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Two commercially available detector arrays were compared for their use in the 
quality assurance of patient-specific IMRT treatment plans: one a diode-based 
array (MapCHECK) and the other an ion chamber-based array (MatriXX). The 
dependence of the response of detectors on field size, dose rate, and radiation energy 
was measured and compared with reference measurements using a Farmer-type 
ionization chamber. The linearity of the detector response, short-term and long-
term reproducibility, statistical uncertainty as a function of delivered dose, and the 
validity of the array calibration were also examined to understand the stability and 
uncertainty of the systems. No field size or SSD dependence was observed within 
the range of the field sizes and SSDs used in the study at both 6 MV and 18 MV 
photon energies. Both detector arrays showed negligible errors (<1%) when mea-
suring doses of more than ~8 cGy, but exhibited errors of ~3% when measuring 
doses on the order of 1 cGy. While the MapCHECK showed a stable short-term 
reproducibility to within measurement error, the MatriXX showed a slow but 
continuous increase in readings during the initial one-hour period (about 0.8%). 
The MapCHECK also showed a slightly better array sensitivity correction with all 
the detectors having less than 1% discrepancy and more than 90% of the detectors 
within 0.5% variation, whereas about 60% of the MatriXX detectors showed a less 
than 0.5% variation and ~8% exhibited a larger than 1% discrepancy. MatriXX 
detectors also displayed a volume-averaging effect consistent with its detector size 
of ~ 4.5 mm in diameter. Excellent passing rates were obtained for both detector 
arrays when compared with the planar dose distributions from the treatment plan-
ning system for three 6 MV IMRT fields and three 18 MV IMRT fields after the 
volume-averaging effect of the MatriXX was taken into account.
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I.	 Introduction

Verification of patient-specific intensity-modulated radiation therapy (IMRT) plans using two-
dimensional (2D) detector arrays has become increasingly popular due to their ease of use 
and immediate readout of the results. After the treatment plan is approved, a phantom plan is 
generated where each beam is delivered perpendicularly to a flat-surfaced solid phantom. A 
planar dose at a certain depth can be extracted from the treatment planning system (TPS) and 
compared with measurement using 2D detector arrays in the same geometry at the depth of 
interest. Comparison can be made on a beam-per-beam basis or compositely by adding dose 
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from all the beams. 2D dose distribution analysis tools based on the percent dose difference, 
distance to agreement (DTA), or the Gamma Index, have been developed and implemented 
commercially.(1-5) The acquisition of a 2D dose distribution and the real-time analysis capabili-
ties have made 2D detector arrays preferable to single ion chamber or film measurement for 
IMRT pre-treatment verification.

Two types of 2D detector arrays are commercially available with the primary purpose of 
providing patient-specific IMRT QA tools: the MapCHECK diode array (Model 1175, Sun 
Nuclear Corp., Melbourne, FL), and two commercial models of the ionization chamber array 
(ImRT MatriXX, Scanditronix Wellhofer GmbH, Germany; and seven29, PTW, Freiburg, 
Germany). Both kinds of detector arrays have been studied in some detail. Jursinic and 
Nelms(5) and Létourneau et al.(6) examined the linearity and temperature characteristics of the 
MapCHECK detectors and found that the diode response is linear within the range of the radia-
tion dose delivered (up to 300 cGy). A temperature dependence of about one-half percent per 
degree C was also noted. Buonamici et al.(7) compared the MapCHECK and film measurement 
for IMRT QA and concluded that the diode matrix may effectively replace both film dosimetry 
and ionimetric measurements in routine IMRT QA. Amerio et al.(8) and Stasi et al.(9) described 
the design principle and dosimetric properties of a prototype ionization chamber array, which 
was the basis for the MatriXX. The seven29 has also been described by several authors (Poppe 
et al.(10) Spezi et al.(11)). However, most of the studies were performed with only 6 MV photon 
beams, and no direct comparison between the two kinds of detector arrays was made under 
the same conditions.

In general, there are technical concerns over the use of both diode and ion-chamber arrays for 
performing QA measurements. The diode array detectors are small (<1 mm), making them ideal 
for measuring complex IMRT planar dose distributions with minimal volume averaging effect. 
On the other hand, diodes are known to suffer from radiation damage, energy, field size, and 
dose-rate dependencies.(12-13) Proper evaluations of their response characteristics are essential 
before their clinical use. Ion chamber-based detector arrays are known to have insignificant 
energy and dose-rate dependence for MV photon beams, but require a larger sensitive volume, 
with diameters on the order of 5 mm for each chamber, to gain signal and will therefore exhibit 
a volume averaging effect in steep dose gradient regions.(14) Measurement of dose distributions 
with steep gradients is necessary in the characterization of IMRT dose distributions. Thus, the 
effect of volume averaging needs to be carefully characterized and possibly considered in the 
interpretation of verification results. 

In this work, two different detector arrays were evaluated for IMRT pre-treatment verifica-
tion: the ion chamber-based ImRT MatriXX array and the diode-based MapCHECK 1175 array. 
Our aim is to study detector-response dependence on field size, dose rate, radiation energy, and 
detector size by evaluating their effect on the commonly used percent dose difference and DTA 
criteria for IMRT planar dose comparison. The linearity of the detector response, short-term and 
long-term reproducibility, statistical uncertainty as a function of delivered dose, and the validity 
of the array calibration were also examined. The arrays’ ability to measure dose distributions 
with both the 6 MV and 18 MV photon beams were verified by comparing the measurements 
with planar dose distributions from the TPS.

II.	 Materials and Methods

The ImRT MatriXX is a pixel ionization chamber array of 1020 detectors on a 32 × 32 
Cartesian grid. The detector spacing is 0.76 cm, covering a total area of 23.6 × 23.6 cm2. 
Each individual ion chamber consists of a vented parallel plate chamber with a diameter of 
0.45 cm and a height of 0.5 cm, resulting in a sensitive volume of 0.08 cm3. The uniformity 
correction of the array was determined by the manufacturer and cannot be changed by the 
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user. Following the manufacturer’s recommendations, the MatriXX was given a 15-minute 
warm-up time and ≥10 Gy of pre-irradiation before each use. Additional warm-up time was 
given, as discussed later. The MapCHECK contains 445 n-type solid state diode detectors. The 
inner 221 detectors cover the central 10 × 10 cm2 and are arranged in a zigzag pattern so that 
the diagonal spacing between detectors is 0.707 cm. The outer 224 detectors are arranged in a 
similar pattern, but with a diagonal spacing between detectors of 1.414 cm. The array covers an 
area of 22.0 × 22.0 cm2. The active detector area of each diode is 0.8 × 0.8 mm2. The relative 
sensitivity differences between the detectors were obtained through a manufacturer specified  
procedure.(15) No warm-up time was given for the MapCHECK. For both devices, the delivery 
dose was calibrated by delivering a known dose of radiation using a beam with a 10 × 10 cm2 
field size under reference conditions. All the measurements were done using a dual energy linear 
accelerator (Synergy, Elekta Oncology Systems Ltd, Crawley, UK) equipped with an 80-leaf 
multileaf collimator (MLC) with 1 cm leaf width. The effective depths of the detectors were 
taken from the manufacturer-specified values. Additional solid water slabs were added to both 
arrays to position the detectors at 10 cm of water-equivalent depth. The radiation beam was 
perpendicular to the phantom surface and the detector arrays for all measurements.

The linearity of the detectors was assessed by delivering varying amounts of radiation dose 
with a 6 MV photon beam, from 1 MU to 300 MU (1 MU = 0.88 cGy) using a 26 × 26 cm2 
field size at 100 cm source-to-detector distance (SDD). The readings from the central diode of 
the MapCHECK were correlated with the delivered dose. Since the MatriXX did not have a 
detector at the central axis, the average of the central four chambers was used for this purpose. 
The same data sets were also used to study the statistical uncertainty as a function of delivered 
dose. Using the planar dose distribution measured with 300 MU as baseline, measured dose 
fluctuations around the baseline can be calculated for smaller delivered MU. For each detector, 
i, a percent error (PE) was calculated as

	 (1)

where Ri(M) and Ri(M=300) are the readings of the detector i that received M MU and 300 MU, 
respectively, and R–(M) and R–(M=300) are the average readings of all the detectors that received 
M MU and 300 MU, respectively. The standard deviation of PE of all the detectors as a function 
of M was then calculated for the two arrays.

Short-term and long-term reproducibility was evaluated by repeating the same measurement 
every 10 minutes over a one-hour period and every week over a one-month period using the 
above setup, with an additional solid water piece with an embedded Farmer-type ion chamber 
at a fixed position below the detector array to monitor the accelerator output. The ratios of the 
raw readings of the MatriXX and the Farmer-type chamber (without temperature and pressure 
corrections) were used directly to assess the MatriXX reproducibility, as both readings were 
affected in the same way by temperature and pressure variations. On the other hand, the Farmer-
type chamber readings were first corrected for the temperature and pressure before being used 
to normalize the MapCHECK readings. No temperature correction was attempted for the diode 
readings, although the temperature variation for all the measurements was small (≤1.2 °C). 
Both the absolute calibration and array calibration files for the two arrays were kept the same 
throughout the measurement. Since we were interested in evaluating the reproducibility of all 
the detectors, the beam tuning of the linac was carefully monitored using the linac’s radial and 
transverse ion chamber plates to make sure beam symmetry was kept consistent to within 0.5% 
during the long-term reproducibility measurement.

One practical aspect to note is that since our institution has been using the same MapCHECK 
device for IMRT patient QA for the past three years, the MapCHECK experienced extensive 
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use before and during the one-month period, whereas the MatriXX was not in clinical use. 
Therefore, the effect of the varying amount of radiation to the array sensitivity was not taken 
into account for the comparison.

The validity of the array calibration was checked using the method as described by Létourneau 
et al.(6) Each of the arrays was irradiated with an open 26 × 26 cm2  6 MV photon beam at 0° 
and 180° rotation of the detector array. Since the radiation at the same position was recorded by 
two different detectors, the subtraction of the two matrices after proper rotation would reveal 
any array calibration errors. Note that the result of this simple procedure has only statistical 
meaning, as two detectors at the same position (in the room coordinate) before and after rota-
tion that have the same calibration error would display no error in this test.

The response of the detectors as a function of field size (Scp) and SDD for 6 MV and 18 MV 
photon beams was studied by first measuring the output factors with field sizes ranging from 
4 × 4 cm2 to 22 × 22 cm2 at 100 SDD and 10 cm depth in a solid water phantom. The results 
were compared with those obtained using a Farmer chamber measurement in the same geom-
etry. The SDD dependence (or dose rate dependence) was measured by varying the SDD from 
80 cm to 150 cm using the same solid water phantom with a fixed field size of 10 × 10 cm2 
and the results were compared with the Farmer chamber measurement. Only the central diode 
for the MapCHECK and one of the four chambers near the center for the MatriXX were used 
for these measurements.

To study the effect of the finite size of the MatriXX detectors on measuring complex IMRT 
dose distributions, the response functions of a single parallel plate chamber of the MatriXX 
were determined. A half beam-blocked 10 × 10 cm2 field was created and the MapCHECK 
and the MatriXX were, in turn, used in single detector mode to measure the beam penumbra 
at 10 cm depth using 1.0 mm steps, covering ±15 mm of the beam edge. Accurate movement 
of the detectors was achieved using a robotic treatment couch top (HexaPOD, Medical Intel-
ligence, Germany). Profiles perpendicular to the leaf movement direction were obtained with 
both the 6 MV and 18 MV photon beams, and were normalized to the respective readings at 
the center of a symmetric 10 × 10 cm2 field. The profiles obtained with the MapCHECK diode 
were assumed to be the true beam edge profiles as the diode size was small (0.8 mm). The 
response functions of the MatriXX were assumed to be Gaussian and a least-squares best fit 
was obtained to determine the widths of the Gaussians. This was accomplished by minimizing 
the difference between the MatriXX measured profile and the profile obtained by convolving 
the MapCHECK measured profile with the Gaussians.

To evaluate the ability of the detector arrays in measuring planar dose distributions, three 
6 MV IMRT treatment fields and three 18 MV IMRT treatment fields previously used for 
patient treatment at our institution were selected. The step-and-shoot IMRT treatment fields 
were generated using a commercial TPS (Pinnacle3, version 7.6c, Philips Medical Systems, 
Madison, WI) with direct machine parameter optimization (DMPO) option, which directly 
optimizes the shape and weight of each MLC segment. Minimum segment area and minimum 
segment MU were set to 4 cm2 and 3 MU, respectively. All six IMRT fields had similar fluence 
modulations, with the number of segments ranging from 8 to 11. The TPS was commissioned 
using true beam profiles, free from volume-averaging effect, and which were extracted from 
ion chamber-measured profiles using a recently-developed methodology.(16) Planar dose distri-
butions at 10 cm depth and with 90 cm SSD in a solid water phantom with gantry angle set to 
0° (IEC convention) were measured with both the MapCHECK and MatriXX, and compared 
with TPS calculated dose distributions under identical geometric setup.

Quantitative comparisons between the MapCHECK and MatriXX measured dose distribu-
tions and TPS calculated planar dose distributions were performed using software developed 
in MATLAB (MathWorks, Inc., Natick, MA). Commonly-used percent dose difference and 
DTA criteria of 3%/3 mm and 2%/2 mm were adopted. The algorithm employed to compute 
the percentage of the points passing the acceptance criteria or passing rate was the same as the 
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one used in the MapCHECK commercial software in the absolute dose comparison mode.(15) A 
measurement point was included in the analysis if (1) the measured dose was above 10% of the 
maximum dose of the field, or (2) it was an interior point.(15) No interpolation was applied to 
the dose distributions measured with the detector arrays. Both the original TPS calculated dose 
distributions and the TPS dose distributions convolved with a Gaussian function determined 
from the detector response test were used to compare with the MatriXX measurements.

III.	 Results 

The response of the detectors as a function of delivered dose is shown in Fig. 1, where the read-
ings from the central diode and the average of the central four chambers were correlated with the 
delivered dose. Both detectors show a linear response with R2 values of better than 0.999. The 
uncertainty in measuring low dose can be better observed in Fig. 2, where the percent error for 
the central diode and the average of the central four chambers, PE0(M), as calculated using

	 (2)

is plotted against the delivered MU, where R0(M) and R0(M = 300) are the detector readings 
with M and 300 MUs, respectively. Also plotted are the standard deviations of the percent error 
of all the detectors as a function of delivered MU as calculated using (Eq. 1). Both detector 
arrays showed negligible errors (<1%) when measuring more than 10 MU, corresponding to 
approximately 8 cGy. The MapCHECK displayed a progressive under response with smaller 
MUs, whereas the MatriXX did not show any systematic pattern. The linac output for small 
MUs was accurate to within 0.5%, as monitored with a Farmer chamber.

The short-term and long-term reproducibility of the two detector arrays is shown in Fig. 3. 
The signals from the central diode of the MapCHECK and the central four chambers of the 
MatriXX were plotted as a function of time during the one-hour and one-month period after 
proper correction of the linac output variation. While the MapCHECK showed a stable short-
term response to within the measurement errors, the MatriXX showed a continuously slow 
increase in reading during the one-hour period (about 0.8%). In light of this finding, the MatriXX 
was given a one-hour warm-up time in addition to the manufacturer’s recommended warm-up 
procedures for all the other measurements. Both detectors showed a fluctuation of about 1% 
during the one-month period.

[ ] %100)300()300(  )/300()()( 0000 =÷== MRMRMMRMPE

Fig. 1.  Response linearity of the two detector arrays. The relative reading is plotted as a function of delivered dose from 
1 MU to 300 MU (1 MU=0.88 cGy) in a 6 MV photon beam. 
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The result of the array calibration check is shown in Fig. 4, where the percent difference 
of the signals acquired at 0o and 180o rotation of the detector array about the beam axis at all 
the detector positions were histogramed. The MapCHECK showed a slightly better sensitiv-
ity correction with all the detectors having less than 1% discrepancy and more than 90% of 
the detectors within 0.5% variation. On the other hand, about 60% of the MatriXX detectors 
showed a variation of less than 0.5% and ~8% exhibited a discrepancy larger than 1%, with one 
outlier at 3%. The array calibration check is especially important for MatriXX, as the calibra-
tion file was supplied by the manufacturer and the user does not have the option to recalibrate 
the array. It is therefore important to check the validity of the array calibration before clinical 
use and to evaluate the variation of the detector response to determine when it’s necessary for 
recalibration.

The response of the detectors as a function of field size (Scp) and SDD for 6 MV and 18 MV 
photon beams are displayed in Figs. 5 and 6, respectively, together with the results using a 

Fig. 2.  The percent error of the measured output as a function of delivered dose from 1 MU to 300 MU (1 MU=0.88 cGy) 
using output measured at 300 MU as a reference. The error bars represent the statistical errors for all the detectors as 
determined using Eq. 1. The dashed lines represent the linac output as monitored using a Farmer chamber. 

Fig. 3.  Detector response variation during a period of one hour (short term) and one month (long term). The linac output 
variation was monitored and corrected using a Farmer chamber. The MatriXX readings were corrected for temperature 
and pressure variations during the long-term tests; no correction was applied to the MapCHECK readings.
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Fig. 4.  Histogram of the array calibration uncertainties for all the detectors using the rotational method, as described in 
the text.

Fig. 5.  Relative output as a function of field size for the 6 and 18 MV photon beams measured with the MapCHECK 
and MatriXX, and compared with the measurement using a Farmer-type ion chamber. Measurement was done in a solid 
water phantom at 100 cm source to detector distance (SDD) and 10 cm depth. Field sizes varied from 4 × 4 cm2 to  
22 × 22 cm2.
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Farmer chamber in the same geometry. Both the MapCHECK and MatriXX agreed with the 
Farmer chamber measurement to within 1% for the range of field sizes and SDDs tested for 
both photon energy beams. The diode result is especially surprising since most diode systems 
showed significant field-size and SSD (instantaneous dose-rate) dependence, and correction 
factors are necessary if used for in-vivo Dosimetry.(12) 

The beam profiles in the penumbra regions of a half-beam blocked field as measured by the 
two detector arrays in the single detector mode are shown in Fig. 7. Also shown are the profiles 
obtained by convolving the best-fit Gaussians with the MapCHECK-measured profiles. The 
volume averaging of the ion chamber array in the measured beam penumbra is apparent, with 
larger penumbra measured using the MatriXX. A fit to the MatriXX-measured profile using the 
MapCHECK-measured profile convolved with a Gaussian function resulted in σ of 2.4 mm and 
2.6 mm, respectively, for the 6 MV and 18 MV photon beams, corresponding to full width at 
half maximum (FWHM) of about 5.8 mm. These are very similar to the radius of the MatriXX 
chambers (2.3 mm) as would be expected from similar investigations.(14) 

Fig. 6.  Relative output as a function of SDD for the 6 and 18 MV photon beams measured with the MapCHECK and 
MatriXX, and compared with the measurement using a Farmer-type ion chamber. The depth of the detectors was at 10 cm 
with a fixed field size of 10 × 10 cm2. The SDDs varied from 80 cm to 150 cm. 
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The passing rates between the MapCHECK and TPS calculated dose distributions and 
between the MatriXX and TPS calculated dose distributions for three 6 MV and three 18 MV 
IMRT fields are summarized in Table 1. Both the original TPS calculated dose distributions 
and the TPS calculated dose distributions convolved with a Gaussian with a σ of 2.5 mm were 
used to compare with the MatriXX measurement. With the 3%/3 mm criteria, all comparisons 
achieved better than 95% passing rates, with slightly better passing rates for the 6 MV fields than 
the 18 MV fields. Noticeable improvements in passing rates were obtained when the MatriXX 
measured dose distributions were compared with the TPS calculated dose distributions after 
the latter were convolved with a Gaussian function to take into account the volume-averaging 
effect of the MatriXX detectors, especially when the 2%/2 mm evaluation criteria were used. 
Even with the more stringent criteria of 2%/2 mm, good passing rates were obtained for all the 
comparisons, with the average passing rates of more than 90% for both energies. No significant 
differences were observed between the two detector arrays. 

 

Table 1.  Passing rates between MapCHECK and TPS calculated dose distributions and MatriXX and TPS calculated 
dose distributions for three 6 MV IMRT fields and three 18 MV IMRT fields. Both the original TPS calculated dose 
distributions and the TPS calculated dose distributions convolved with a Gaussian with a σ of 2.5 mm were used to 
compare with the MatriXX measured dose distributions.

		  MatriXX with TPS	 MatriXX with TPS
 	 MapCHECK with TPS 	 (Original)	 (Convolved)

	 3%/3 mm	 2%/2 mm	 3%/3 mm	 2%/2 mm	 3%/3 mm	 2%/2 mm

6 MV Field A	 98.3%	 94.4%	 98.1%	 93.3%	 100.0%	 96.1%

6 MV Field B	 100.0%	 96.8%	 97.6%	 90.5%	 99.2%	 94.8%

6 MV Field C	 99.6%	 96.1%	 97.9%	 92.7%	 98.8%	 95.3%

Average (6 MV)	 99.3%	 95.8%	 97.9%	 92.2%	 99.3%	 95.4%

18 MV Field A	 97.8%	 94.9%	 96.3%	 91.4%	 96.9%	 94.3%

18 MV Field B	 95.3%	 93.2%	 93.6%	 89.8%	 95.2%	 93.9%

18 MV Field C	 99.7%	 96.1%	 95.8%	 90.7%	 97.6%	 95.1%

Average (18 MV)	 97.6%	 94.7%	 95.2%	 90.6%	 96.6%	 94.4%

Fig. 7.  Beam profiles of a half-beam blocked 10 × 10 cm2 field measured with the MapCHECK (*) and MatriXX (o) in 
the single detector mode at 10 cm depth with 1 mm steps, covering ±15 mm of the beam edge. Accurate movement of the 
detectors was achieved using a robotic treatment couch top. The convolved profiles using the best fit Gaussians are also 
shown as solid curves with σ of 2.4 mm and 2.6 mm for the 6 and 18 MV beams, respectively.
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IV.	D ISCUSSION

Our results demonstrate that both detector arrays present the required characteristics for accurate 
planar dose measurements as required in clinical patient specific IMRT QA. No significant field 
size or SSD dependence was observed within the range of the field sizes and SSDs employed 
in the study. Concerns about field size, dose rate, and radiation damage influencing diode 
detectors do not appear to be warranted given the results of our study. Saini and Zhu(13) found 
that the buildup material on the top and around the diode die can significantly affect the field 
size dependence, and can be minimized by suitably chosen buildup material. The minimal 
dose-rate dependence of the MapCHECK diodes is, in part, due to the designed increase in 
recombination-generation centers that enables the indirect recombination rate to remain nearly 
constant over the instantaneous dose rate range experienced in radiotherapy applications.(17) 
Even after 4 years of clinical use in our institution and approximately 300 patient QA measure-
ments per year, the diode array demonstrated excellent performance over a reasonable clinical 
range of irradiation conditions. 

The finite size of the ion-chamber array resulted in a measurable volume-averaging effect, 
with a FWHM of about 5.8 mm, assuming a Gaussian response function. This volume-averaging 
effect should be properly taken into account when comparing measured planar dose distribu-
tions with those from a TPS for IMRT QA. In this work, this was done by convolving the TPS 
calculation with a Gaussian function with the experimentally-determined width before comparing 
with the MatriXX-measured dose distributions. This procedure is warranted because our TPS 
was commissioned using true beam profiles free of volume-averaging effect.(16) This may not 
be applicable if beam profiles measured with finite-sized ion chambers are used directly for 
beam commissioning. If the size of the ion chamber used to collect beam commissioning data 
is comparable to the size of the MatriXX detectors, direct comparison between the MatriXX 
measurement and TPS calculation may produce erroneously high passing rates, as both the 
measurement and TPS calculation suffer from similar volume-averaging effect. This would also 
degrade the passing rates if MapCHECK is used for the measurement. Yan et al.(16) found that 
significant improvement in passing rates between TPS calculation and MapCHECK measure-
ment could be achieved if the TPS was commissioned using true beam profiles, especially when 
more stringent criteria such as 2%/2 mm DTA were used. Figure 8 shows a DTA comparison 
between MatriXX/MapCHECK measurements and TPS calculations of one of the IMRT seg-
ments.  The TPS calculations were done using both a beam model (BM1) commissioned using 
a finite-sized ion chamber measured beam profiles (CC04, Scanditronix Wellhofer, Bartlett, 
TN) and a beam mode (BM2) commissioned using true beam profiles. When BM1 was used, 
MatriXX resulted in a higher passing rate than MapCHECK due to similar volume-averaging 
effect of BM1 and MatriXX. The use of BM2 improved the passing rate for MapCHECK 
significantly (Fig. 8(d)), while at the same time reduced the passing rate for MatriXX (Fig. 
8(c)). However, the result is almost identical to Fig. 8(a) if the planar dose distribution from 
BM2 was first convolved with the Gaussian response function before comparing with the 
MatriXX measurement. Note that most of the failed points occur in the penumbra area, where 
the volume-averaging effect is most pronounced. It is therefore important to understand the 
volume-averaging effect of both the TPS and the QA device before meaningful interpretation 
of IMRT QA results can be made. 

While the MapCHECK used a wide-field calibration technique to obtain the relative sensitiv-
ity differences between the detectors, the array calibration for the MatriXX was supplied by the 
manufacturer. It is important to check the validity of the array calibration before clinical use 
and to monitor its change over time. One way to check this is to compare the array-measured 
beam profiles with scanned beam profiles with ion chambers in water. This procedure is time-
consuming. Létourneau et al.(6) described a rotational method which was used here for array 
calibration check. We recommend that the manufacturers provide a built-in method similar to 
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the one used here (Fig. 4) to allow the users to easily check the validity of the array calibration 
and determine when it’s necessary for recalibration. Annual recalibration of the MapCHECK 
was recommended by the manufacturer.(15) We found no systematic trend for our IMRT QA 
results after each array calibration and found this recalibration interval to be adequate.

The effective depths of the detectors for both devices were taken from the manufacturer-
specified values and were not verified. This should not be a concern for the current application, 
since the arrays were calibrated by delivering a known dose of radiation to obtain the raw read-
ing to dose conversion factors in the same geometry. With the increasing interest in rotational 
or intensity-modulated arc therapy, both devices have been proposed for use as a pretreatment 
verification tool. Due to the finite size of the ion chambers in the MatriXX device, the effec-
tive point of measurement needs to be determined for such application. Moreover, directional 
dependence of the detectors becomes important and needs to be carefully evaluated. Recently, 
Van Esch et al.(18) examined the suitability of an ion-chamber array (seven29) for pretreatment 
QA of rotational therapy. They found significant directional dependence, with detector responses 
of 4% lower for 18 MV and 8% lower for 6 MV photon beams compared with TPS calculation 
when the array was irradiated from the rear, as compared to agreement within 1.0% when the 
array was irradiated from the front. The authors proposed a compensation cavity in the phantom, 
resulting in measurement accuracy comparable to that of single ion chambers. Also, the effec-
tive point of measurement was found to be 2.5 mm below the upper electrode when irradiated 
from the anterior-posterior direction, resulting in small calibration corrections. Similar studies 
need to be done for any other devices to ensure the integrity of QA results.

 
V.	 Conclusions

Two commonly-used detector arrays, the diode-based MapCHECK and the ion chamber-based 
MatriXX, were examined for their use in the quality assurance of patient-specific IMRT treatment 

Fig. 8.  �������������������������������������������������������������������������������������������������DTA comparison between MatriXX/MapCHECK measurements and TPS calculations of one of the IMRT seg-
ments. The TPS calculations were done using both a beam model (BM1) commissioned using a finite-sized ion chamber 
(CC04) measured beam profiles and a beam mode (BM2) commissioned using true beam profiles. DTA criteria of 2%/2mm 
were used for the comparison and the passing rates are labeled in the top left corners. The blue dots represent failed points 
where the measurements are lower than TPS calculations; the red dots represent failed points where the measurements are 
higher than TPS calculations. Fig. 8(a) comparison between MatriXX and BM1; (b) comparison between MapCHECK 
and BM1; (c) comparison between MatriXX and BM2; (d) comparison between MapCHECK and BM2.
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plans. No field size or SSD dependence was observed within the range of the field sizes and 
SSDs used in the study at both 6 MV and 18 MV photon energies. Both detector arrays showed 
negligible errors (<1%) when measuring doses of more than ~8 cGy, but exhibited progressively 
larger errors when measuring lower doses. While the MapCHECK showed a stable short-term 
reproducibility to within measurement error, the MatriXX showed a slow but continuous in-
crease in readings during the initial one-hour period (about 0.8%). Longer warm-up times than 
those recommended by the manufacturer seem necessary in order to achieve more accurate 
results. The MapCHECK also showed a slightly better  array sensitivity correction, with all 
the detectors having less than 1% discrepancy and more than 90% of the detectors within 0.5% 
variation, whereas about 60% of the MatriXX detectors showed a less than 0.5% variation and 
~8% exhibited a larger than 1% discrepancy. While the volume averaging of the ion-chamber 
array was measurable, it can be properly taken into account by convolving the TPS calculation 
with a Gaussian function before comparing with the MatriXX measurements. Excellent passing 
rates were obtained for both detector arrays when compared with the planar dose distributions 
from the treatment planning system for three 6 MV IMRT fields and three 18 MV IMRT fields 
after the volume-averaging effect of the MatriXX was taken into account. While we have found 
excellent performance in both units, institutions employing these devices for patient specific 
QA should validate the performance of any units before clinical use and establish an ongoing 
clinical QA program to periodically monitor their performance.

 
Acknowledgements

The authors would like to thank Scanditronix Wellhofer for the loan of the MatriXX device 
and Jie Shi and Sanjeev Saini of Sun Nuclear Corp. for useful discussion about MapCHECK 
analysis software. This work was supported in part by NCI grant R01-CA-100636.

 
References

	 1.	Van Dyk J, Barnett RB, Cygler JE, Shragge PC. Commissioning and quality assurance of treatment planning 
computers. Int J Radiat Oncol Biol Phys. 1993;26(2):261–73.

	 2.	Shiu AS, Tung S, Hogstrom KR, et al. Verification data for electron beam dose algorithms. Med Phys. 
1992;19(3):623–36.

	 3.	Harms WB, Low DA, Wong JW, Purdy JA. A software tool for the quantitative evaluation of 3D dose calculation 
algorithms. Med Phys. 1998;25(10):1830–36.

	 4.	Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med 
Phys. 1998;25(5):656–61.

	 5.	 Jursinic PA, Nelms BE. A 2-D diode array and analysis software for verification of intensity modulated radiation 
therapy delivery. Med Phys. 2003;30(5):870–79.

	 6.	Létourneau D, Gulam M, Yan D, Oldham M, Wong JW. Evaluation of a 2D diode array for IMRT quality assur-
ance. Radiother Oncol. 2004;70(2):199–206.

	 7.	Buonamici FB, Compagnucci A, Marrazzo L, Russo S, Bucciolini M. An intercomparison between film dosimetry 
and diode matrix for IMRT quality assurance. Med Phys. 2007;34(4):1372–79.

	 8.	Amerio S, Boriano A, Bourhaleb F, et al. Dosimetric characterization of a large area pixel-segmented ionization 
chamber. Med Phys. 2003;31(2):414–20.

	 9.	Stasi M, Giordanengo S, Cirio R, et al. D-IMRT verification with a 2D pixel ionization chamber: dosimetric and 
clinical results in head and neck cancer. Phys Med Biol. 2005;50(19):4681–94.

	 10.	Poppe B, Blechschmidt A, Djouguela A, et al. Two-dimensional ionization chamber arrays for IMRT plan veri-
fication. Med Phys. 2006;33(4):1005–15.

	 11.	Spezi E, Angelini AL, Romani F, Ferri A. Characterization of a 2D ion chamber array for the verification of 
radiotherapy treatments. Phys Med Biol. 2005;50(14):3361–73.

	 12.	Yorke E, Alecu R, Ding L, et al. Diode in vivo dosimetry for patients receiving external beam radiation therapy: 
report of Task Group 62 of the Radiation Therapy Committee of the American Association of Physicists in 
Medicine. Madison (WI): Medical Physics Publishing; 2005.

	 13.	Saini AS, Zhu TC. Energy dependence of commercially available diode detectors for in-vivo dosimetry. Med 
Phys. 2007;34(5):1704–11.



74    Li et al.: Detector arrays for IMRT QA	 74

Journal of Applied Clinical Medical Physics, Vol. 10, No. 2, Spring 2009

	 14.	Low DA, Parikh P, Dempsey JF, Wahab S, Huq S. Ionization chamber volume averaging effects in dynamic 
intensity modulated radiation therapy beams. Med Phys. 2003;30(7):1706–11.

	 15.	 “User’s Guide, MapCHECK,” version 3.2. Melbourne, FL: Sun Nuclear Corporation; 2006.
	 16.	Yan G, Fox C, Liu C, Li JG. The extraction of true profiles for TPS commissioning and its impact on IMRT 

patient-specific QA. Med Phys. 2008;35(8):3661–70.
	 17.	Shi J, Simon WE, Zhu TC. Modeling the instantaneous dose rate dependence of radiation diode detectors. Med 

Phys. 2003;30(9):2509–19.
	 18.	Van Esch A, Clermont C, Devillers M, Iori M, Huyskens DP. On-line quality assurance of rotational 

radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom. Med Phys. 
2007:34(10):3825–37.


