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Abstract

Exploratory mediation analysis refers to a class of methods used to identify a set of potential 

mediators of a process of interest. Despite its exploratory nature, conventional approaches are 

rooted in confirmatory traditions, and as such have limitations in exploratory contexts. We propose 

a two-stage approach called exploratory mediation analysis via regularization (XMed) to better 

address these concerns. We demonstrate that this approach is able to correctly identify mediators 

more often than conventional approaches and that its estimates are unbiased. Finally, this approach 

is illustrated through an empirical example examining the relationship between college acceptance 

and enrollment.

Keywords

exploratory mediation analysis; lasso; mediation; regularization

Over the past decade, mediation analysis has experienced a surge in use, particularly within 

the social and behavioral sciences. This is due in no small part to its ability to illuminate the 

nature of causal mechanisms. A mediator can be conceptualized as a variable that transmits 

the effect of an independent variable to a dependent variable (MacKinnon, 2008). That is, 

the independent variable influences the mediator, which in turn exerts an influence on the 

dependent variable. In this way, the independent variable acts on the dependent variable, at 

least in part, through the mediator.

MEDIATION MODEL

We begin by describing the mediation model in its simplest form, that of a single mediator 

mediating the relationship between a single independent variable and a single dependent 

variable. The model can be written as a set of three regression equations:

(1)
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(2)

(3)

A path diagram for these equations is given in Figure 1, with Equation 1 shown in Figure 1 a 

and Equations 2 and 3 shown in Figure 1b. For individual i, Xi is the independent variable, 

Yi is the dependent variable, and Mi is the mediator. The parameters i1, i2, and i3 denote the 

intercepts for the regression equations, whereas e1i, e2i, and e3i represent the residuals of the 

regression equations. The parameters a, b, c, and c′ denote regression weights. The 

coefficient c represents the total effect of Xi on Yi, whereas c′ represents the direct effect of 

Xi on Yi adjusted for Mi. The indirect effect of Xi on Yi through Mi can be calculated as 

either ab or c – c′ (MacKinnon & Dwyer, 1993), which are algebraically equivalent under 

normality assumptions (Mackinnon, Warsi, & Dwyer, 1995). For a more thorough 

discussion of this model, we refer the reader to MacKinnon, Fairchild, and Fritz (2007) as 

well as Preacher (2015) for comprehensive reviews.

To claim that Mi is a mediator, specific conditions must be fulfilled. Two conditions agreed 

on by most researchers are that both a and b must be statistically significant for mediation to 

be claimed. Indeed, simulation studies have shown that these are the two most important 

conditions with regard to Type I error rates and statistical power (MacKinnon, Lockwood, 

Hoffman, West, & Sheets, 2002). Other conditions remain controversial. For example, Baron 

and Kenny (1986) require that c also be statistically significant, but others argue that 

mediation can occur in the absence of a statistically significant relation between independent 

and dependent variables (MacKinnon, 2008; Shrout & Bolger, 2002). Some also require that 

c′ be non-significant (Judd & Kenny, 1981), implying that the mediator completely 

mediates the effect of Xi on Yi, whereas others are less strict, requiring only that c′ be less 

than c, or equivalently, that ab is greater than zero (Baron & Kenny, 1986; MacKinnon et al., 

2007). This latter condition represents partial mediation, argued by its proponents to be more 

common in the social sciences.

Despite the utility of the single mediator model, circumstances arise in which multiple 

mediators are of interest. Fortunately, the multiple mediator model can be written as a 

natural extension of its single mediator counterpart (MacKinnon, 2000, 2008; Preacher & 

Hayes, 2008). A path diagram for the multiple mediator model is shown in Figure 2. Figure 

2a, the total effect, remains unchanged from the single mediator case. Figure 2b, however, 

depicts a model general enough to accommodate J mediators. The model can be written as 

follows:

(4)
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(5)

(6)

The equation for the total effect, Equation 4, is identical to that of the single mediator model 

given in Equation 1. Equation 5 extends Equation 2 to allow for J mediators, j = 1, 2, …,J. 

Finally, Equation 6 represents the regression of the jth mediator on Xi. Because this model 

includes J mediators, the term indirect effect must be clarified. Following Bollen (1987), we 

use the term specific indirect effect to refer to the effect of Xi on Yi through mediator Mij. 

Thus, a model with J mediators possesses J specific indirect effects, one for each mediator. 

The total indirect effect, or total mediated effect, can then be written as the sum of all 

indirect effects, , or equivalently as c — c′ as in the case of the single mediator 

model.

When multiple mediators are hypothesized, a multiple mediator model is generally 

recommended over several single mediator models (Preacher & Hayes, 2008; VanderWeele 

& Vansteelandt, 2014). The primary advantage of the multiple mediator model is that it 

allows for the estimation of specific indirect effects conditional on the presence of other 

mediators in the model. This allows for more accurate parameter estimates, given that the 

estimates take into account the information from other mediators. The multiple mediator 

model also helps address the omitted variable problem, in which failure to include relevant 

variables in the analysis induces biased estimates of the mediation process (Judd & Kenny, 

1981). Finally, the multiple mediator model allows for straightforward comparison of 

specific indirect effects via contrasts (MacKinnon, 2000) to evaluate competing theories 

within the same model (Preacher & Hayes, 2008).

Although the models presented thus far can be fit using ordinary least squares (OLS) 

regression, in practice they are commonly fit using the structural equation modeling (SEM) 

framework due to its generality and flexibility (MacKinnon, 2008; Preacher, 2015; Preacher 

& Hayes, 2008). The models discussed contain only observed (manifest) variables, and 

therefore are considered a special case of SEM known as path analysis. Although the 

machinery of SEM can be relied on to provide estimates of the coefficients of interest, some 

consideration should be given to the estimation of the standard errors, particularly those of 

the indirect effects. One popular method derives the standard errors of the indirect effects 

using the multivariate delta method (Sobel, 1982, 1986). However, this method relies heavily 

on assumptions of multivariate normality that, although permissible for large samples, might 

not be justified for smaller samples. As such, bootstrapping approaches have been 

recommended for estimating the standard errors of the indirect effects (Bollen & Stine, 

1990; Shrout & Bolger, 2002). Simulation studies have shown that resampling methods, 
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such as the bootstrap, perform relatively well with regard to Type I error rates and power 

(MacKinnon, Lockwood, & Williams, 2004; Williams & MacKinnon, 2008).

EXPLORATORY MEDIATION ANALYSIS

Thus far, we have only discussed mediation analysis conducted from a confirmatory 

perspective. By confirmatory, we mean that the model is constructed based on theory, with 

the intent of empirically testing some predictions made by predefined hypotheses. These 

models are generally specified in advance of examination of the data, and as such, are not 

data-driven. Confirmatory approaches offer a great deal of insight, and can serve as a 

valuable first step in the data analysis process (McArdle, 2014). However, situations often 

arise in which the available theory is limited, and as a result our hypotheses and subsequent 

predictions are not well defined. It is under these circumstances that techniques for 

exploratory data analysis can be of use, especially in the context of mediation analysis.

Consider the multiple mediator model discussed in the previous section. Under the 

confirmatory approach, the mediators included in the model are chosen after careful 

consideration of substantive theory. However, suppose the available theory is limited, and 

that the researcher simply wishes to find a subset of variables that could potentially serve as 

mediators. We define the term exploratory mediation analysis to denote the set of methods 

applied to identify this subset of potential mediators.

Exploratory mediation analysis has been used in the applied literature, but the use of the 

term has not been consistent. For example, Cohen and colleagues used the term to draw 

attention to the absence of hypotheses in their study of quality of life in adolescents with 

heart disease (Cohen, Mansoor, Langut, & Lorber, 2007). Erickson and colleagues referred 

to their mediation analysis as exploratory due to an inability to establish a temporal 

precedence between the levels of brain-derived neurotrophic factor and hippocampal 

deterioration (Erickson et al., 2010). Finally, in their study of mental health treatment 

utilization for children in foster care, Conn et al. used the term to denote post-hoc analyses 

done to test hypotheses derived after conducting other statistical tests (Conn, Szilagyi, 

Alpert-Gillis, Baldwin, & Jee, 2016).

Relatively little guidance on the topic has been given in the methodological literature. 

MacKinnon (2008) described a two-stage approach in which mediation analysis of all 

possible mediators of interest should be conducted. Then, only those mediators found to be 

statistically significant should be included in the final model. The author recognizes that the 

potentially large number of tests could lead to inflated rates of Type I error, and recommends 

exercising some control over family-wise error rates. One concern, though, is the use of 

statistical significance as the criterion for selecting potential mediators. The theory 

underlying p values and confidence intervals used to assess statistical significance has roots 

in the confirmatory approach, and as such is not appropriate for exploratory analysis even if 

corrections for multiple testing are made. Additionally, it has been shown in the regression 

context that such methods have the propensity to overfit the data, finding signal in noise and 

thus producing less generalizable solutions (Babyak, 2004; McNeish, 2015).
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However, if exploratory mediation analysis is conceptualized as a variable selection 

problem, other tools become available. One promising technique from the statistical learning 

literature is the least absolute shrinkage and selection operator, or lasso (Tibshirani, 1996). 

Derived as an alternative to OLS regression, lasso estimates can be found by optimizing the 

expression

(7)

Here, the sum of squares on the left side of the expression is the same residual sum of 

squares from OLS regression. The βp parameters are regression coefficients from a multiple 

regression model with P predictors and can be interpreted in the same way.

The difference between Equation 7 and the fit function for OLS regression is the additional 

penalty term on the right side of the expression, which is multiplied by λ, the tuning 
parameter. The value of λ is a constant, such that λ ≥ 0, and is typically selected via cross-

validation or using an information criterion. This involves testing a range of candidate values 

for the tuning parameter (e.g., 100), before selecting the value with the best fit. When using 

k-fold cross-validation, data are split into k different folds, or partitions, typically either 5 or 

10. The model is then trained on k − 1 folds, and tested on the kth fold. This process is 

repeated so that each of the k folds serves as the test set, and the value of the tuning 

parameter chosen is the one that results in the lowest prediction error in the test set, averaged 

over all k folds. When using information criteria, such as Akaike’s information criterion 

(AIC) or the Bayesian information criterion (BIC), models are fit to the entire data set, 

trying different values of the tuning parameter in search of one that minimizes the 

information criterion.

When λ = 0, the estimates are identical to those obtained using OLS. As λ increases, the 

strength of the penalty function increases and the coefficients of the model shrink toward 

zero. Due to the absolute value in the penalty term, the coefficients are all shrunken by the 

same constant amount (Hesterberg, Choi, Meier, & Fraley, 2008), inevitably forcing some to 

zero. In this way, the lasso can be used as a tool for variable selection, as only variables with 

nonzero coefficients are retained in the model. One weakness to this approach is that the 

nonzero coefficients that remain in the model tend to be biased toward zero (Hastie, 

Tibshirani, & Friedman, 2009; Tibshirani, 1996). This can be overcome by selecting only 

those variables with nonzero regression coefficients, and then refitting the model using only 

these variables with no penalty imposed. This is a special case of the relaxed lasso 
(Meinshausen, 2007), in which the penalty for the second stage is zero (Efron, Hastie, 

Johnstone, & Tibshirani, 2004). Although other methods for subset selection exist, the lasso 

has been shown to perform especially well in conditions where a small to moderate number 

of moderate-sized effects exist (Tibshirani, 1996), conditions we believe to be most 

representative of research in the social sciences.
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Recently, the lasso has been incorporated into SEM, creating a class of techniques called 

regularized structural equation modeling (RegSEM; Jacobucci, Grimm, & McArdle, 2016). 

RegSEM uses the same logic as that of Equation 7, only instead of adding a penalty term to 

the residual sum of squares as is done in regression, the penalty is added to the maximum 

likelihood fit function. Specifically, the fit function for RegSEM is written as

(8)

where Σ is the expected covariance matrix, C is the observed covariance matrix, p is the total 

number of manifest variables, and λ is the tuning parameter. We use P(·) to represent a 

general function for summing over values of one or more matrices. In this case, the function 

sums over the absolute value of penalized coefficients. The most common application of 

RegSEM is to penalize the asymmetric, or unidirectional, paths of a structural equation 

model. Because the mediation model can be specified in the SEM framework, RegSEM can 

be used as a tool by which subset selection via the lasso can be applied to mediation models.

We propose the following two-stage procedure1 to identify potential mediators in an 

exploratory mediation analysis. First, begin by standardizing the variables to place them on 

the same scale. Next, specify the multiple mediator model in the SEM framework, including 

all potential mediators of interest. In the first stage, fit the model using RegSEM, imposing 

lasso penalties on all a and b parameters. This entails first finding an appropriate value of the 

tuning parameter via either cross-validation or through using an information criterion.2 The 

final model is then refit to the data using this value of the penalty term. Because the specific 

indirect effect for the jth mediator can be written as the product ajbj, if either aj or bj is 

forced to zero by the penalty, the specific indirect effect will also be zero. Those mediators 

with nonzero values for the specific indirect effect will be considered selected, forming a 

subset of all potential mediators originally included in the model. In the second stage, 

following the logic of the relaxed lasso, the model is then refit as a structural equation model 

without any regularization, using only the subset of selected mediators. In this way, unbiased 

estimates of the specific indirect effects can be obtained. We call this procedure exploratory 
mediation analysis via regularization, or XMed for short.

STUDY 1: MEDIATOR SELECTION

To better understand the properties of XMed, we conducted a Monte Carlo simulation study. 

Our goal was to determine how often the method was able to correctly identify mediators 

relative to other methods. We generated raw data according to the regression equations given 

by the model in Figure 3. The model contained a single independent variable, a single 

dependent variable, and five potential mediators. Of the five mediators, two were noise 

variables: random variables unrelated to either the independent or dependent variable. These 

1This two-stage approach has also been advocated as post-selection inference (Chernozhukov, Hansen, & Spindler, 2015; Lee, Sun, 
Sun, & Taylor, 2016).
2Information criteria are fully available with RegSEM and are calculated as usual.
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were included to test each method’s ability to correctly refrain from selecting variables that 

were not, in fact, mediators.

Parameter values for the three mediators with nonzero specific indirect effects were chosen 

to map onto large (Ml), medium (Mm), and small (Ms) effect sizes. Although there are 

several measures of effect size in mediation analysis (MacKinnon, 2008; MacKinnon et al., 

2007), we opted to use the kappa-squared measure derived by Preacher and Kelley (2011). 

The statistic is a measure of the magnitude of the indirect effect relative to the maximum 

possible value of the indirect effect. Preacher and Kelley (2011) recommended its use for 

several reasons, among them the fact that it is standardized and insensitive to sample size. 

The authors suggested that values of 0.25, 0.09, and 0.01 could serve as benchmarks for 

large, medium, and small effects, respectively, but pointed out that these labels are inherently 

subjective and can vary based on the context of the problem. We note that this measure has 

only been developed for the single mediator case, and has not yet been extended to models 

with multiple mediators. However, we only use the measure to provide guidance in the 

selection of arbitrary population values for the simulation. All residuals were generated from 

a standard normal distribution.

We compared three methods to evaluate their performance with regard to the selection of 

mediators in the multiple mediator model. The first was XMed, using RegSEM with a lasso 

penalty. Using this method, mediators with nonzero specific indirect effects were considered 

selected, indicating that the effects of these mediators were detected. The two additional 

methods were based on the use of statistical significance, in the form of p values. They 

differed from each other only in the way in which the standard errors were calculated. One 

method calculated standard errors using the multivariate delta method, whereas the other 

used bootstrapping. For these methods, mediators were considered selected if the p values 

for the specific indirect effects were less than .05 and .01. The first alpha level denotes the 

most popular significance level in social science research, and the second represents this 

same level with a Bonferroni correction to adjust for the multiple testing of five mediators. 

We also varied the sample size and examined sample sizes of N = 50, 100, 200, 500, 1,000, 

and 2,000 to determine if selection rates varied by sample size.

All analyses, including the generation of the data, were conducted in R (R Core Team, 

2016). Models involving p values were fit using the lavaan package (Rosseel, 2012), 

whereas RegSEM was implemented using the regsem package (Jacobucci, 2016). For each 

sample size, 200 data sets were generated according to the model in Figure 3. Each method 

was applied to each of these replications. For XMed, 100 values of the tuning parameter 

ranging from 0 to 0.1 were tested to find which value yielded the smallest BIC. The model 

was then refit using the chosen tuning parameter.

To determine the effectiveness of the methods in identifying mediators, we calculated the 

proportion of replications for which each mediator was selected, for each combination of 

sample size and method. Results are given in Table 1. The optimal method would be one that 

selects mediators Ml (large effect), Mm (medium effect), and Ms (small effect) all of the 

time, never selecting mediators Mn1 and Mn2 (the noise variables). Although no method was 
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able to demonstrate this across all conditions, all seemed to approach this limit 

asymptotically.

With regard to effect size, mediators with a large effect size were for the most part correctly 

identified. XMed was able to select Ml across all sample sizes tested. The p value methods 

also performed well when effects were large, finding Ml in nearly all cases with the 

exception of when the sample size was 50 and alpha was .01. For Mm, XMed was able to 

consistently (in nearly all replications) correctly select the mediator once again. Only for the 

sample size of 50 did XMed fail to identify the mediator in a few data sets, although at a rate 

of 88.5% its performance was still very good, especially in comparison to the p value 

methods. The performance of the p value methods was poor for smaller sample sizes, only 

showing the ability to correctly identify Mm consistently at a sample size of 200. The most 

noticeable difference in methods came for Ms. XMed was only able to identify this mediator 

at chance levels of roughly 50% for samples up to 200. It was not until the sample size 

reached 1,000 that XMed was able to consistently identify Ms. However, this vastly 

outperformed the p value methods, which were unable to detect Ms in any replications until 

the sample size reached 500 and it was only at sample sizes of 2,000 that the p value 

methods were able to consistently identify Ms as a true mediator. One weakness of XMed 

was its high Type I error rate. When the sample size was 50, each of the noise variables was 

selected about 35% of the time. As the sample size grew to between 100 and 500, these rates 

dropped to between 15% and 20%, before finally stabilizing at roughly 10% for samples of 

1,000 or more. To their credit, p value methods never once selected a noise variable.

Comparing methods, it appears that XMed outperformed both p value methods in its ability 

to correctly identify mediators. In other words, the sample size required to be able to 

consistently find a mediator was uniformly less than that required for either of the p value 

methods. In fact, the p value methods typically required twice the sample size to achieve the 

same rates of mediator selection as XMed. For example, for Ml, XMed was able to correctly 

identify the mediator in nearly all cases with a sample of 50, whereas the p value methods 

required a sample of 100. For Mm, XMed needed a sample size of 100, whereas the p value 

methods needed 200. Finally, for Ms, XMed was able to achieve selection rates at a sample 

size of 1,000, which required 2,000 for the p value methods. However, as mentioned earlier, 

XMed also occasionally incorrectly selected noise variables, an error that the p value 

methods never made.

In general, the p value methods were far more conservative than XMed. Of the two, the 

bootstrap method was slightly more conservative than the delta method, identifying the 

mediators less often. Yet, this difference was minimal, and overall both methods produced 

similar selection rates. Given that these methods were shown to be conservative, it is no 

surprise that the alpha value corrected for multiple testing (.01) struggled to identify the 

mediators in many cases. For example, at sample sizes of 100 when alpha was .05, the p 
value methods were able to identify Mm roughly 80% of the time, but when alpha was .01, 

this rate dropped to about 40%. Furthermore, when alpha was .01, neither of the methods 

was able to detect Ms more than 5% of the time until the sample size reached 1,000.
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STUDY 2: PARAMETER BIAS

We conducted a second Monte Carlo simulation study to examine bias in parameter 

estimates as a result of our two-stage procedure. Specifically, we focused on the bias 

induced by using regularization, as well as the extent to which this bias could be mitigated 

by refitting the model without any shrinkage using only the selected mediators. Data were 

generated according to the model given in Figure 3, again with five mediators, two of which 

were noise variables. The only difference was the effect size for the three mediators. Instead 

of using mediators with large, medium, and small effect sizes for the specific indirect 

effects, all three mediators were specified to have large specific indirect effects. Given that 

Study 1 demonstrated that mediators with large effects were consistently selected across all 

sample sizes, we believed this would be an appropriate condition to study the potential bias 

resulting from the use of XMed, without the possible confounding influence of mediator 

selection, as bias would be difficult to calculate for variables not included in the model. As 

such, all values of a and b for each of these three mediators were set to 0.69, the value 

necessary to constitute a large specific indirect effect in this model. Aside from this 

difference, the data generation and regularization methods were identical to that of Study 1. 

Models were fit in two stages, according to our proposed two-stage procedure. In Stage 1, 

RegSEM was used to fit the model using all five mediators. In Stage 2, the model was refit 

in lavaan using only the mediators selected in Stage 1. As in Study 1, sample size was also 

varied with the procedure being applied to samples of size 50, 100, 200, 500, 1,000, and 

2,000.

Because all three mediators with nonzero specific indirect effects had the same population 

values, results were averaged across all three of these mediators. Because the population 

values for the a and b parameters for these mediators was 0.69, the population value for each 

specific indirect effect was its square, or 0.4761. The mean estimates for the specific indirect 

effects across the various sample sizes are given in Table 2. Once again, Stage 1 estimates 

were shrunken, due to regularization, whereas Stage 2 estimates were obtained by refitting 

the model without any regularization, using only the mediators selected in Stage 1. Due to 

the large effect sizes of the mediators, all three of the mediators with nonzero specific 

indirect effects were selected in every replication across every sample size condition. 

However, consistent with the results from Study 1, the two noise variables were occasionally 

selected as mediators as well (at rates ranging from roughly 64% and 48% for samples of 

size N = 50 and N = 100, respectively, to 22% for samples of size N = 1,000 and greater). 

When selected, these mediators were included in the Stage 2 model to more faithfully 

represent the implementation of XMed in practice.

Stage 1 estimates were more biased toward zero, an expected occurrence for shrinkage 

methods such as the lasso. This is a consequence of the bias–variance trade-off (Hastie et al., 

2009; McNeish, 2015). This trade-off represents the idea that although the estimates are 

slightly biased, shrinking them toward zero also reduces their variance, resulting in more 

stable and generalizable parameter estimates. As seen in Table 2, the bias was greater for 

smaller sample sizes and diminished as sample size grew. However, even for the sample size 

of N = 2,000, bias was not eliminated. These values can also be represented in terms of 

percent bias, defined here3 as Percent bias = 100 × (population value – average estimate) / 
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population value. At a sample size of 50, bias for Stage 1 estimates was roughly 16%. Even 

at the largest sample size of 2,000, this bias was 6%, larger than the level of 5% typically 

considered acceptable in simulation studies such as this (Flora & Curran, 2004; Hoogland & 

Boomsma, 1998).

In contrast, Stage 2 estimates did not seem to vary with sample size. All were relatively 

similar, with no two mean estimates differing by more than .01. Additionally, the estimates 

were unbiased across conditions, with levels of bias all within 2%. This was expected, given 

that these were maximum likelihood estimates with no penalty. Table 2 shows that biased 

estimates result in Stage 1 of our two-stage procedure, but unbiased estimates can still be 

recovered in Stage 2 when using Stage 1 only for mediator selection.

Table 3 separates the Stage 1 estimates of Table 2 according to whether or not XMed was 

successfully able to exclude noise variables from selection. If only the three mediators were 

selected in Stage 1, the model was considered to be one in which noise variables were 

excluded. However, if at least one noise variable was selected in Stage 1, the model was 

considered to be one in which noise variables were included. For samples of size N = 50 and 

N = 100, noise variables were excluded in 14% and 33% of data sets, respectively, with this 

rate increasing to 63% for samples of size N = 1,000 or greater. As shown in Table 3, when 

all noise variables were excluded, Stage 1 estimates exhibited even greater bias than when 

some were included. This is expected, as the exclusion of noise variables requires a higher 

value of the tuning parameter, which shrinks parameter estimates even more than they 

otherwise would be. This further demonstrates the need for Stage 2 to obtain unbiased 

parameter estimates.

STUDY 3: EMPIRICAL EXAMPLE

To illustrate how XMed should be implemented in practice, we demonstrate its application 

on a real empirical data set. We use the College data set available in the ISLR package 

(James, Witten, Hastie, & Tibshirani, 2013) in R. Because this data set is publicly available 

and we provide all the code we use in the Appendix, we believe the reader will have 

sufficient information to both replicate our analysis and hopefully apply XMed to other data 

sets.

Data

The College data set consists of statistics from 777 U.S. colleges from the 1995 issue of US 

News and World Report. For this example, we only consider public schools, reducing our 

sample size to N = 212. The purpose of this analysis is to examine the relationship between 

the independent variable Accept, the number of applications accepted by a school, and the 

dependent variable Enroll, the number of new students enrolled at the school. Six variables 

were examined as potential mediators of this relationship: Outstate (out-of-state tuition), 

Room.Board (room and board costs), Books (estimated book costs), Personal (estimated 

3Although percent bias is typically defined as the negative of what we use here, we believe our definition to be more useful in this 
specific context given that Stage 1 estimates always underestimate population effects.
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personal spending), S.F.Ratio (student to faculty ratio), and Expend (instructional 

expenditure per student).

Analysis

Following the XMed procedure, we begin by standardizing the variables. Next, we use the 

lavaan package to fit the multiple mediator model including all six potential mediators of 

interest. The model consists of regression equations for the direct effect, from the 

independent variable to the mediators (whose effects are captured by the a parameters), and 

from the mediators to the dependent variable (whose effects are captured by the b 
parameters). Next, specific indirect effects are defined as the products of their corresponding 

a and b parameters so that these can be estimated by the program. Finally, the total effect is 

defined as the sum of the direct effect and the total indirect effect.

We then turn to the regsem package to implement the regularization component. First, we 

use the extractMatrices function in regsem to identify which parameters to penalize. From 

this, we learn that parameters 2 through 7 correspond to a parameters and that 8 through 13 

correspond to b parameters. As such, parameters 2 through 13 will be penalized when 

performing regularization.

The next step is Stage 1 of XMed in which lasso penalties are imposed on all a and b 
parameters to determine the appropriate value of the tuning parameter, referred to in the 

code as lambda. This is done using the cv_regsem function, which fits the model multiple 

times, each with a different value of the tuning parameter in its search for the optimal one. 

Each value of lambda yields a corresponding BIC, representing the model fit for that level of 

penalty. Figure 4 displays the value of the BIC for each lambda. We seek the value of 

lambda yielding the smallest BIC, in this case 0.065. The number and range of lambda 
values to try is context specific. We recommend that the user specifies lambda values 

ranging from the least restrictive penalty, a lambda of 0 equivalent to maximum likelihood 

estimates, to the most restrictive penalty, in which all penalized parameters have been forced 

to 0. For this problem, the most restrictive penalty occurs at about lambda ≥ 0.54. At this 

value of lambda, all penalized parameters are estimated to be 0, and thus, the value of the 

BIC will remain the same for all lambda values exceeding this threshold. This is also evident 

in Figure 4.

We continue by refitting the model using the multi_optim function, specifying the lambda 
argument to be our chosen value of lambda, 0.065. Examining the specific indirect effects, 

we find that Room.Board, Personal, and Expend have all been selected as potential 

mediators given that they have nonzero specific indirect effects. This seems reasonable in the 

context of this problem, given that room and board costs (which represent cost of living), 

personal costs (which represent costs to students), and instructional expenditure (which 

represents a school’s willingness to invest in its students) all seem as if they could be 

mediating factors in an accepted student’s decision to enroll in a specific college.

Proceeding to Stage 2 of XMed, we refit the model using only these three selected mediators 

as a structural equation model without any regularization using lavaan. This yields unbiased 

estimates of the model parameters, allowing us to judge the unattenuated magnitude of the 
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effects of interest, which guides us in structuring the focus of future research. The final 

model, including parameter estimates, is provided in Figure 5.

For comparison, Table 4 provides results for specific indirect effects calculated using XMed, 

the delta method, and the PROCESS macro of Hayes (2013). Although both the delta 

method and PROCESS select Room.Board and Expend as XMed does, neither selects 

Personal. We note that the bootstrapped confidence interval for Personal using PROCESS 

only just contains 0 (to four decimal places) and that other bootstrapped samples might lead 

to the selection of Personal as a potential mediator. However, as we argue in the next section, 

when conducting exploratory analyses, variables whose status as a mediator remains unclear 

after the analysis should be included in the final model so that future confirmatory analyses 

have the opportunity to consider them and come to a more conclusive decision regarding 

their influence.

DISCUSSION

In this article, we propose a novel two-stage method for exploratory mediation analysis, 

called XMed. It consists of first specifying the multiple mediator model in the SEM 

framework, with all potential mediators of interest. In the first stage, the model is fit using 

regularized SEM with a lasso penalty to select a subset of mediators. The second stage 

consists of refitting the model with no penalty using only the subset of selected mediators, to 

obtain unbiased parameter estimates. The method provides two useful pieces of information. 

First, it identifies a subset of mediators that might be influential in the mechanism of the 

process of interest. Second, it allows for the unbiased estimation of each specific indirect 

effect associated with these mediators to assess the magnitude of the strength of their effects.

Study 1 consisted of a Monte Carlo simulation study examining the extent to which XMed 

was able to correctly identify potential mediators. With regard to the identification of true 

mediators, XMed clearly outperformed methods based on p values. In general, XMed only 

required half the sample size of the p value methods before it was able to consistently 

identify the mediators in nearly all replications. As such, the p value methods could be 

considered far more conservative than the regularization method. One reason for this is the 

manner in which each approach selects mediators. For the p value approaches, the null 

model is a model containing no mediators. To select a mediator, the evidence observed must 

be strong enough to justify the mediator’s inclusion. For XMed, the reverse is true; that is, 

the null model contains all mediators, and sufficient evidence must be observed to justify the 

mediator’s exclusion.

This pertains to a fundamental philosophical difference between confirmatory and 

exploratory approaches to data analysis. Typically, in confirmatory analysis, as exemplified 

in null hypothesis significance testing, the researcher controls Type I error while seeking to 

minimize Type II error. We argue that, at least in scientific research, this is due in part to the 

notion that a Type I error is often a more serious error than its Type II counterpart. We also 

argue that the reverse is true in exploratory analysis. We believe that the purpose of 

exploratory analysis is the preliminary detection of potential effects to verify in future 

research via confirmatory methods. Given this goal, if a Type I error is made in an 
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exploratory analysis, there is an opportunity for the confirmatory method to correct it in a 

subsequent study (Lieberman & Cunningham, 2009). However, a Type II error is more 

serious in this case, because it leads the researcher away from potentially interesting effects 

that should not be discarded so easily (Neyman & Pearson, 1933). In other words, in the 

context of exploratory mediation analysis, we believe it is better to identify some variables 

as mediators when in fact they are not, as opposed to failing to identify variables that are 

indeed mediators.

In Study 1, the p value approaches, consistent with their confirmatory roots, performed 

excellently with regard to Type I error. In fact, not a single Type I error was made. XMed did 

make some Type I errors, especially when the sample size was smaller. However, the p value 

approaches also made far more Type II errors, especially for mediators with small and 

medium effect sizes, most common in the social sciences. XMed performed much better in 

this regard, making far fewer Type II errors. In other words, compared to the p value 

methods, XMed demonstrated increased sensitivity at the cost of slightly reduced specificity, 

which we believe to be a worthwhile trade-off in exploratory analyses such as the ones 

undertaken here. We consider this to be one of the greatest advantages to using this approach 

for exploratory mediation analysis.

Study 2 concentrated on the bias in parameter estimates observed at each stage of the two-

stage approach. Stage 1 estimates of specific indirect effects exhibited bias toward zero, as 

expected given previous research with lasso regression (Efron et al., 2004; Tibshirani, 1996). 

Although this bias decreased as sample size grew, it was never fully eliminated. Stage 2 

estimates, however, were unbiased. Some argue that shrunken estimates are preferable 

because they have less variance, as per the bias–variance trade-off, and as such are more 

generalizable to new samples (McNeish, 2015). We believe that this view pertains more to 

confirmatory analysis than the exploratory analyses undertaken here. One goal of 

exploratory mediation analysis is to better understand the magnitude of the effects of 

potential mediators to get a sense of which mediators are worth pursuing in future research. 

This is more difficult to do with shrunken estimates, as these effects underestimate their 

population parameters. As such, we recommend the use of the two-stage approach to obtain 

unbiased estimates, especially of the specific indirect effects.

Study 3 demonstrated the application of XMed to an empirical data set involving college 

acceptance and enrollment. XMed found that for public schools, the relationship between 

the number of applications accepted by a school and the number of new students who enroll 

is potentially mediated by room and board costs, personal costs, and instructional 

expenditure per student. However, we reiterate that the primary purpose of this example is to 

provide the reader with a detailed step-by-step description of how XMed can be 

implemented in practice using code provided in the Appendix.

With regard to the general application of the regularization method, we make several 

cautionary recommendations. First, we draw attention to the fact that our descriptions of 

large, medium, and small effect mediators do not map onto unique parameter values: They 

are model specific. Given the way that we defined these effects, their magnitudes can vary 

based on the strength and quantity of the other mediators in the model. That is, the 
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parameter value for what we considered to be a small effect mediator in Study 1, for 

example, might not be the same parameter value in another model with more mediators, or 

mediators of different effect sizes. As such, we do not make general claims with regard to 

specific effect sizes, only across methods. Second, we caution users of our proposed two-

stage approach against the use of p values from the second stage. These p values do not 

reflect the mediator subset selection procedure performed in the first stage, and are thus not 

valid when using XMed. Given that the first stage performs subset selection, this in itself is 

sufficient and null hypothesis significance testing of the second-stage parameter estimates is 

not required, even if it were appropriate. Subset selection occurs irrespective of p values, 

rendering the concept of statistical significance not applicable. Thus, the focus should be 

placed on which predictors are selected and the interpretation of parameter estimates from 

the second stage, not p values. Finally, we emphasize that our conceptualization of 

exploratory mediation analysis is that it is, at its core, an exploratory approach. We note that 

in confirmatory contexts, the foremost utility of the lasso is to obtain more generalizable 

parameter estimates (McNeish, 2015), and the benefit of this should not be underestimated. 

However, we believe that in exploratory contexts, identification of potential mediators and 

unattenuated estimation of their effects is more desirable, leading to our recommendation of 

a two-stage approach. That said, we encourage its use after all a priori tests have been 

conducted to probe for potential associations that might guide the direction of future 

research (McArdle, 2014). Additionally, any potential mediators identified should be 

verified in independent samples (e.g., in a holdout test sample if enough data are available, 

or in a subsequent study) before strong claims can be made.

In using the regsem package, a number of problems with estimation could occur. Given the 

highly constrained nature of estimation, particularly when using large lasso penalties, 

models might not converge (“conv” = 1 or 99 in output from cv_regsem). Additionally, 

model convergence does not ensure accurate or reliable parameter estimates. We highly 

recommended the user assess changes in the parameter estimates across penalty values to 

identify models that have inordinately discrepant results. Particularly for variance 

parameters, the introduction of penalties can sometimes result in inaccurate, highly inflated 

estimates (e.g., larger than one for a standardized variable). Troubleshooting help can be 

directed to the regsem Google group Web site (https://groups.google.com/d/forum/regsem).

Despite outperforming more conventional methods, XMed still has room for improvement. 

With regard to selection rates, simulations demonstrated that it had difficulty distinguishing 

true mediators from noise variables, particularly with small samples. One potential solution 

for this could lie in the method by which the tuning parameter is selected. We used the BIC 

applied to the entire sample, as this has been shown to perform well (Jacobucci et al., 2016). 

However, given that the models are specified in the SEM framework, other fit indices are 

available. The criterion need not be applied to the entire sample either; samples can be split 

into training and test sets, and cross-validation might also prove useful. It is possible that 

some combination of these could lead to a better choice of the tuning parameter, which 

would in turn lead to improvement in mediator selection rates.

In this article, we chose to limit our focus to a multiple mediator model with a single 

independent and dependent variable. However, the flexibility of the SEM framework implies 
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that XMed is general enough to readily accommodate more complex models. For example, 

multiple independent and dependent variables can be easily included. Moderators, as well as 

combinations of moderation and mediation, can also be specified using this approach. XMed 

is not limited to observed variables either. It is possible for any or all of the variables in the 

mediation process to be latent. Additionally, it is not necessary to penalize all mediators. If 

theory suggests that a given mediator or set of mediators be included in the model, they can 

be specified in the model without being subjected to the subset selection procedure by 

simply refraining from penalizing the specific indirect effect paths associated with them. 

Because RegSEM is still relatively new and developing, we expect the class of models to 

which our method can be applied to expand with it. For example, to our knowledge RegSEM 

has not yet been extended to multilevel models. Once it does, this opens up the possibility of 

using XMed for multilevel mediation models. Future research should study the performance 

of XMed with more complex models such as these.

The purpose of exploratory mediation analysis via regularization is to identify a subset of 

potential mediators on which future research should be concentrated. It provides a means by 

which a traditionally confirmatory technique can be used in an exploratory way. 

Furthermore, the two-stage approach allows researchers to conduct these exploratory 

analyses in a more principled fashion, thereby making the process more objective. As such, 

this technique has the potential to shed light on the nature of mechanisms that have thus far 

gone unseen.

Acknowledgments

FUNDING

Sarfaraz Serang was supported by funding from the National Institute on Aging, Grant Number 3R37AG007137. 
Ross Jacobucci was supported by funding through the National Institute on Aging, Grant Number T32AG0037. 
Kim C. Brimhall was funded by U.S. Department of Health and Human Services Agency for Healthcare Research 
and Quality Grant Number 1R36HS024650-01. Kevin J. Grimm was funded by National Science Foundation Grant 
REAL-1252463 awarded to the University of Virginia, David Grissmer (Principal Investigator), and Christopher 
Hulleman (Co-Principal Investigator).

References

Babyak MA. What you see may not be what you get: A brief, nontechnical introduction to overfitting 
in regression-type models. Psychosomatic Medicine. 2004; 66:411–421. [PubMed: 15184705] 

Baron RM, Kenny DA. The moderator–mediator variable distinction in social psychological research: 
Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology. 
1986; 51:1173–1182. DOI: 10.1037/0022-3514.51.6.1173 [PubMed: 3806354] 

Bollen KA. Total, direct, and indirect effects in structural equation models. Sociological Methodology. 
1987; 17:37–69. DOI: 10.2307/271028

Bollen KA, Stine R. Direct and indirect effects: Classical and bootstrap estimates of variability. 
Sociological Methodology. 1990; 20:115–140. DOI: 10.2307/271084

Chernozhukov V, Hansen C, Spindler M. Valid post-selection and post-regularization inference: An 
elementary, general approach. Annual Review of Economics. 2015; 7:649–688. DOI: 10.1146/
annurev-economics-012315-015826

Cohen M, Mansoor D, Langut H, Lorber A. Quality of life, depressed mood, and self-esteem in 
adolescents with heart disease. Psychosomatic Medicine. 2007; 69:313–318. DOI: 10.1097/PSY.
0b013e318051542c [PubMed: 17510294] 

Serang et al. Page 15

Struct Equ Modeling. Author manuscript; available in PMC 2017 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conn A, Szilagyi MA, Alpert-Gillis L, Baldwin CD, Jee SH. Mental health problems that mediate 
treatment utilization among children in foster care. Journal of Child and Family Studies. 2016; 
25:969–978. DOI: 10.1007/s10826-015-0276-6

Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Annals of Statistics. 2004; 
32:407–451. DOI: 10.1214/009053604000000067

Erickson KI, Prakash RS, Voss MW, Chaddock L, Heo S, McLaren M, Kramer AF. Brain-derived 
neurotrophic factor is associated with age-related decline in hippocampal volume. Journal of 
Neuroscience. 2010; 30:5368–5375. DOI: 10.1523/JNEUROSCI.6251-09.2010 [PubMed: 
20392958] 

Flora DB, Curran PJ. An empirical evaluation of alternative methods of estimation for confirmatory 
factor analysis with ordinal data. Psychological Methods. 2004; 9:466–491. DOI: 
10.1037/1082-989X.9.4.466 [PubMed: 15598100] 

Hastie, T., Tibshirani, R., Friedman, J. The elements of statistical learning. New York, NY: Springer; 
2009. 

Hayes, AF. Introduction to mediation, moderation, and conditional process analysis: A regression-
based approach. New York, NY: Guilford; 2013. 

Hesterberg T, Choi NH, Meier L, Fraley C. Least angle and l1 penalized regression: A review. 
Statistics Surveys. 2008; 2:61–93. DOI: 10.1214/08-SS035

Hoogland JJ, Boomsma A. Robustness studies in covariance structure modeling: An overview and a 
meta-analysis. Sociological Methods & Research. 1998; 26:329–367. DOI: 
10.1177/0049124198026003003

Jacobucci, R. regsem: Performs regularization on structural equation models. R package version 0.1.6. 
2016. Retrieved from https://cran.r-project.org/package=regsem

Jacobucci R, Grimm KJ, McArdle JJ. Regularized structural equation modeling. Structural Equation 
Modeling. 2016; 23:555–566. DOI: 10.1080/10705511.2016.1154793 [PubMed: 27398019] 

James, G., Witten, D., Hastie, T., Tibshirani, R. ISLR: Data for an introduction to statistical learning 
with applications in R. R package version 1.0. 2013. Retrieved from https://CRAN.R-project.org/
package=ISLR

Judd CM, Kenny DA. Process analysis: Estimating mediation in treatment evaluations. Evaluation 
Review. 1981; 5:602–619. DOI: 10.1177/0193841X8100500502

Lee JD, Sun DL, Sun Y, Taylor JE. Exact post-selection inference, with application to the lasso. The 
Annals of Statistics. 2016; 44:907–927. DOI: 10.1214/15-AOS1371

Lieberman MD, Cunningham WA. Type I and Type II error concerns in fMRI research: Rebalancing 
the scale. Social Cognitive and Affective Neuroscience. 2009; 4:423–428. DOI: 10.1093/scan/
nsp052 [PubMed: 20035017] 

MacKinnon, DP. Contrasts in multiple mediator models. In: Rose, JS.Chassin, L.Presson, CC., 
Sherman, SJ., editors. Multivariate applications in substance use research. Mahwah, NJ: Erlbaum; 
2000. p. 141-160.

MacKinnon, DP. Introduction to statistical mediation analysis. Mahwah, NJ: Erlbaum; 2008. 

MacKinnon DP, Dwyer JH. Estimating mediated effects in prevention studies. Evaluation Review. 
1993; 17:144–158. DOI: 10.1177/0193841X9301700202

MacKinnon DP, Fairchild AJ, Fritz MS. Mediation analysis. Annual Review of Psychology. 2007; 
58:593–614. DOI: 10.1146/annurev.psych.58.110405.085542

MacKinnon DP, Lockwood CM, Hoffman JM, West SG, Sheets V. A comparison of methods to test 
mediation and other intervening variable effects. Psychological Methods. 2002; 7:83–104. DOI: 
10.1037/1082-989X.7.1.83 [PubMed: 11928892] 

MacKinnon DP, Lockwood CM, Williams J. Confidence limits for the indirect effect: Distribution of 
the product and resampling methods. Multivariate Behavioral Research. 2004; 39:99–128. DOI: 
10.1207/s15327906mbr3901_4 [PubMed: 20157642] 

Mackinnon DP, Warsi G, Dwyer JH. A simulation study of mediated effect measures. Multivariate 
Behavioral Research. 1995; 30:41–62. DOI: 10.1207/s15327906mbr3001_3 [PubMed: 20157641] 

McArdle, JJ. Exploratory data mining using decision trees in the behavioral sciences. In: McArdle, JJ., 
Ritschard, G., editors. Contemporary issues in exploratory data mining. New York, NY: Routledge; 
2014. p. 3-47.

Serang et al. Page 16

Struct Equ Modeling. Author manuscript; available in PMC 2017 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cran.r-project.org/package=regsem
https://CRAN.R-project.org/package=ISLR
https://CRAN.R-project.org/package=ISLR


McNeish DM. Using lasso for predictor selection and to assuage overfitting: A method long 
overlooked in behavioral sciences. Multivariate Behavioral Research. 2015; 50:471–484. DOI: 
10.1080/00273171.2015.1036965 [PubMed: 26610247] 

Meinshausen N. Relaxed lasso. Computational Statistics & Data Analysis. 2007; 52:374–393. DOI: 
10.1016/j.csda.2006.12.019

Neyman J, Pearson ES. The testing of statistical hypotheses in relation to probabilities a priori. 
Proceedings of the Cambridge Philosophical Society. 1933; 24:492–510. DOI: 10.1017/
S030500410001152X

Preacher KJ. Advances in mediation analysis: A survey and synthesis of new developments. Annual 
Review of Psychology. 2015; 66:825–852. DOI: 10.1146/annurev-psych-010814-015258

Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and comparing indirect 
effects in multiple mediator models. Behavior Research Methods. 2008; 40:879–891. DOI: 
10.3758/BRM.40.3.879 [PubMed: 18697684] 

Preacher KJ, Kelley K. Effect size measures for mediation models: Quantitative strategies for 
communicating indirect effects. Psychological Methods. 2011; 16:93–115. DOI: 10.1037/
a0022658 [PubMed: 21500915] 

R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation 
for Statistical Computing; 2016. 

Rosseel Y. Lavaan: An R package for structural equation modeling. Journal of Statistical Software. 
2012; 48:1–36. DOI: 10.18637/jss.v048.i02

Shrout PE, Bolger N. Mediation in experimental and non-experimental studies: New procedures and 
recommendations. Psychological Methods. 2002; 7:422–445. DOI: 10.1037/1082-989X.7.4.422 
[PubMed: 12530702] 

Sobel, ME. Asymptotic confidence intervals for indirect effects in structural equations models. In: 
Leinhardt, S., editor. Sociological methodology 1982. San Francisco, CA: Jossey-Bass; 1982. p. 
290-312.

Sobel, ME. Some new results on indirect effects and their standard errors in covariance structure 
models. In: Tuma, N., editor. Sociological methodology 1986. Washington, DC: American 
Sociological Association; 1986. p. 159-186.

Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: 
Series B. 1996; 58:267–288.

VanderWeele T, Vansteelandt S. Mediation analysis with multiple mediators. Epidemiologic Methods. 
2014; 2:95–115. DOI: 10.1515/em-2012-0010 [PubMed: 25580377] 

Williams J, MacKinnon DP. Resampling and distribution of the product methods for testing indirect 
effects in complex models. Structural Equation Modeling. 2008; 15:23–51. DOI: 
10.1080/10705510701758166 [PubMed: 20179778] 

APPENDIX

SAMPLE R CODE FOR STUDY 3

library(ISLR)

library(regsem) # we recommend using version 0.50 or later

data(College)

#select only public schools

College1 = College[which(College$Private = = “No”),]

#select and standardize variables of interest

Data = data.frame(scale(College1[c(3,4,9:12,15,17)]))

#lavaan model with all mediators

model1 <-
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‘ # direct effect (c_prime)

Enroll ~ c_prime*Accept

# mediators

#a paths

Outstate ~ a1*Accept

Room.Board ~ a2*Accept

Books ~ a3*Accept

Personal ~ a4*Accept

S.F.Ratio ~ a5*Accept

Expend ~ a6*Accept

#b paths

Enroll ~ b1*Outstate + b2*Room.Board + b3*Books +

b4*Personal + b5*S.F.Ratio + b6*Expend

# indirect effects (a*b)

a1b1: = a1*b1

a2b2: = a2*b2

a3b3: = a3*b3

a4b4: = a4*b4

a5b5: = a5*b5

a6b6: = a6*b6

#total effect (c)

c := c_prime + (a1*b1) + (a2*b2) + (a3*b3) + (a4*b4) +

(a5*b5) + (a6*b6)

‘

fit.delta = sem(model1,data = Data,fixed.x = T)

#identify parameter numbers to penalize with pars_pen

extractMatrices(fit.delta)$A

#exploratory mediation analysis via regularization

#Stage 1

#find tuning parameter

fit.reg.tune = cv_regsem(model = fit.delta,type = “lasso”,

pars_pen = c(2:13),fit.ret = “BIC”,n.lambda = 120,lambda.

start = 0,jump = 0.005,multi.iter = 4,mult.start = FALSE,

tol = 1e-6,fit.ret2 = “train”,optMethod = “coord_desc”,

gradFun = “ram”, warm.start = T,full = TRUE)

fit.reg.tune

#find minimum BIC value and associated lambda value

bics = fit.reg.tune[[2]][,”BIC”]

plot(seq(0,0.595,by = 0.005),bics,main = “BIC by lambda”,

xlab = “lambda”,ylab = “BIC”)

min.bic = min(bics)

lambda    =   fit.reg.tune[[2]][which(bics  =    =   min.

bic),”lambda”]

#fit model with selected value of lambda
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fit.reg1 = multi_optim(fit.delta,type = “lasso”;,pars_pen = c

(2:13),lambda      =      lambda,gradFun         =     “ram”,

optMethod = “coord_desc”)

summary(fit.reg1)

#display specific indirect effects

fit.reg1 $mediation

#Stage 2

#refit model with only selected mediators

model2 <-

‘ # direct effect (c_prime)

Enroll ~ c_prime*Accept

# mediators

Room.Board ~ a2*Accept

Personal ~ a4*Accept

Expend ~ a6*Accept

Enroll ~ b2*Room.Board + b4*Personal + b6*Expend

# indirect effects (a*b)

a2b2: = a2*b2

a4b4: = a4*b4

a6b6: = a6*b6

#total effect (c)

c := c_prime + (a2*b2) + (a4*b4) + (a6*b6)

‘

fit.reg2 = sem(model2,data = Data,fixed.x = T)

summary(fit.reg2)
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FIGURE 1. 
The single mediator model.
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FIGURE 2. 
The multiple mediator model.
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FIGURE 3. 
Population model for Study 1: Mediator selection.
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FIGURE 4. 
Plot of Bayesian information criterion (BIC) values associated with corresponding values of 

lambda for Study 3: Empirical example. Jumps in the BIC result from setting a parameter to 

0, thus changing the degrees of freedom.
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FIGURE 5. 
Final model for Study 3: Empirical example. (a) Total effect. (b) The direct effect as well as 

the effects associated with the selected mediators.
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