity. It is noted that the influential parameter P is common for the spring and summer periods. 

During the autumn, RH is identified as the most influential factor. Its sensitivity is even relatively high. 
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FIGURE 3. Analysis of main effects: (A) spring model, (B) summer model, (C) autumn model. 

Model-Based Interpretations 

From the optimized seasonal models, main effects on H2S by the parameters are explored by plotting 

three-dimensional pictures. The other parameters except the concerned two were set to their medium 

values of the experimental data. Fig. 4 shows the main effect on H2S as a function of DP and P during the 

spring period. An increase in P increases H2S. The positive effect of P was already noted from the main 

effect analysis. Its effect is highest at a DP of 0°C. As P increases either higher or lower DP than 0°C, the 

effect becomes smaller. In general, the effect distribution seems to be symmetric relative to 0°C. An 

increase in H2S with DP in the range -20–0°C is consistent with the SPM data[4]. Fig. 5 shows the effect 

of RF and R on H2S. Opposite effects of RF are evident in Fig. 5 depending on its amount. A decrease in 

H2S with a decrease in RF is predicted in the first half of the total range. The amount of R is also seen to 

greatly affect the effect of R. Fig. 5 predicts that in the first half range, varying R causes a little variation 

in H2S. However, an increase in R in the remaining half range at relatively higher RF drastically 

decreases H2S. Therefore, Fig. 5 illustrates that the amount of RF plays a significant role in determining 

the effect of R on H2S. Fig. 6 shows the effect of WS and RF. As WS increases, H2S decreases and the 

decrease becomes noticeably large at lower RF. Although there is one turnover point, increasing RF 

generally decreases H2S irrespective of WS. This indicates that the effect of RF is not sensitive to WS. 

This is partly supported by it less sensitivity as shown in Fig. 2A. 



Kim et al.: Predicting H2S Seasonal Behavior using a Neural Network Model TheScientificWorldJOURNAL (2011) 11, 992–1004 

 

1001 

 

                   

 

 

 

Fig. 7 shows a plot of H2S as a function of DP and P produced from the summer model. A decrease in 

P decreases H2S. The decrease becomes drastic at lower DP. In contrast, H2S is decreased with an 

increase in DP. This is similarly predicted from the spring model as shown in Fig. 4. In this sense, both 

DP and P exert a conflicting impact on H2S. As shown in Fig. 8, an increase of RF in the first half range 

seems to cause little variation in H2S. In contrast, a further increase in the remaining half range 

considerably decreases H2S. The effect of R is noticeably large at a lower RF. A similar effect has been 

predicted from the spring model at a relatively higher RF. In Fig. 9, the effect of RF is very similar to that 

of the spring model. The effect of increasing WS is seen to decrease H2S as it increases. This is similarly 

predicted from the spring model. 

 

FIGURE 4. H2S concentration during spring as a 

function of DP and P. 
FIGURE 5. H2S concentration during spring as a 

function of R and RF. 

FIGURE 6. H2S concentration during spring 

as a function of WS and RF. 
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Plots of H2S prepared from the autumn model are shown in Figs. 10 and 11. As shown in Fig. 10, the 

effect of P is similar to those for the spring and summer models. The effect of DP is similar to that for the 

summer model. With respect to the spring model, a similarity is observed only at the range of positive 

DPs. For the negative range, the DP effects from the spring and autumn are opposite. In this sense, 

conflicting DP effects are present only during the spring season. In Fig.11, H2S is likely to increase with 

an increase of R. This is similar to that predicted from the summer model at the lower RF, but opposite to 

that predicted from the spring model at the higher RF. 

FIGURE 7. H2S concentration during summer as 

a function of DP and P. 
FIGURE 8. H2S concentration during summer as 

a function of R and RF. 

FIGURE 9. H2S concentration during summer 

as a function of RF and WS. 
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CONCLUSIONS 

In this study, neural network models were developed and applied to the seasonally divided data groups of 

a well-known odorant, H2S. Both GRNN and RBFN were optimized as a function of their training factor 

and the former showed better prediction accuracy. From the optimized GRNN model, analysis of average 

sensitivity and main effect was conducted. The sensitivity analysis showed different sensitivity of H2S on 

the parameters across seasons. During the spring and summer periods, H2S was found to be the most 

sensitive to the variation of RF. The main effect analysis revealed that P is the most influential parameter 

for the period of spring and summer. For the autumn period, the main effect of RH was highest. The 

optimized models provided useful qualitative information on the parameter effects and they generally 

showed similar effects without regard to the seasons. H2S was noted to decrease with an increase either in 

R, WS, or DP in its positive range as well as with a decrease in P. It is not certain that the reporting 

tendencies are applicable to any other seasonal data due to the adoption of one year of seasonal data. 

Nevertheless, each sensor variable is expected to cover a wide range of variables that might occur during 

each season. From this perspective, the constructed model is likely to provide useful predictions to 

quantify and predict the effect of the environmental variables. The constructed models can be easily 

updated by retraining them with newly updated data, thereby providing timely and accurate prediction of 

environmental characteristics. 
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