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Abstract

Immunological memory is the key biological process that makes vaccines possible.

Although tuberculosis vaccines elicit protective immunity in animals, few provide durable

protection. To understand why protection is transient, we evaluated the ability of memory

CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naïve

and memory CD4+ T cells initially proliferated exponentially, and the accumulation of mem-

ory T cells in the lung correlated with early bacterial control. However, later during infection,

memory CD4+ T cell proliferation was curtailed and no protection was observed. We show

that memory CD4+ T cells are first activated in the LN and their recruitment to the lung atten-

uates bacterial growth. However, their interaction with Mtb-infected macrophages does not

promote continued proliferation. We conclude that a lack of sustained expansion by mem-

ory-derived T cells in the lung limits the durability of their protection, linking their slower

expansion with transient protection in vaccinated mice.

Author summary

Vaccines elicit pathogen-specific memory T cells whose early and potent activation upon

infection should provide long-lasting control of bacterial growth. Although many experi-

mental vaccines generate memory CD4+ T cells and can control the growth of Mycobacte-
rium tuberculosis (Mtb) early during infection, none reliably provide protection from

pulmonary tuberculosis (TB) that is durable. Although the etiology of the clinical failure

of memory T cells is not well understood, few studies monitor memory T cell fate and

function throughout chronic infection. Using both clonal and polyclonal models of Mtb-

specific memory CD4+ T cell function during TB, we show that the expansion of mem-

ory-derived T cell responses is impaired in the lungs, compared with the primary (naïve)

CD4 response. Despite expressing a protective effector phenotype, and reducing bacterial
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growth early after Mtb challenge, we further show that memory CD4+ T cells do not pro-

liferate in response to Mtb-infected macrophages. Their impaired expansion corre-

sponded with waning protection in vaccinated mice later during infection. We propose

that both the induction of memory T cell proliferation by infected macrophages, and the

durability of vaccine-elicited T cell responses during TB should serve as preclinical vac-

cine benchmarks.

Introduction

A vaccine that prevents active pulmonary tuberculosis (TB) is urgently needed to reduce Myco-
bacterium tuberculosis (Mtb) transmission and TB incidence. M. bovis-BCG (BCG) is the only

currently approved TB vaccine. However, neither BCG nor MVA85A, the only other TB vac-

cine to complete an efficacy trial, reliably prevent active pulmonary disease [1,2]. While evi-

dence of TB prevention in BCG-vaccinated populations has been shown in temperate

climates, protection is notably short-lived, waning after adolescence [1]. Furthermore, Individ-

uals successfully treated for active pulmonary TB are not protected from further episodes of

TB attributable to reinfection [3]. The inability of vaccination, or prior infection, to reliably

reduce TB incidence indicates the need for a better understanding of why memory T cells do

not function more effectively after Mtb challenge.

Vaccination mimics pathogen-elicited memory, and has fundamentally changed our

ability to prevent infectious diseases. Although most clinically efficacious vaccines work by

eliciting memory B cells and antibodies, vaccines that elicit T cell memory work by increas-

ing the frequency, affinity, and function of microbe-specific T cells compared to their

counterparts in the naïve T cell repertoire [4]. However, the requirements for protective

immunity against slowly-progressive infection appear to be different than those for acute

viral infection, where viral replication is rapid and antigen is abundant. For chronic infec-

tions, such as TB, memory T cells must not only respond rapidly, but their effect must be

long-lasting. Accordingly, TB vaccines show little evidence of long-lived protection in mice

despite reducing bacterial burden 5–10 fold early during infection [5–7]. Prior pulmonary

TB in mice also leads to an early, 10-fold reduction in bacterial growth upon reinfection

[8], but does not confer a long-term survival benefit [5]. These data suggest an early but

transient benefit of memory T cells against Mtb.

CD4+ T cells play a dominant role in host defense during active pulmonary TB [9]. CD4+ T

cells attenuate Mtb growth by direct recognition of infected cells through TCR recognition,

acting via both IFNγ-dependent and independent effector functions [10–12]. A major limita-

tion to T cell-mediated protection is the significant delay in their response to Mtb in the lungs.

The mouse model of TB has revealed that this nearly 2 week delay is caused by the requirement

for T cell priming to occur in the lung-draining mediastinal lymph nodes (MLN), which

occurs 10–12 days after inoculation [13–15]. The recruitment of memory CD4+ T cells to the

lung after Mtb challenge is similarly delayed [8,16], but whether memory CD4+ T cells are first

activated in MLN or the lung has not been determined.

ESAT6 (EsxA) and Ag85b are two immunogenic proteins secreted by Mtb that elicit CD4+

T cell responses and have been incorporated into TB vaccine candidates [17]. However, these

proteins differ in their levels of expression, function, and antigenicity during TB. While

ESAT6 is a virulence factor expressed early and late during infection, Ag85b expression is dis-

pensable for Mtb virulence, and its expression is downregulated in vivo as early as 3 weeks
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post-infection (wpi) [18,19]. Despite these differences, CD4+ T cell responses targeting either

ESAT6 or Ag85b expand and reduce bacterial load early after Mtb challenge [20,21]. However,

maintenance of both the numbers of memory-derived T cell responses and control of Mtb

growth in vaccinated animals is rarely assessed at late time points.

In this study, we ask whether the fate of memory CD4+ T cells that respond to Mtb infection

affects the protection conferred by vaccination. We observed that both ESAT6 and Ag85b vac-

cinations elicited memory CD4+ T cells that expanded and reduced bacterial load early after

Mtb challenge. However, protection waned at late time points, as did the number of memory-

derived CD4+ effector T cells in the lungs. Thus, the durability of the protection conferred by

memory CD4+ T cells is linked to their potential for sustainable expansion, but we further

observed that their proliferation was not promoted by their response to Mtb-infected macro-

phages. We speculate that vaccines which elicit memory T cells capable of sustainably expand-

ing in response to infected cells will more durably control Mtb growth in the lung; a factor that

should be considered in TB vaccine development.

Results

The augmented antigen-specific CD4+ T cell response in vaccinated

mice is not durable after Mtb challenge

To determine whether vaccination is able elicit memory CD4+ T cells that establish a durable

response and confer protection against Mtb challenge, we vaccinated mice against either

ESAT63-17 or Ag85b240-254, using a strategy previously shown to elicit protective ESAT6-speci-

fic CD4+ T cells [20]. We enumerated ESAT64-17 and Ag85b240-254–specific responses after a

single vaccination, prior to Mtb challenge. In the blood, 0.5–2% of CD4+ T cells were found to

be specific for ESAT6 or Ag85b (Fig 1A). Memory CD4+ T cells were also identified in the

lungs 12 weeks after ESAT6 vaccination (Fig 1B), consisting of both central (CD62LHi IL-

7RαHi) and effector (CD62LLo IL-7RαHi) memory CD4+ T cells (Fig 1C). The majority of these

memory CD4+ T cells expressed CXCR3, a chemokine receptor associated with trafficking of

memory T cells to the airway during inflammation [22] (Fig 1C). These data indicate that vac-

cination elicited robust, long-lasting memory CD4+ T cell responses to two immunodominant

Mtb antigens.

Twelve weeks after vaccination, we challenged vaccinated and control mice with aerosol-

ized Mtb (strain Erdman). An early and robust ESAT6-specific CD4+ T cell response was

detected 2 and 4 wpi in ESAT6 vaccinated mice (5–15% of CD4+), compared with Ag85b-vac-

cinated or unvaccinated mice (0.1–5% of CD4+) (Fig 1D and 1E). The Ag85b-specific response

was similarly greater in Ag85b-vaccinated mice at these time points (10–15% vs. 0.1% of

CD4+) (Fig 1D and 1E). Surprisingly, Ag85b- and ESAT6-specific CD4+ T cells accumulated

more slowly in the lungs of vaccinated, compared with unvaccinated mice (Fig 1F and 1G).

Although the proportion of Ag85b- or ESAT6-specific CD4+ T cells was usually greater in vac-

cinated mice at 4 wpi, we found no difference in the absolute numbers of antigen-specific

CD4+ T cells (Fig 1F and 1G). To assess the durability of the memory response, we focused on

the ESAT6 response since Ag85b is downregulated by Mtb by 3 wpi [18]. Although the propor-

tion of ESAT6-specific CD4+ T cells in the lungs of ESAT6 vaccinated mice was initially

greater (Fig 1D and 1E), there was no difference in the number or proportion of ESAT6-speci-

fic CD4+ T cells in the lungs of vaccinated vs. unvaccinated mice 12 wpi (Fig 1G and 1H).

These data show an initial but transient response of memory CD4+ T cells during infection,

similar to the response of memory CD8+ T cells [23,24].
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The primary and secondary Ag85b-specific CD4+ T cell responses use

similar TCRs

An explanation for the difference between the kinetics of the primary and the secondary CD4+

T cell responses is that the TCRs elicited by vaccination differ from those elicited by infection

[23,25]. Primary ESAT64-17 and Ag85b240-254-specific CD4+ T cell responses were detected in

the lung as early as 2 wpi (Fig 2A). By 4 wpi, 3–6% of CD4+ T cells in Mtb-infected mice were

ESAT6-specific and this response continued to be dominant during chronic infection (12

wpi). In contrast, the Ag85b-specific response peaked 4 wpi and subsequently declined. The

TCRβ clonality of ESAT6-specific CD4+ T cells was very high, similar to TB10.4-specific CD8+

T cells (Fig 2B). In contrast, the clonality of Ag85b-specific CD4+ T cells was only slightly

greater than splenic T cells from uninfected mice. Among Ag85b-specific CD4+ T cells, the

most abundant clonotype from each subject had a mean of 14%. In contrast, the dominant clo-

notypes for ESAT6-specific CD4+ T cells varied between 14–81% (Fig 2C, S1 Data). To deter-

mine the molecular basis for the differences in clonality, we analyzed the structure of the

TCRβ repertoires.

The Ag85b-specific CD4+ T cells had a skewed CDR3β length distribution with a mode of

12 aa and preferential use of TRBV16 (TCR Vβ11) compared to splenic T cells from uninfected

mice (S2A Data). These TCRs accounted for 28% of the productive TCRβ rearrangements

from Ag85b-specific CD4+ T cells. We detected 82 unique rearrangements encoding 28 differ-

ent CDR3βs, indicating convergent selection, which were enriched in the amino acids “LEG”

(Fig 2D). Six CDR3βs were expanded in two or more mice, and two CDR3βs (“CASSLEGDE-

QYF” and “CASSLEGDTQYF”) were detected in all eight mice. Thus, the Ag85b-specific

CD4+ T cell response was characterized by a ‘public’ TCRβ response, as the same TCR was

shared between multiple individuals and selected based on structural features of the CDR3β
sequence. In contrast, there was no preferential use of TCRVβ genes among the ESAT6-speci-

fic CD4+ T cell repertoire, indicating that the response to ESAT6 is dominated by clonal

expansions of private TCRs (S2B Data).

We next analyzed the TCR repertoire of CD4+ T cells elicited by Ag85b240-254 vaccination.

Vaccine-elicited Ag85b-specific CD4+ T cells were similar to those from infected mice, with a

skewed TCRβ repertoire: 46% used TRBV16 with a CDR3β length of 12. (Fig 2E). The mice

were rested for 12 weeks after vaccination, challenged with Mtb and analyzed 3 wpi. The

TCRβ repertoire of the secondary response to Ag85b was similar to vaccine-elicited CD4+ T

cells: 45% used TRBV16 with a CDR3β length of 12. Both the post-vaccination and post-chal-

lenge samples were enriched for the “LEG” motif (Fig 2E). These data show that the TCRβ rep-

ertoire of vaccine-elicited and Mtb-recalled Ag85b-specific CD4+ T cells was similar to naïve T

cells that undergo expansion after primary infection.

Fig 1. The augmented antigen-specific CD4+ T cell response in vaccinated mice is not durable after Mtb challenge. (a)

ESAT64-17 and Ag85b240-254 tetramer+ T cell responses in the blood 12 weeks after ESAT64-17 or Ag85b240-254 s.c. peptide

vaccination. (b) Representative ESAT64-17 tetramer responses in the lung 12 weeks after ESAT6 vaccination, and (c) CD62L (left),

CXCR3 (right), and IL-7Rα expression by these tetramer+CD4+ T cells. (d) Representative ESAT64-17 and Ag85b240-254 tetramer

responses in the lung 2 weeks (top) and 4 weeks (bottom) after Mtb infection of ESAT6-vaccinated (left), Ag85b-vaccinated (middle),

or unvaccinated mice (right). (e) Compiled ESAT6- and Ag85b-specific responses at 2 weeks (top) and 4 weeks (bottom) post-

infection (wpi) from vaccinated vs. unvaccinated mice. (f) Frequency of Ag85b-specific (left) and ESAT6-specfic (right) CD4+ T cells

for each vaccine group, and unvaccinated, at 2 and 4 wpi. (g) ESAT6-specific CD4+ T cells for ESAT6-vaccinated vs. unvaccinated

mice at 0, 2, 4, and 12 wpi. (h) ESAT64-17 and Ag85b240-254 tetramer responses in the lungs of ESAT6-vaccinated (left) vs.

unvaccinated (right) mice 12 wpi. In all figures, numbers in quadrants or gated regions of FACS plots represent percent events.

* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, n.s., not significant.

https://doi.org/10.1371/journal.ppat.1006704.g001
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Memory CD4+ T cells require activation in the lung-draining MLN

We next assessed whether the impaired expansion of memory T cells could be explained by

differences between the primary and secondary CD4+ T cell responses in the timing or the

location of their activation (Fig 1). A barrier to addressing this question is that primary and

secondary CD4+ T cell responses cannot be reliably distinguished in intact mice. Therefore, we

compared the primary and secondary responses by generating memory and naïve Ag85b-spe-

cific CD4+ T cells using P25 TCR transgenic (Tg) CD4+ T cells [15,26]. Although the CDR3β
used by the P25 cells was not detected among the Ag85b-specific CD4+ T cells we isolated

from the lungs of Mtb-infected mice, it is encoded by TRBV16 [26] (S3 Data).

Fig 2. Primary and secondary Ag85b-specific CD4+ T cell responses use similar TCRs. (a) ESAT6- and Ag85b-specific CD4+ T cell responses in

infected mice at 2, 4, and 12 wpi. (b) TCR clonality of splenic T cells from normal C57BL/6 mice (n = 3), TB10.4-specific CD8+ T cells (n = 6) (both from [25]),

ESAT6-specfic (n = 10) and Ag85b-specific (n = 8) CD4+ T cells from lungs 4–10 wpi; from blood 1 week after Ag85b240-254 vaccination and in the same mice

3 wpi (n = 4). (c) The top clonotypes from the Ag85b- or ESAT6-specific response from each Mtb-infected mouse. (d) CDR3βmotifs for primary Ag85b-

specific responses derived from TCRβs using TRBV16 with a CDR3β length of 12. (e) CDR3βmotifs for Ag85b-specific CD4+ T cells that use TRBV16 with a

CDR3β length of 12 in blood 10 d after vaccination (top row), or in lung 3 wpi (bottom row).

https://doi.org/10.1371/journal.ppat.1006704.g002
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Flow-sorted memory (CD45.1+ TCR Vβ11+ CD44Hi KLRG1Lo) CD4+ P25 cells from

Ag85b-vaccinated mice, and naïve (CD45.2+ TCR Vβ11+ CD44Lo) CD4+ P25 cells were co-

transferred at a 1:1 ratio into Thy1.1+ mice infected 7 days earlier with Mtb, before T cell prim-

ing normally occurs [13,15,25]. Both memory and naïve P25 cells began proliferating first in

the lung-draining MLN at d11 post-infection (Fig 3A, top), while maintaining their 1:1 input

ratio (Fig 3A, bottom), before proliferation in lung or spleen. As these plots represent

concatenated events from multiple mice, the frequency of eFluor450lo events in the lung repre-

sents a very small fraction of the population, whereas the eFluor450lo events in the MLN repre-

sents a much larger population of robustly dividing C7 T cells. By d12, both memory and

naïve P25 cells maintained a 1:1 ratio in the MLN, and proliferating P25 cells were detected in

the lung (Fig 3B; S4A Data, top row). On d11, CD62L was downregulated by dividing memory

and naïve P25 cells in the MLN at d11, but its levels did not change on the non-dividing P25

cells in the lung (Fig 3C). These data indicate that the memory CD4+ T cells in the lung have

not recognized antigen before their activation in the MLN. By d12, downregulation of CD62L

and upregulation of CD44 were detected on most memory- and naïve-derived P25 cells in the

MLN, as well as the proliferating CD4+ T cells in the lung (Fig 3D). As the downregulation of

CD62L occurred only on dividing cells (S4B Data), we conclude that they were primed in the

MLN prior to trafficking to the lung.

We next addressed whether memory CD4+ T cells specific for ESAT6 also require activa-

tion in the MLN. To answer this question, we used the C7 TCR Tg CD4+ T cells, which contain

a TCR specific for ESAT63-17 [27]. Although the C7 TCR CDR3β sequence was infrequently

detected among the ESAT6-specific CD4+ T cells from Mtb-infected mice (S5 Data), its

CDR3β sequence contained the motif “GGG,” which was common among ESAT6-specific

CD4+ T cells in vivo. Thus, the C7 TCR was representative of ESAT6-specific CD4+ T cells

during infection (S3 and S5 Data). Similar to the Ag85b-specific responses, we found that the

proliferation of memory (Thy1.1+/+) and naïve (Thy1.1/2+) C7 cells in the MLN preceded their

proliferation in the lung on d11 (Fig 3E, top), indicating that memory CD4+ T cells specific for

ESAT6 also require activation first in the MLN. Like P25 cells, memory and naïve C7 cells

maintained their 1:1 input ratio during early after activation (Fig 3E, bottom; S4A Data, bot-

tom row). Interestingly, we observed proliferation for C7 cells in both the MLN and lung at

d11, earlier than we observed for P25, indicating that ESAT6-specific T cells became activated

slightly earlier than Ag85b-specific T cells during infection (Fig 3E). By d12, both memory and

naïve C7 cells proliferated robustly in the MLN (Fig 3F, top), and C7 cells in the lung also

appear to have undergone multiple rounds of cell division (Fig 3F, top), with a skewed ratio

favoring the primary (naïve-derived) C7 cells (Fig 3F, bottom). Downregulation of CD62L and

increased CD44 expression were also found to be similar in both memory and naïve C7 cells at

d11 (Fig 3G) and d12 post-infection (Fig 3H). Again, downregulation of CD62L occurred only

on the dividing cells (S4C Data), which were more numerous in the MLN at d11 (Fig 3E),

compared with the lung. Taken together, we conclude that memory CD4+ T cells, like naïve

cells, require activation in the MLN prior to expansion in the Mtb-infected lung.

Memory CD4+ T cells are less fit than naive CD4+ T cells during TB

We observed that the initial activation of memory and naïve CD4+ T cells in the MLN is simi-

lar (Fig 3). Therefore, we reasoned that any difference in the relative fitness of naïve and mem-

ory CD4+ T cells must manifest itself after their initial activation. Using the same adoptive co-

transfer model in which naïve and memory T cells are compared during infection, we investi-

gated the kinetics of T cell expansion after Mtb challenge. 1x104 flow-sorted memory and

naïve C7 CD4+ T cells were co-transferred at a 1:1 ratio into Mtb-infected mice. Both memory
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and naïve C7 cells initially expanded during priming in the lung-draining MLN 11 days post-

infection (Fig 4A). However, by day 14, the memory-derived C7 Tg CD4+ T cells were out-

numbered by the primary C7 response 20:1 in the MLN and lung (Fig 4A). The memory-

derived response was similarly outnumbered even when the transferred cells were isolated

without direct antibody-labeling or flow-sorting, which ruled out the possibility that our isola-

tion strategy altered the function of the T cells (S6c Data).

To exclude the possibility that the limited capacity of memory CD4+ T cells to expand was

limited to those specific for ESAT6, we used the same strategy with P25 Tg Ag85b-specific

CD4+ T cells. Both memory and naïve P25 cells initially expanded in the MLN 11 days post-

infection (Fig 4B). However, by day 15, the memory-derived P25 CD4+ T cells were outnum-

bered by the primary P25 CD4+ T cells 4:1 in the MLN and lung (Fig 4B). Both memory and

naïve C7 and P25 CD4+ T cells differentiated into effectors T cells, most of which downregu-

lated IL-7Rα, and some of which became terminally-differentiated based on KLRG1 expres-

sion (Fig 4C). No significant differences in the expression of KLRG1 or the inhibitory

receptors PD-1 and Tim-3 were observed at d14 (Fig 4C and 4D) [28]. At d21, greater numbers

of naïve-derived C7 cells expressed KLRG1, and slightly more of the memory-derived cells

expressed PD-1, but not Tim-3 (Fig 4C and 4D). Furthermore, we did not detect differences in

TCR expression at any time point (Fig 4E). Finally, the memory-derived C7 cells were more

frequently located in the “parenchymal” lung compartment than the naive-derived C7 CD4+ T

cells, based on the i.v. injection of labelled anti-CD45. However, fewer of the memory-derived

cells were found to be proliferating (EdU+) (Fig 4F). These data indicate that memory-derived

CD4+ T cells specific for ESAT6 do not expand as well as the primary ESAT6-specific response

in the lungs during TB, despite an early response to Mtb challenge. Taken together, these data

indicate that on a per cell basis, the expansion, but not the differentiation or trafficking, of

memory CD4+ T cells specific for Ag85b and ESAT6 are impaired in the context of Mtb infec-

tion in the lungs.

Memory and naïve CD4+ T cells have a similar activation threshold

We next asked whether the difference in T cell fitness is an intrinsic property or a consequence

of the environment in the Mtb-infected lung. Memory and naïve P25 cells were transferred at

a 1:1 ratio into uninfected mice, followed by vaccination with Ag85b240-254 peptide together

with poly(I:C) and anti-CD40 mAb, which potently stimulates large CD4+ and CD8+ T cell

responses [29,30]. After high-dose antigen challenge, both memory and naïve P25 cells

robustly proliferated and maintained their input 1:1 ratio (Fig 5A). Memory ESAT6-specific

C7 CD4+ T cells also proliferated after ESAT63-17 challenge (Fig 5B), although their expansion

was not quite as efficient as naïve C7 CD4+ T cells.

We recently showed that memory CD8+ T cells specific for TB10.4 have a higher activation

threshold than naïve CD8+ T cells [23], a phenomenon originally described in an ovalbumin

vaccination model [31]. To determine whether higher concentrations of antigen were required

to activate memory vs. naïve CD4+ T cells, we cultured memory and naïve P25 cells with APCs

Fig 3. Memory CD4+ T cells are first activated in the MLN. (a,b) eFluor450 dilution (top), and the relative proportion (bottom) of

memory-derived (red, CD45.1+) and naïve-derived (blue, CD45.2+) P25 Tg Ag85b-specific CD4+ T cells isolated from the lungs, LN,

and spleen on (a) d11, and (b) d12, after aerosol Mtb challenge of mice that received a 1:1 mix of memory and naive P25 cells at d7. (c,

d) CD62L and CD44 expression by memory-derived (top) or naive-derived (bottom) P25 cells, isolated from lung (1st column), MLN (2nd

column), or spleen (3rd column) on (c) d11, and (d) d12. (e, f) eFluor450 dilution (top), and the proportion (bottom) of memory-derived

(red, Thy1.1+/+) and naive-derived (blue, Thy1.1+/1.2+) C7 Tg ESAT6-specific CD4+ T cells isolated from the lungs, MLN, or spleen on

(e) d11, or (f) d12, after Mtb challenge of mice that received a 1:1 mix of memory and naive C7 cells at d7. (g, h) CD62L and CD44

expression by memory-derived (top) or naive-derived (bottom) C7 cells in these mice, isolated from lung (1st column), MLN (2nd

column), and spleen (3rd column) at (g) d11, or (h) d12. Data are concatenated plots from 4 mice/group.

https://doi.org/10.1371/journal.ppat.1006704.g003
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loaded with different amounts of Ag85b240-254 peptide and measured their proliferation 72–90

hours later. Similar amounts of Ag85b240-254 peptide were required to induce memory and

naïve P25 CD4+ T cell proliferation (Fig 5C). Next, we assessed whether memory and naïve C7

Tg ESAT6-specific CD4+ T cells have a similar activation threshold. The proliferation of a 1:1

mix of memory and naïve C7 cells was measured after stimulation with ESAT63-17 peptide. In

contrast, slightly more peptide was required to activate (CD25 expression) or induce prolifera-

tion of memory C7 CD4+ T cells compared to naïve C7 CD4+ T cells (Fig 5D and 5E). Interest-

ingly, these results correlate with the behavior of the T cells in vivo (compare Fig 4A and 4B

and Fig 5A and 5B). By using TCR Tg CD4+ T cells specific for two different Mtb antigens, we

show that differences in activation threshold may modulate the expansion of memory CD4+ T

cells in the lungs during Mtb infection, whereas memory CD4+ T cells are able to proliferate

well after non-infectious challenge in vivo.

Mtb-infected DCs, but not macrophages, stimulate memory CD4+ T cell

proliferation

An important principle of immunology is that naïve T cells are primed in the draining MLN

by antigen-laden DCs [32]. As memory CD4+ T cells were first activated in the MLN and

underwent robust proliferation (Fig 3A and 3E), but did not continue to expand in the lung

(Fig 4A and 4B), we considered whether DCs and macrophages differ in their ability to stimu-

late memory and naive CD4+ T cell proliferation. Four days after culture with ESAT63-17 pep-

tide-loaded bone marrow-derived dendritic cells (BMDCs), memory C7 cells proliferated

robustly (>90%), as did naïve C7 (40%) (Fig 6A, 1st row), leading to their dominance (Fig 6A).

When the same T cells were cultured with Mtb-infected BMDCs, memory C7 CD4+ T cells

also divided more (>60%) compared to naïve C7 cells (20–25%), with a skewed ratio favoring

the memory T cells (Fig 6A, 2nd row). Peptide-coated bone marrow-derived macrophages

(BMDMs) similarly induced proliferation in both memory and naïve C7 cells (>80% and 20%,

respectively) (Fig 6A, 3rd row). Importantly, neither memory nor naïve C7 cells proliferated

when they were co-cultured with Mtb-infected BMDMs (Fig 6A, 4th row). Although not sur-

prising, these data indicate that Mtb-infected DCs stimulated better proliferation of CD4+ T

cells than macrophages, and elicited more memory CD4+ T cell proliferation.

In addition to BMDMs, we tested thioglycolate-elicited peritoneal macrophages, which are

more inflammatory, similar to macrophages that are recruited to the lung during TB. Five

days after co-culture of memory and naïve ESAT6-specific C7 Tg CD4+ T cells with peptide-

loaded inflammatory macrophages, only a small population of memory C7 cells proliferated

(~15%), whereas naïve C7 cells proliferated robustly (>80%) (Fig 6B, left vs. middle), but not

when co-cultured with MHC-mismatched macrophages (H-2k). (Fig 6B, right). Next, we co-

cultured memory and naïve ESAT6-specific C7 Tg CD4+ T cells with Mtb-infected inflamma-

tory macrophages. After five days, >75% of naïve C7 cells were proliferating (Fig 6C, middle),

whereas few, if any, memory C7 cells had proliferated (Fig 6C, left). Neither naïve (Fig 6C,

right) nor memory C7 cells proliferated when cultured with MHC-mismatched Mtb-infected

Fig 4. Memory CD4+ T cells are less fit than naive CD4+ T cells in TB. (a) A 1:1 mix of memory and naive C7 Tg ESAT6-specific CD4+ T

cells were transferred into C57BL/6 mice on d7 post-infection. The ratios (left) and numbers (right) of memory-derived (blue) and naive-

derived (white) C7 cells in the LN and lung were compared at the time points indicated. (b) A 1:1 mix of memory and naive P25 Tg Ag85b-

specific CD4+ T cells were transferred into C57BL/6 mice on d7. The ratios (left) and cell numbers (right) of memory-derived (red) and

naive-derived (white) P25 cells in the MLN and lung were compared. Representative plots of (c) KLRG1 and IL-7Rα expression. and (d)

Tim-3 and PD-1 expression by the memory-derived (1st column) and naive-derived (2nd column) C7 cells (shown in ‘a’) in the lungs at d14

(top) and d21 (bottom) after Mtb challenge. (e) TCR Vβ10 expression by memory-derived (blue) vs. naive-derived (white) C7 cells from the

lungs at the indicated time points after Mtb challenge. (f) Representative plots of EdU uptake and i.v. anti-CD45 binding by memory- (left) or

naive-derived (right) C7 cells in the lung at d21 post-infection. Groups contained 4 mice each. MFI, mean fluorescence intensity.

https://doi.org/10.1371/journal.ppat.1006704.g004
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Fig 5. A similar antigen threshold is required to activate memory and naive CD4+ T cells. (a) Ratios of memory (red, CD45.1+) and naive (white,

CD45.2+) P25 Tg CD4+ T cells 1 d after 1:1 co-transfer into congenically-marked mice (input ratio), or 3 d after challenge with Ag85b240-254/poly(I:C)/

αCD40; representative d3 plot showing ratio (right). (b) Ratios of memory (blue, Thy1.1+/+) and naive (white, Thy1.1+/1.2+) C7 Tg CD4+ T cells 1 d after 1:1

co-transfer into congenically-marked mice (input), or 3 d after challenge with ESAT63-17/poly(I:C)/αCD40; representative d3 plot showing eFluor450

dilution (right). Groups contained 4 mice each. Dose-response curves of proliferating naive or memory (c) P25, or (d) C7 cells, 3–4 d after culture with

peptide-coated splenocytes. (e) Representative eFluor450 dilution by memory (red) and naive (blue) C7 cells exposed to different peptide concentrations.

https://doi.org/10.1371/journal.ppat.1006704.g005
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Fig 6. Mtb-infected DC, but not macrophages, stimulate memory CD4+ T cell proliferation. (a) eFluor450 dilution by memory (Thy1.1+/+, 1st column) or

naive (Thy1.1+/1.2+, 2nd column) C7 cells, and their relative proportion (3rd column) 4 d after co-culture with ESAT63-17 peptide-coated BMDCs (1st row), Mtb-

infected BMDCs (2nd row), peptide-coated BMDMs (3rd row), or Mtb-infected BMDMs (4th row). Inset (1st row, 3rd column) indicates input proportions of

memory/naive C7 cells. eFluor450 dilution by memory (1st column) and naive (2nd, 3rd columns) C7 cells 5 d after co-culture with (b) peptide-loaded or (c) Mtb-

infected, MHC-matched (C57BL10/J) thioglycolate-elicited peritoneal macrophages (TG-PMs) (1st, 2nd columns), or MHC-mismatched (B10.BR) TG-PMs (3rd

columns). eFluor450 dilution by in vitro memory C7 cells 5d after culture with Mtb-infected (d) TG-PMs, or (e) BMDCs. (f) Representative CD69 and

eFluor450 expression of in vitro memory (top) and naive (bottom) C7 cells 5 d after culture with Mtb-infected TG-PMs. (g) CD69 expression and eFluor450

dilution by vitro memory C7 cells prior to culture with TG-PMs. (h, i) Mtb-infected TG-PMs were cultured for 5 d alone or with (h) in vitro memory or naive C7

cells, or with (i) in vitro memory or naive P25 cells. The colony-forming units (CFU) were determined on the day of infection (d0) or on d5. As an additional

control, in vitro memory or naive P25 cells were also cultured with MHC-mismatched (i.e., B10.BR TG-PMs).

https://doi.org/10.1371/journal.ppat.1006704.g006
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inflammatory macrophages. Therefore, using inflammatory macrophages, we find that mem-

ory CD4+ T cells proliferate less efficiently than naïve CD4+ T cells.

We next sought to determine whether T cell proliferation and control of bacterial growth

were linked. Since we were unable to obtain sufficient numbers of pure memory T cells from

vaccinated mice, we generated in vitro memory C7 CD4+ T cells by stimulating naïve C7 cells

once with ESAT63-17-coated splenocytes in the presence of IL-2, IL-12, and anti-IL-4, as

described [27,33,34]. After stimulation, these T cells were maintained in media supplemented

with IL-2 and IL-7, and rested for 4 weeks. To validate these in vitro memory C7 CD4+ T cells,

we cultured them with Mtb-infected inflammatory macrophages. As observed for vaccine-elic-

ited memory C7 CD4+ T cells (Fig 6C), only 10% of the in vitro memory C7 CD4+ T cells pro-

liferated (Fig 6D). Similarly, both in vitro memory and naïve C7 cells had proliferated 4d after

co-culture with Mtb-infected BMDCs (Fig 6E). Despite their poor proliferation during culture

with Mtb-infected macrophages, both memory and naïve CD4+ T cells specifically upregulated

CD69, indicating activation (Fig 6F and 6G). Despite differences in proliferation, both naïve

and memory C7 cells controlled Mtb growth in infected macrophages (Fig 6H). Similar experi-

ments were done using naïve and in vitro-generated memory P25 Tg CD4+ T cells, which also

controlled Mtb growth in MHC-matched, but not mismatched, inflammatory macrophages

(Fig 6I). These data show that memory CD4+ T cells can exert potent effector function on

Mtb-infected cells despite impaired proliferation.

Memory CD4+ T cells protect early but not late after Mtb challenge

To determine how memory T cell expansion affected the control of Mtb growth, we quantified

the CD4+ T cell numbers and bacterial CFUs in the lungs of ESAT6 and Ag85b vaccinated

mice after Mtb challenge. Four weeks after infection, a time point when the secondary

responses in vaccinated mice were robust (Fig 1D), both ESAT6- and Ag85b-vaccinated mice

had>0.5 log10 lower CFUs in the lung than unvaccinated mice (Fig 7A). However, by 12 wpi,

when the frequency of ESAT6-specific CD4+ T cells was equivalent between ESAT6-vaccinated

and unvaccinated mice (Fig 1G and 1H), there was no significant difference in bacterial load

(Fig 7B), indicating that the protection conferred by vaccine-elicited memory CD4+ T cells is

short-lived.

We next asked whether ESAT6 and Ag85b vaccination elicited memory CD4+ T cells with

the potential to differentiate into secondary effector T cells that express a phenotype associated

with protection against Mtb infection [35–38]. At 4 wpi, polyclonal ESAT6 and Ag85b-specific

CD4+ T cell populations in vaccinated and unvaccinated mice had similar expression of CD69

(Fig 7C). Compared with the primary antigen-specific CD4+ T cell responses in unvaccinated

mice, the secondary CD4+ T cell responses in ESAT6- and Ag85b-vaccinated mice contained

fewer KLRG1Hi and more PD1Hi antigen-specific cells, were less likely to secrete IFNγ, and

preferentially localized to the lung parenchymal compartment (i.v. CD45-) (Fig 7D–7G).

While the primary CD4+ T cell responses were evaluated in both unvaccinated mice, as well as

those vaccinated against a different antigen, for simplicity only the latter are displayed in the

figure. Compared with unvaccinated mice, the decreased frequency of IFNγ-secreting

ESAT6-specific CD4+ T cells at 4wpi in mice vaccinated with ESAT6 was ~50% greater among

those that were “parenchymal” (i.v. CD45-) (20 ± 2.2% vs. 31 ± 5.4%; mean ± SEM), indicating

that lower frequencies of IFNγ-secreting and i.v. CD45+ T cells were independent phenotypes

of memory-derived T cell subsets (Fig 7H). To determine whether this phenotypic difference

between vaccinated and unvaccinated mice persisted, we evaluated ESAT6-specific CD4+ T

cells at 12 wpi, when no difference in bacterial load was observed between vaccinated vs.

unvaccinated mice (Fig 7B). Despite similar CD69 expression, we found that differences in
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KLRG1 and PD-1 expression in antigen-specific CD4+ T cells did not significantly differ

between vaccinated and unvaccinated mice (S7A–S7C Data). Interestingly, we detected overall

fewer IFNγ-secreting ESAT6-specific CD4+ T cells in both groups, with vaccinated mice con-

tinuing to have slightly lower proportions of IFNγ-secreting and intravascular (i.v.+) cells than

did unvaccinated mice (S7D and S7E Data).

To determine whether an increased frequency of ESAT6-specific CD4+ T cells was associ-

ated with greater protection in vaccinated mice, we pooled data from all the ESAT6-vaccinated

vs. unvaccinated mice analyzed at 4 wpi (20 individual mice from 4 experiments). The correla-

tion between the frequency of ESAT6-specific CD4+ T cells in the lung and CFU differed in

vaccinated and unvaccinated mice (Fig 7I). In unvaccinated mice, we found that a higher fre-

quency of ESAT6-specific CD4+ T cells was associated with higher bacterial load (Fig 7I). In

vaccinated mice, however, the increased ESAT6-specific CD4+ T cell response was associated

with a decrease in bacterial load (Fig 7I). However, at 12 wpi there was no significant differ-

ence in the CFU / ESAT6-specific response correlation between vaccinated and unvaccinated

mice (S7F Data). We infer that in unvaccinated mice, the increased bacterial numbers, and

therefore increased antigen, drive a greater T cell response, while in vaccinated mice, the

increased numbers of memory-derived CD4+ T cells drive a lower bacterial load at 4 wpi, but

not at 12 wpi when protection has waned in vaccinated mice. Therefore, we conclude that sus-

tainable expansion and increased numbers of memory-derived CD4+ T cells late during infec-

tion would have the potential to prolong bacterial control.

Discussion

In the current study, we use two models of vaccination to understand why memory CD4+ T

cells elicit early, but not late, control of Mtb growth. In our ‘intact’ mouse model we elicit poly-

clonal memory CD4+ T cells specific for two distinct Mtb antigens, ESAT6 and Ag85b. Despite

differences in the magnitude, TCRβ structure, and clonality of the responses to each antigen,

memory CD4+ T cells specific for both ESAT6 and Ag85b reduced bacterial load early during

TB. However, the accumulation of secondary (memory-derived) effector CD4+ T cells in vacci-

nated mice was slower than that of primary (naïve-derived) effector CD4+ T cells to each anti-

gen. This effect was more dramatic for ESAT6, where 4–12 weeks after infection, no difference

in the numbers of antigen-specific T cells in vaccinated vs. unvaccinated mice was detected. In

vaccinated mice, both the relative increase in antigen-specific CD4+ T cells, and the relative

decrease in bacterial load wane by later time points. Alternative explanations for the conver-

gence of bacterial loads in vaccinated and unvaccinated mice late after Mtb challenge include

preferential exhaustion of memory-derived CD4+ T cells, homeostatic regulatory mechanisms

of host T cell numbers, including the effects of IFNγ, NO, and prostaglandin E2 (PGE2), or the

development of bacterial resistance against memory T cell functions [28,35,39]. However, we

did not observe differences in the expression of surface T cell exhaustion markers at 12 wpi.

Furthermore, the concurrent equilibration of antigen-specific T cell numbers between vacci-

nated and unvaccinated mice, and the observation that greater antigen-specific T cell numbers

Fig 7. Memory CD4+ T cells are protective early, but not late, after Mtb challenge. (a, b) Mtb CFU quantified from the lungs of ESAT6- and Ag85b-

vaccinated, or unvaccinated mice, 4 or 12 wpi. Expression of (c) CD69, (d) KLRG1, (e) PD-1, (f) IFNγ (unstimulated) by primary (1o) or secondary (2o)

effector ESAT64-17 and Ag85b240-254 tetramer+CD4+ T cells in the lungs of vaccinated mice 4 wpi. (g) Proportion of tetramer+CD4+ T cells in the lung

intravascular compartment (ie. those that bind CD45 mAb injected i.v. 2 min prior to sacrifice) at 4wpi. (h) Representative plots of IFNγ expression and

i.v. CD45 binding in the lung 4wpi in mice vaccinated with DDA-MPL ESAT63-17 (left) or unvaccinated (right). (i) Paired CFU and ESAT6 tetramer

frequency comparing ESAT6-vaccinated (blue) vs. unvaccinated (white) mice 4 wpi (from 4 experiments, each with n = 5/group). Non-linear regression

with least squares fit was used to fit each group, after an extra sum of squares F-test determined that two different curves best fit the data (p<0.0001). R2

values for vaccinated and unvaccinated groups were 0.118 and 0.319, respectively.

https://doi.org/10.1371/journal.ppat.1006704.g007
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in vaccinated mice is associated with greater protection (Fig 7I), makes the decreased expan-

sion of memory-derived CD4+ T cells a likely cause of transient protection in the intact mouse

model. Similarly, in our ‘transfer’ model, which controls for TCR and cell number differences,

we observe that the primary response is more fit than the secondary response. Convergence of

CD4+ T cell numbers between vaccinated and control mice during Mtb challenge has also

been observed by others [37,40]. These data link the diminished expansion of the memory-

derived CD4+ T cell response to the relative loss of Mtb control in vaccinated mice.

To determine why the rate of expansion differed between memory and naïve-derived CD4+

T cells, we compared the timing of T cell activation and differentiation, and the ability of mem-

ory vs. naive T cells to expand on a per-cell basis during infection. We discovered that both

memory and naïve CD4+ T cells were activated first in the MLN after Mtb challenge, prior to

their expansion in the lungs. Although our results do not exclude the possibility that tissue-res-

ident memory (TRM) cells could localize to the lung and be triggered to proliferate after infec-

tion, neither the s.c. vaccination strategy nor the adoptive transfer of memory and naïve CD4+

T cells were designed to generate or study TRM cells. While we observed a small number of

eFluor450Lo ESAT6-specific CD4+ cells in the lung at the d11 time point, this population (1)

was similar for both naïve- and memory-derived CD4+ T cells, and (2) represented a tiny frac-

tion of the total population, compared with an abundant population of dividing (eFluor450Lo)

ESAT6-specific CD4+ T cells in the MLN at the same time point, indicating that they likely

divided in the MLN and trafficked to the lung (Fig 3E). From these data, we conclude that

both memory and naïve CD4+ T cells require initial activation in the MLN, a time at which

similar proportions of naïve- and memory-derived T cells are dividing.

A comparison of the primary and secondary ESAT6-specific CD4+ T cells in the lungs

showed similar activation, terminal differentiation and expression of T cell inhibitory recep-

tors. However, once recruited to lung, the secondary responses to ESAT6 and Ag85b failed to

expand as rapidly as the primary responses, and became outnumbered. Despite differences in

their proliferation when co-cultured with Mtb-infected macrophages, both naïve and memory

CD4+ T cells suppressed intracellular Mtb replication. The unique ability of Mtb-infected DCs

to induce memory and naïve CD4+ T cell proliferation is consistent with the initial activation

of these T cells in the LN after Mtb infection in vivo. The decreased uptake of EdU by mem-

ory-derived CD4+ T cells indicates that fewer of the cells in this population are proliferating in

the lung at 4 wpi, compared with the primary response. However, we cannot exclude the possi-

bility that memory-derived T cells undergo an increased rate of programmed cell death. In

addition to activation-induced cell death, NO, PGE2, and IFNγ are abundant in the Mtb-

infected lung and been shown to impair proliferation induce cell programmed cell death in T

cells [35,39]. Unlike TB10.4-specific CD8+ T cells, we did not detect a gross difference in the

sensitivity to antigen between memory vs. naïve C7 and P25 cells [23]. However, it is possible

that a decreased sensitivity to antigen of does affect the resultant secondary vs. primary effec-

tors, or other ESAT6- and Ag85b-specific CD4+ T cell clonotypes other than C7 and P25, to a

greater extent.

Although the suboptimal stimulation of memory CD4+ T cells by Mtb-infected macro-

phages was striking, multiple factors affect memory T cell expansion in vivo. Two memory cell

subsets have been defined based on their proliferative capacity, effector function, and location:

central (TCM) and effector memory (TEM) [41]. Some have observed an association between

vaccines that elicit TCM and protection against TB [42]. Others promote the idea that TEM and

TRM cells could respond directly to Mtb infection in the lung without the need for activation in

secondary lymphoid organs [43]. Theoretically, by responding directly to infected cells in the

lung, TRM cells could accelerate the adaptive immune response to Mtb infection in vaccinated

or previously-infected hosts. However, studies that generated memory T cells by prior aerosol
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Mtb infection and antibiotic clearance of Mtb found that the Mtb-specific CD4+ T cell

response was accelerated only by 3–4 days in the lung and lymph nodes [8]. Using the same

approach, we previously found no long-term difference in survival between these "memory

mice" and naïve mice after Mtb challenge [5]. Despite eliciting a mixture of TEM and TCM by

vaccination, we observed that T cell activation occurred first in the MLN with kinetics similar

to the primary response. This does not mean that TEM and TRM cells couldn’t be initially acti-

vated in peripheral tissue. Instead, we predict that cognate interaction of memory T cells with

Mtb-infected alveolar macrophages (AM) in the first days of infection is a rare event, given the

large number of alveoli (~2 million per mouse) and a relatively low number of Mtb-specific

TRM/TEM T cells patrolling the lung. Thus, by concentrating and facilitating the interaction

between Mtb-specific T cells and antigen-laden DCs, the LN may serve a crucial function for

triggering the proliferation of both primary and secondary T cell responses. The cost of this

increased efficiency is a delay in activating memory T cell responses.

Although Mtb elicits a strong T cell response, it is less certain whether the T cells are

responding to infected cells or cells that have acquired bacterial antigen. Mounting evidence

describes that Mtb impairs antigen presentation, which diminishes T cell recognition of

infected cells [18,44–46]. For TB10.4-specific CD8+ T cells, the impaired expansion of memory

T cells is in part due to a greater amount of antigen required to activate memory vs. naïve T

cells, as previously observed in model systems [23,31]. We infer that there is a limited amount

of TB10.4 antigen presented by in the lungs of infected mice. There is evidence for limited

expansion of other antigen-specific memory CD8+ T cells (Rv3616), and a second epitope of

TB10.4 [24]. In the current study, we observed only a small increase in the activation threshold

of ESAT6-specific memory CD4+ T cells, and no difference in those specific for Ag85b. There-

fore, the difference in proliferative potential of naïve and memory CD4+ T cells is likely to be

due to factors other than the activation threshold.

IFNγ is critical to control of Mtb growth [10,15]. However, studies show that less-differenti-

ated effector CD4+ T cells, even though they produce less IFNγ, are effective at mediating pro-

tection in part because they efficiently localize to the lung parenchyma [35,36,38].

Interestingly, the increased proportion of parenchymal Ag-specific CD4+ T cells in vaccinated

mice 4wpi also contain fewer IFNγ-secreting cells, compared with unvaccinated mice, indicat-

ing that that these are independent protective characteristics enriched in memory-derived

CD4+ T cells during TB (Fig 7H). We observed that vaccinated mice have lower Mtb CFUs

and contain numerous antigen-specific CD4+ T cells expressing this protective phenotype.

These data show that vaccination does elicit memory CD4+ T cells that, upon Mtb challenge,

become activated, expand, localize to the lung parenchyma, and mediate protection. However,

we infer that the inability of memory CD4+ T cells to sustainably expand limits their protective

effect late during infection.

The impaired memory T cell expansion in the lungs during TB may diminish the efficacy of

vaccines currently being clinically evaluated. BCG vaccination can elicit ~1 log10 protection in

mice within 30 days after Mtb challenge. However, protection frequently diminishes over time

[47,48]. Determining whether the transient nature of protection correlates with reduced mem-

ory cell fitness would require high quality immunological data over the course of infection.

The H56 vaccine, a subunit vaccine consisting of the ESAT6, Ag85b, and Rv2660c proteins,

leads to long-lasting CFU reduction [49]. An extrapolation from T cell cytokine expression

data suggest the T cell numbers in BCG or H1 vaccinated mice declined during infection, and

correlated with the loss of protection. A follow-up study reports early CFU control in H56 vac-

cinated mice [37]. Interestingly, the initial expansion of antigen-specific T cell numbers in the

lungs of vaccinated mice returned to levels found in control mice by 4 wpi. Although we do

not yet know whether the reduced fitness we observe for memory CD4+ T cells will apply to
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people, a BCG/H56 prime/boost strategy did not lead to persistent T cell immunity in the non-

human primate model of TB, nor was significant protection observed [50].

Few reports have shown vaccine-elicited protection is sustained beyond 4–6 weeks after

Mtb challenge. We believe that the lack of sustained proliferative responses by memory T cells

in the infected lung limits the magnitude and duration of protection following vaccination. A

major limitation to determining which vaccine candidates are likely to prevent TB in humans

is the lack correlates of protection in pre-clinical vaccine studies. While at least two vaccines

(BCG, MVA85A) show early protection in animal models of TB, none show reliable preven-

tion of pulmonary disease in human efficacy trials [1,2]. Our data link the slower expansion of

the memory-derived CD4+ T cell response after Mtb infection with the transient nature Mtb

control in vaccinated mice. We conclude that the advantage conferred by many vaccine strate-

gies fades over time, and protection is not durable. Given the dire need for an effective TB vac-

cine, we propose that a sustained increase in vaccine-elicited T cell numbers and long-lasting

protection, facilitated by a proliferative response to Mtb-infected macrophages, should serve as

benchmarks to determine which TB vaccine candidates should proceed to clinical trial.

Materials and methods:

Ethics Statement

The animal studies were approved by the Institutional Animal Care and Use Committee at the

University of Massachusetts Medical School (Animal Welfare Assurance no. A3306-01), and

adhere to the recommendations from the Guide for the Care and Use of Laboratory Animals

of the National Institutes of Health and the Office of Laboratory Animal Welfare.

Mice

B6 (C57BL/6J; CD45.2+Thy1.2+), CD45.1 (B6.SJL-PtprcaPepcb/BoyJ; CD45.1+Thy1.2+),

Thy1.1 (B6.PL-Thy1a/CyJ; CD45.2+Thy1.1+), B10J (C57BL10/J), B10BR (B10.BR-H2k2

H2-T18a/SqSnJJrep) mice, and male P25 (C57BL/6-Tg(H2-Kb-Tcrα,-Tcrβ)P25Ktk/J) mice for

breeding, were all purchased from The Jackson Laboratories (Bar Harbor, ME). The P25 mice,

expressing a TCR that is specific for Ag85b240-254 were bred on both the CD45.2+ and CD45.1+

congenic B6 backgrounds at the UMass Medical School animal facility. C7 TCR Tg mice,

expressing a TCR specific for ESAT63-17 on the Thy1.1 B6 background were donated by Dr.

Eric Pamer (Memorial Sloan Kettering Cancer Center, NY). C7 mice were bred at UMass

Medical School with Thy1.1 mice or Thy1.2 mice, resulting in C7 mice on both the Thy1.1 and

Thy1.1/1.2 B6 backgrounds. All mice were housed under specific pathogen-free conditions.

Mice were 7 to 12 weeks old at the start of all experiments. Mtb-infected mice were housed in

biosafety level 3 facilities under specific pathogen-free conditions at UMass Medical School.

Vaccination and assessment of immune responses

For DDA-TDM-MPL vaccination, 250μg of either ESAT63-17 or Ag85b240-254 peptides were

mixed with dimethyl dioctadecyl ammonium bromide (DDA) (Sigma). This mixture was

emulsified with the adjuvant trehalose dicorynomycolate (TDM) + monophosphoryl lipid A

(MPL) (Sigma), as described [20,51]. FQDAYNAAGGHNAVF (Ag85b240-254), EQQWNFA-

GIEAAASA (ESAT63-17), and IMYNYPAM (TB10.44−11), peptides were purchased from New

England Peptides (Gardner, MA, USA) and reconstituted in DMSO (10mM). 200μl of this

mixture was injected subcutaneously (s.c.) at the base of the neck of B6 mice. To generate

memory C7 and P25 TCR Tg CD4+ T cells, 2x104 naïve C7 or P25 cells were transferred to

congenic (CD45.1+ or Thy1.1+) B6 mice, which were vaccinated the next day. In some
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experiments, peripheral blood T cell responses were monitored by flow cytometry, and com-

pared with unvaccinated or control-vaccinated (TB10.4) mice. Mice were rested 12 weeks after

a single vaccination to allow for the development of memory. Vaccination with peptide/Poly(I:

C)/anti-CD40 was used to generate memory C7 or P25 TCR Tg T cells for some of the mem-

ory/naïve co-transfer experiments and for in vitro co-culture experiments, as this strategy gen-

erates greater numbers of memory CD4+ T cells [23,30]. Briefly, one day after adoptive

transfer of 2x104 naive C7 or P25 cells, mice were vaccinated intravenously with peptide/Poly

(I:C)/anti-CD40 by tail vein injection and rested 12 weeks to generate memory. High molecu-

lar weight VacciGrade polyinosinic:polycytidylic acid [poly(I:C)] was obtained from Invivo-

Gen (San Diego, CA), reconstituted in sterile PBS and stored at -20˚C. Anti-CD40 mAb (clone

FGK4.5) was purchased from BioXCell (West Lebanon, NH) and stored, undiluted, at -20˚C.

Vaccines were prepared by mixing 100 μmoles of either ESAT63-17 or Ag85b240-254 peptide,

50 μg poly(I:C), and 50 μg anti-CD40 mAb, in a total volume of 200 μL with sterile PBS. A

comparison of memory TCR Tg CD4+ T cells elicited by either vaccination strategy showed

similar results (S6 Data). Co-transfer experiments were repeated with both vaccine strategies

with equivalent results (S6b Data). Naïve C7 or P25+ TCR Tg CD4+ T cells were obtained from

unvaccinated, age-matched TCR Tg mice rested for an equivalent period of time.

Experimental infection and bacterial quantification

Mtb (strain Erdman) infections were performed via the aerosol route as described previously

[13]. Infections were performed using a Glas-Col (Terre Haute, IN) full body inhalation expo-

sure system. Mice received an inoculation dose of 25–75 CFU/mouse, as measured by plating

undiluted lung homogenate within 24 hours of infection. At different times post-infection,

mice were euthanized, organs were aseptically removed, individually homogenized in the Fas-

tPrep24 (MP Biomedicals, Santa Ana, CA, USA), and viable bacteria were enumerated by plat-

ing 10-fold serial dilutions of organ homogenates onto 7H11 agar plates (Hardy Diagnostics,

Santa Maria, CA, USA). Mtb (strain H37Rv) in vitro infections of macrophages and DCs were

performed as described previously [52]. H37Rv was grown and prepared as described [53].

Bacteria were counted in a Petroff-Hausser counter (Hausser Scientific, Horsham, PA, USA)

and added to macrophages or DCs at an intended multiplicity of infection (MOI) of 5–10 for

three hours. Cultures were washed three times to remove extracellular bacteria, and T cells

were added the same day. For CFU measurement, cells were lysed with 1% Triton X-100/PBS

and lysate from quadruplicate conditions on d0 and d5 post-infection, and 5-fold dilutions

were plated on Middlebrook 7H11 agar plates (Hardy Diagnostics).

Tissue and cell preparation

Lungs, MLNs, and spleens were removed after perfusion of the right ventricle with 10mL of

cold RPMI1640 to purge the macrovasculature of the lungs. Lung cell suspensions were pre-

pared by coarse dissociation using the GentleMACS tissue dissociator (Miltenyi Biotec, Ger-

many). Lung tissue was digested for 30 min at 37˚C with 250–300 U/mL Collagenase Type IV

(Sigma) in complete RPMI1640 [10% heat-inactivated FCS (Sigma), 10 mM HEPES buffer, 1

mM sodium pyruvate, 2 mM L-glutamine, 10mM β-mercaptoethanol, 50 mg/ml streptomycin

and 50 U/ml penicillin (all from Invitrogen)] followed by homogenization in the GentleMACS

tissue dissociator and sequential straining through 70 μm and 40 μm nylon cell strainers (Fal-

con). Spleen and LN cell suspensions were prepared using gentle disruption of the organs

through a 70 μm nylon strainer, followed by a 40 μm nylon cell strainer. For some experi-

ments, erythrocytes were lysed in using ACK Lysis buffer (Sigma). For adoptive co-transfer

experiments using naïve and memory TCR Tg CD4+ T cells, CD4+ T cells were enriched prior
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to surface antibody staining using either positive (Mouse CD4 T cell isolation kit, Miltenyi

BIotec), or negative selection (EasySep Mouse CD4 T cell Isolation kit, StemCell Technologies,

Vancouver, BC, Canada).

Flow cytometric analysis

ESAT64-17 and Ag85b240-254 I-Ab tetramers were obtained from the National Institutes of

Health Tetramer Core Facility (Emory University Vaccine Center, Atlanta, GA, USA). Briefly,

samples from Mtb-infected lung homogenates were resuspended in complete RPMI1640

(above), containing a 1:200 dilution of PE, APC, or BV421-conjugated MHC class II tetramers,

and incubated for 1 hour at 37˚C prior to antibody staining. Cell surface staining was per-

formed with antibodies specific for mouse CD3ε (clone 145-2C11), CD4 (clone GK1.5), CD8

(clone 53–6.7), CD19 (clone 6D5), CD44 (clone IM7), CD45 (clone I3/2.3), CD62L (clone

MEL-14), CD127 (clone A7R34), KLRG1 (clone 2F1/KLRG1), CXCR3 (clone CXCR3-173),

CX3CR1 (clone SA011F11), PD-1 (clone 29F.1A12), 2B4 (clone m2B4 (B6)458.1), Lag-3

(clone C9B7W), CD69 (clone H1.2F3), CD25 (clone PC61), CD45.1 (clone A20), CD45.2

(clone 104), CD90.1 (clone OX-7), CD90.2 (clone 53–2.1), TCR Vβ11 (clone KT11) (all from

Biolegend, San Diego, CA, USA), and TCR Vβ10(b) (clone B21.5) from BD Biosciences. Anti-

Tim-3 (clone 5D12) was obtained from Dr. Vijay Kuchroo at Brigham and Women’s Hospital.

IFNγ secretion was detected from T cells in the lung homogenate without restimulation using

the IFNγ Cytokine Secretion Assay (Miltenyi Biotec), according to protocol. “Intravascular”

vs. “parenchymal” antigen-specific CD4+ T cells in the lung were assayed in both the poly-

clonal and TCR Tg models, by injecting 2.5μg of fluorescently-labeled anti-CD45 (Biolegend)

i.v. 2 min prior to sacrifice by CO2 asphyxiation, prior to perfusion with cold RPMI1640 by

injection of the right ventricle, followed by tissue homgenization. A fixable, amine-reactive via-

bility dye, Zombie Aqua (Biolegend), was used to exclude necrotic cells. All samples from

Mtb-infected mice were fixed with 1% paraformaldehyde before analysis. Data were acquired

using a MACSQuant flow cytometer (Miltenyi Biotec). Data were analyzed using FlowJo Soft-

ware V9 (Tree Star, OR). For both analysis and cell sorting, single-lymphocyte events were

gated by forward scatter area and height versus side scatter area for size and granularity.

Adoptive T cell transfer of CD4+ T cells

Single cell suspensions of homogenized spleens and lymph nodes (inguinal, cervical, axillary,

mediastinal, and mesenteric) were prepared from vaccinated mice containing memory C7 or

P25 TCR Tg T cells (12 weeks after vaccination), or age-matched, unvaccinated C7 or P25

TCR Tg mice. CD4+ T cells were purified by negative selection using the EasySep Mouse CD4

T cell isolation kit (StemCell Technologies, Vancouver, BC, Canada), or the MojoSort Mouse

CD4 T cell isolation kit (Biolegend), followed by magnetic separation. After enrichment, cells

were stained with eFluor 450 proliferation dye (eBiosciences, USA), antibody-labeled and

sorted by flow cytometry to achieve uniform populations of naïve or memory CD4+ T cells.

For both C7 and P25 naïve/memory co-transfer experiments, 1x104 cells of each population

were mixed at a 1:1 ratio (confirmed by flow cytometry) and were transferred i.v. into con-

genic recipients (CD90.1 or CD45.1), which had been infected 6–7 d earlier with Mtb (strain

Erdman). For priming experiments (Fig 3), 1–2×104 memory and naïve C7 or P25 cells were

co-transferred i.v. into mice infected with Mtb 6–7 d earlier. C7 TCR Tg CD4+ T cells used for

the memory group were generated both on the Thy1.1, and Thy1.1/1.2 backgrounds to ensure

that the congenic backgrounds of the mice did not influence the observed results. Similarly,

memory P25 TCR Tg CD4+ T cells were generated on both the CD45.1+, and CD45.2+ back-

grounds and were used in alternate co-transfer experiments. We additionally performed the
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co-transfer experiments without antibody labeling or flow-sorting, using flow cytometry anal-

ysis of a small sample of each population to mix naïve and memory Tg CD4+ T cells at a 1:1

ratio for injection into Mtb-challenged hosts, to ensure that differential antibody labeling did

not preferentially affect either group, and observed similar results (S6C Data).

Cell sorting

Fluorescent antibody-stained cells were flow-sorted using a FACS Aria II (Becton Dickinson)

flow cytometer. For most adoptive co-transfer experiments using C7 TCR Tg CD4+ T cells,

CD4+ CD8- Vβ10+ Thy1.1+ KLRG1Lo CD44hi memory (from vaccinated mice containing C7

cells) or CD44Lo naïve C7 cells (from age-matched, unvaccinated C7 mice) were sorted from

pre-enriched CD4+ T cells. For co-transfer experiments using P25 TCR Tg CD4+ T cells,

CD4+ CD8- Vβ11+ CD45.1+ KLRG1Lo CD44hi memory, or CD45.2+ CD44Lo naïve P25 cells

were sorted. We additionally performed co-transfer experiments without antibody labeling or

flow-sorting. For TCRβ repertoire analysis, we used duel-tetramer staining to identify and sort

CD4+CD8-tetramer+CD44Hi ESAT6- and Ag85b-specific CD4+ T cells, pre-enriched for CD4+

T cells from the lungs of B6 mice infected with Mtb Erdman 4–9 weeks earlier, as described

[25]. For memory and secondary response experiments, we similarly sorted CD4+CD8-tetra-

mer+CD44Hi Ag85b-specific CD4+ T cells one week after vaccination with Ag85b240-254/poly(I:

C)/anti-CD40 from 300–400 ul of peripheral blood. 12 weeks after vaccination, the same mice

were challenged with Mtb, and three weeks later, CD4+CD8-tetramer+CD44Hi T cells were

sorted from the lungs, as described [23].

Next generation sequencing

Genomic DNA was purified from sorted ESAT63-17 and Ag85b240-254 tetramer+CD44Hi CD4+

T cell populations using the QIAamp DNA Mini kit (Qiagen, Germany). High-throughput

TCRβ sequencing was performed by Adaptive Biotechnologies Corp. (Seattle, WA, USA)

(http://www.immunoseq.com) and analyzed using the ImmunoSEQ Analyzer toolset [54].

Clonality was calculated as entropy of the frequency distribution 1-(entropy/log2[# unique

TCRs]) [55,56]. Transforming entropy in this manner results in a clonality score on a scale

between 0–1. A score of “0” indicates that every TCR is unique; a score of “1” means that every

TCR is the same. WebLogo 3 was used to identify CDR3β motifs (http://weblogo.

threeplusone.com).

Macrophage and DC in vitro culture

Bone marrow-derived dendritic cells (BMDCs) were prepared by culturing bone marrow cells

(harvested from C57BL/6 mice) with complete RPMI1640, supplemented with 10 ng/mL gran-

ulocyte-macrophage colony stimulating factor (GM-CSF) (PeproTech, Rocky Hill, NJ, USA)

for 8 days, as described [39]. Bone marrow-derived macrophages (BMDMs) were prepared by

culturing bone marrow cells (from C57BL/6 mice) with complete RPMI1640, supplemented

with 10% L929-conditioned media for 8 days, as described [57]. One day after plating, BMDCs

and BMDMs were infected with Mtb, or incubated with 1 μM ESAT63-17 peptide, followed by

co-culture with T cells for 4 days. Thioglycolate-elicited peritoneal macrophages were prepared

as described [52]. Briefly, the peritoneal cavity of B10/J or B10BR mice was lavaged 3–5 days

after i.p. injection of a 3% thioglycolate solution. Anti-CD11b-conjugated microbeads (Milte-

nyi Biotec) were used to select CD11b+ macrophages from the lavage fluid. One day after plat-

ing, macrophages were infected with Mtb, and/or incubated with 1 μM ESAT63-17 or

Ag85b240-254 peptides, followed by co-culture with T cells for 3–5 days.
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Generation of in vitro memory CD4+ T cells

TCR Tg CD4+ T cells were isolated via negative selection (MojoSort CD4+ T cell isolation kit,

Biolegend, San Diego, CA, USA). These TCR Tg CD4+ T cells (either C7 or P25) were cultured

with irradiated B6 splenocytes (3200 Rads) (106 T cells, 2x106 splenocytes per well) with 5μM

ESAT63-17 or Ag85b240-254 peptides, IL-12 (10 ng/mL), IL-2 (100 U/mL, PeproTech), and anti-

IL-4 mAb (1:500, Biolegend). Cells were split 2 days later, and media was supplemented with

IL-2 and IL-7 (10U/mL and 5U/mL, PeproTech). Cells were split every 2–3 days for the first 10

days, followed by exchanges of half the volume of media with 2X media containing IL-2 and

IL-7 twice weekly. After four weeks, in vitro memory T cells were used in co-culture experi-

ments together with naïve C7 or P25 cells.

Measurement of cell proliferation

The activation threshold of naïve vs. memory C7 or P25 TCR Tg CD4+ T cells was measured

in vitro, as described [23]. Briefly, after memory and naïve (C7 or P25) TCR Tg CD4+ T

cells were isolated from the spleens and lymph nodes, they were stained with 10 μM cell pro-

liferation dye eFluor 450 (eBiosciences), and flow-sorted (as described above) to isolate

pure populations of naïve or memory CD4+ T cells. Different concentrations of ESAT63-17

or Ag85b240-254 peptide (serially diluted) were added to splenocytes from congenic CD45.1

or Thy1.1 B6 mice that served as APCs. The naïve and memory TCR Tg T cells were co-cul-

tured with the APC at a 5:1:1 ratio (50,000 APCs, 5,000 memory and 5,000 naïve CD4+ T

cells) in complete RPMI without cytokines. T cells and peptide-loaded splenocytes were co-

incubated for 72-96h at 37˚C. C7 and P25 cell proliferation was also measured after co-cul-

ture with peptide-laden splenocytes, or with macrophages or DCs infected with Mtb in vitro
± peptide. Proliferation was based on eFluor 450 dilution which was assessed by flow cytom-

etry 4 days after co-culture with peptide-loaded APCs, or 4–5 days after co-culture with

Mtb-infected macrophages or DCs ± peptide. To measure T cell proliferation in vivo, puri-

fied C7 or P25 TCR Tg CD4+ T cells were labeled with 10 μM of the cell proliferation dye

eFluor 450. Analysis of C7 or P25 TCR Tg CD4+ T cell proliferation was measured after

adoptive transfer into Mtb-infected mice, or into mice challenged with peptide/poly(I:C)/

anti-CD40. Proliferation, determined by dye dilution, was measured by flow cytometry in
vivo 11–12 days after aerosol Mtb infection. Cell proliferation at later time points (d21-22)

in vivo was assayed by the incorporation of the synthetic thymidine analogue 5-Ethynyl-2’-

deoxyuridine (EdU, Life Technologies). Briefly, 1 mg EdU diluted in 100 μL PBS was

injected i.p. into each mouse 12h prior to analysis. After antibody staining, single cells sus-

pensions were assayed for EdU incorporation using the Click-iT EdU Alexa Fluor 647 Flow

Cytometry Assay kit (Life Technologies).

Statistical analysis

All data are representative of 2–4 experiments, with 5 mice per group, unless stated otherwise.

Data are represented as mean ± SEM. A two-tailed student’s t-test was used for normally-dis-

tributed data to compare two groups. When two groups were compared over multiple time

points, two-tailed student’s t-tests were used for repeated measures. One-way or Two-way

ANOVA were used to compare more than two groups, followed by Tukey post-tests. A p

value < 0.05 was considered to be statistically significant. Statistical analyses were performed

using Prism V7 (GraphPad Software, San Diego, CA).
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Supporting information

S1 Data. Dominant clonotypes in the Ag8b-specific and ESAT6-specific CD4 T cell

response to Mtb. The most abundant TCR from each sample of tetramer+ Ag8b-specific CD4

T cells (n = 8) and ESAT6-specific CD4 T cells (n = 10) is listed here and was used to generate

Fig 2.

(PDF)

S2 Data. TCR analysis of the Ag8b-specific and ESAT6-specific CD4 T cell response to

Mtb. (a) The CDR3β amino sequence, the CDR3β length (left), TRBV (middle) and TRBJ

(right) gene segment usage is shown for splenocytes from uninfected mice (top, n = 3), tetra-

mer+Ag8b-specific CD4 T cells (middle, n = 8) and tetramer+ESAT6-specific CD4 T cells (bot-

tom, n = 10). (b) The CDR3β amino acid sequence motifs “LEG” was identified among Ag8b-

specific CD4 T cells that used Vβ16 with a CDR3β length of 36. The motif was derived from 82

unique DNA rearrangements accounting for 28 different TCRs (i.e., aa sequence). On average,

these clonotypes accounted for 28% of the Ag85b-specific response, and were frequently

expanded. (c) The CDR3β amino acid sequence motif “GG/TGG/GGG”, were identified

among ESAT6-specific CD4 T cells using Vβ. These motifs are described in the text and in Fig

2. (d) Analysis of the CD4 T cell response to Ag85b, both after vaccination (e.g., in the blood),

and after challenge (e.g., in the lung), is shown for TCRs using Vβ16 or non-Vβ16. The “LEG”

motif was detected only among Vβ TCRs, both after vaccination and after Mtb challenge.

(TIF)

S3 Data. Identification of the P25 and C7 TCRs in the polyclonal response. A. Description

of transgenic TCRs. The transgenic TCRs used in this study. The P25-related and C7-related

TCRs were closely related sequences detected in Mtb-infected mice, which had similar gene

segment usage as P25 and C7, and closely related CDR3β sequences. P25 does not contain the

‘LEG’ motif that we frequently detected in Ag85b-specific CD4 T cells. C7 contains the ‘GGG’

motif that we observed in ESAT6-specific CD4 T cells. B. Detection of P25 TCR and related

sequence in polyclonal response to Ag85b. The frequency of the P25 and P25-related CDR3β
sequence in the tetramer+ Ag8b-specific CD4 T cells. Also listed are the frequency of TRBV16,

TRBJ2-3, and TRBJ2-7, which are frequently used by Ag85b-specific CD4 T cells. Note that the

P25 CDR3β amino acid sequence was not detected in any of our samples. C. Detection of C7

TCR and related sequence in polyclonal response to ESAT6. The frequency of the C7 and

C7-related CDR3β amino acid sequence and number of unique clonotypes (based on DNA

sequence) among the tetramer+ ESAT6-specific CD4 T cells sequenced.

(PDF)

S4 Data. Early detection of the naïve and memory T cell responses in the lung. Gating strat-

egy for whole MLN homogenate (a, top left) for P25 transfer experiments (a, top row), or C7

transfer experiments (a, bottom row). Representative plots of proliferation, CD62L and CD44

expression of P25 cells in the lung 12 days post-infection (b). Representative plots for C7 cells

in the lung 11 days post-infection (c). For each, eFluor450 proliferation dye expression (left),

and CD62L and CD44 expression are shown for dividing cells (middle) and non-dividing cells

(right), in both memory-derived (top rows) and naïve-derived (bottom rows) CD4+ T cells.

Data are representative of 2 independent experiments, each with 4 mice per group.

(TIF)

S5 Data. Sequence of the C7 and P25 transgenic TCRs. 1a) C7 TCRα sequence. 1b) C7

TCRβ sequence. 2a) P25 TCRα sequence. 2b) P25 TCRβ sequence.

(PDF)
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S6 Data. Memory TCR Tg CD4+ T cells specific for ESAT6 (C7) generated by ESAT6 +

DDA-TDM-MPL or Poly(I:C)/aCD40 vaccination exhibit similar impaired expansion in

the lung after aerosol Mtb challenge. (a) Numbers of memory C7 cells in the lungs of sepa-

rate groups of mice after adoptive transfer of C7 cells, vaccination with either DDA-TDM-

MPL ESAT6 or Poly(I:C)/aCD40/ESAT6, and aerosol Mtb challenge 4 weeks earlier. (b) Pro-

portions of memory vs. naive C7 cells at d15 post-infection, generated by either vaccine 12

weeks prior and co-transferred with naive C7 cells into the same mice. (c) Proportions of

memory vs. naive C7 cells at 1 or 15 days after transfer into mice that were challenged with

aerosol Mtb on d0. 1x104 memory and naive C7 cells were co-transferred at a 1:1 ratio without

the use of antibodies or flow sorting. n.s. not significant, ���� <0.0001.

(PDF)

S7 Data. Protective effects of CD4 vaccination are lost late after aerosol Mtb challenge.

Expression of (a) CD69; (b) KLRG1; (c) PD-1; (d) IFNγ by ESAT64-17 tetramer+CD4+ T cells

in the lungs vaccinated (blue) or unvaccinated (white) mice 12 wpi. (e) Proportion of tetra-

mer+CD4+ T cells in the lung intravascular (i.v. CD45+) compartment of ESAT6 vaccinated

(blue) or unvaccinated (white) mice 12 wpi. (f) Paired CFU and ESAT6 tetramer frequency

comparing ESAT6-vaccinated (blue) vs. unvaccinated (white) mice 12 wpi (from 3 experi-

ments, each with n = 4-5/group). Non-linear regression with least squares fit was used to fit

each group, after an extra sum of squares F-test determined that two different curves best fit

the data (p = 0.0161). Runs test determined that the slopes were not significantly different

from 0. R2 values for vaccinated and unvaccinated groups were 0.013 and 0.001, respectively.

(TIF)

Acknowledgments

The authors thank Dr. Eric Pamer (Memorial Sloan Kettering Cancer Center) for generously

providing us with the C7 mice. We thank Dr. Vijay Kuchroo (Brigham and Women’s Hospi-

tal) for the anti-Tim-3 monoclonal antibody (clone 5D12). We thank Britni Stowell and Shayla

Thomas, the Flow Cytometry Core, and Animal Medicine (UMass Medical School) for their

technical assistance.

Author Contributions

Conceptualization: Stephen M. Carpenter, Samuel M. Behar.

Formal analysis: Stephen M. Carpenter, Jason D. Yang, Jinhee Lee, Palmira Barreira-Silva.

Funding acquisition: Samuel M. Behar.

Investigation: Stephen M. Carpenter, Jason D. Yang, Jinhee Lee, Palmira Barreira-Silva.

Project administration: Samuel M. Behar.

Supervision: Samuel M. Behar.

Writing – original draft: Stephen M. Carpenter.

Writing – review & editing: Stephen M. Carpenter, Jason D. Yang, Samuel M. Behar.

References
1. Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PEM, et al. Protection by BCG vaccine

against tuberculosis: a systematic review of randomized controlled trials. CLIN INFECT DIS. 2014; 58:

470–480. https://doi.org/10.1093/cid/cit790 PMID: 24336911

Impaired memory CD4+ T cell expansion in TB

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006704 November 27, 2017 25 / 29

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006704.s006
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006704.s007
https://doi.org/10.1093/cid/cit790
http://www.ncbi.nlm.nih.gov/pubmed/24336911
https://doi.org/10.1371/journal.ppat.1006704


2. Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, et al. Safety and efficacy of

MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, pla-

cebo-controlled phase 2b trial. Lancet. 2013; 381: 1021–1028. https://doi.org/10.1016/S0140-6736(13)

60177-4 PMID: 23391465

3. Millet J-P, Shaw E, Orcau À, Casals M, Miro JM, Caylà JA, et al. Tuberculosis recurrence after comple-

tion treatment in a European city: reinfection or relapse? Mokrousov I, editor. PLoS ONE. 2013; 8:

e64898. https://doi.org/10.1371/journal.pone.0064898 PMID: 23776440

4. Jameson SC, Masopust D. Diversity in T Cell Memory: An Embarrassment of Riches. Immunity. Else-

vier Inc; 2009; 31: 859–871. https://doi.org/10.1016/j.immuni.2009.11.007 PMID: 20064446

5. Kamath AB, Behar SM. Anamnestic responses of mice following Mycobacterium tuberculosis infection.

Infect Immun. 2005; 73: 6110–6118. https://doi.org/10.1128/IAI.73.9.6110-6118.2005 PMID: 16113332

6. Henao-Tamayo M, Ordway DJ, Orme IM. Memory T cell subsets in tuberculosis: what should we be tar-

geting? Tuberculosis (Edinb). 2014; 94: 455–461. https://doi.org/10.1016/j.tube.2014.05.001 PMID:

24993316

7. Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM. In search of a new

paradigm for protective immunity to TB. Nat Rev Microbiol. 2014; 12: 289–299. https://doi.org/10.1038/

nrmicro3230 PMID: 24590243

8. Jung Y-J, Ryan L, LaCourse R, North RJ. Properties and protective value of the secondary versus pri-

mary T helper type 1 response to airborne Mycobacterium tuberculosis infection in mice. J Exp Med.

2005; 201: 1915–1924. https://doi.org/10.1084/jem.20050265 PMID: 15955839

9. Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. The relative importance of T cell subsets in

immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med.

2001; 193: 271–280. PMID: 11157048

10. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon

gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. The Rockefeller University

Press; 1993; 178: 2249–2254. PMID: 7504064

11. Gallegos AM, van Heijst JWJ, Samstein M, Su X, Pamer EG, Glickman MS. A gamma interferon inde-

pendent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. Ramakrishnan

L, editor. PLoS Pathog. 2011; 7: e1002052. https://doi.org/10.1371/journal.ppat.1002052 PMID:

21625591

12. Srivastava S, Ernst JD. Cutting edge: Direct recognition of infected cells by CD4 T cells is required for

control of intracellular Mycobacterium tuberculosis in vivo. The Journal of Immunology. 2013; 191:

1016–1020. https://doi.org/10.4049/jimmunol.1301236 PMID: 23817429

13. Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM. Dissemination of Mycobacterium tuberculo-

sis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun. 2002; 70:

4501–4509. https://doi.org/10.1128/IAI.70.8.4501-4509.2002 PMID: 12117962

14. Reiley WW, Calayag MD, Wittmer ST, Huntington JL, Pearl JE, Fountain JJ, et al. ESAT-6-specific CD4

T cell responses to aerosol Mycobacterium tuberculosis infection are initiated in the mediastinal lymph

nodes. Proc Natl Acad Sci USA. National Acad Sciences; 2008; 105: 10961–10966. https://doi.org/10.

1073/pnas.0801496105 PMID: 18667699

15. Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, et al. Initiation of the adaptive immune

response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not

the lungs. Journal of Experimental Medicine. 2008; 205: 105–115. https://doi.org/10.1084/jem.

20071367 PMID: 18158321

16. Griffiths KL, Ahmed M, Das S, Gopal R, Horne W, Connell TD, et al. Targeting dendritic cells to acceler-

ate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun. 2016; 7:

13894. https://doi.org/10.1038/ncomms13894 PMID: 28004802

17. Mearns H, Geldenhuys HD, Kagina BM, Musvosvi M, Little F, Ratangee F, et al. H1:IC31 vaccination is

safe and induces long-lived TNF-α(+)IL-2(+)CD4 T cell responses in M. tuberculosis infected and unin-

fected adolescents: A randomized trial. Vaccine. 2017; 35: 132–141. https://doi.org/10.1016/j.vaccine.

2016.11.023 PMID: 27866772

18. Bold TD, Banaei N, Wolf AJ, Ernst JD. Suboptimal activation of antigen-specific CD4+ effector cells

enables persistence of M. tuberculosis in vivo. Ramakrishnan L, editor. PLoS Pathog. Public Library of

Science; 2011; 7: e1002063. https://doi.org/10.1371/journal.ppat.1002063 PMID: 21637811

19. Moguche AO, Musvosvi M, Penn-Nicholson A, Plumlee CR, Mearns H, Geldenhuys H, et al. Antigen

Availability Shapes T Cell Differentiation and Function during Tuberculosis. Cell Host and Microbe.

2017; 21: 695–706.e5. https://doi.org/10.1016/j.chom.2017.05.012 PMID: 28618268

20. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, et al. IL-23 and IL-17 in the

establishment of protective pulmonary CD4+ T cell responses after vaccination and during

Impaired memory CD4+ T cell expansion in TB

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006704 November 27, 2017 26 / 29

https://doi.org/10.1016/S0140-6736(13)60177-4
https://doi.org/10.1016/S0140-6736(13)60177-4
http://www.ncbi.nlm.nih.gov/pubmed/23391465
https://doi.org/10.1371/journal.pone.0064898
http://www.ncbi.nlm.nih.gov/pubmed/23776440
https://doi.org/10.1016/j.immuni.2009.11.007
http://www.ncbi.nlm.nih.gov/pubmed/20064446
https://doi.org/10.1128/IAI.73.9.6110-6118.2005
http://www.ncbi.nlm.nih.gov/pubmed/16113332
https://doi.org/10.1016/j.tube.2014.05.001
http://www.ncbi.nlm.nih.gov/pubmed/24993316
https://doi.org/10.1038/nrmicro3230
https://doi.org/10.1038/nrmicro3230
http://www.ncbi.nlm.nih.gov/pubmed/24590243
https://doi.org/10.1084/jem.20050265
http://www.ncbi.nlm.nih.gov/pubmed/15955839
http://www.ncbi.nlm.nih.gov/pubmed/11157048
http://www.ncbi.nlm.nih.gov/pubmed/7504064
https://doi.org/10.1371/journal.ppat.1002052
http://www.ncbi.nlm.nih.gov/pubmed/21625591
https://doi.org/10.4049/jimmunol.1301236
http://www.ncbi.nlm.nih.gov/pubmed/23817429
https://doi.org/10.1128/IAI.70.8.4501-4509.2002
http://www.ncbi.nlm.nih.gov/pubmed/12117962
https://doi.org/10.1073/pnas.0801496105
https://doi.org/10.1073/pnas.0801496105
http://www.ncbi.nlm.nih.gov/pubmed/18667699
https://doi.org/10.1084/jem.20071367
https://doi.org/10.1084/jem.20071367
http://www.ncbi.nlm.nih.gov/pubmed/18158321
https://doi.org/10.1038/ncomms13894
http://www.ncbi.nlm.nih.gov/pubmed/28004802
https://doi.org/10.1016/j.vaccine.2016.11.023
https://doi.org/10.1016/j.vaccine.2016.11.023
http://www.ncbi.nlm.nih.gov/pubmed/27866772
https://doi.org/10.1371/journal.ppat.1002063
http://www.ncbi.nlm.nih.gov/pubmed/21637811
https://doi.org/10.1016/j.chom.2017.05.012
http://www.ncbi.nlm.nih.gov/pubmed/28618268
https://doi.org/10.1371/journal.ppat.1006704


Mycobacterium tuberculosis challenge. Nat Immunol. 2007; 8: 369–377. https://doi.org/10.1038/ni1449

PMID: 17351619

21. Lozes E, Huygen K, Content J, Denis O, Montgomery DL, Yawman AM, et al. Immunogenicity and effi-

cacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vac-

cine. 1997; 15: 830–833. PMID: 9234526

22. Slütter B, Pewe LL, Kaech SM, Harty JT. Lung airway-surveilling CXCR3(hi) memory CD8(+) T cells

are critical for protection against influenza A virus. Immunity. 2013; 39: 939–948. https://doi.org/10.

1016/j.immuni.2013.09.013 PMID: 24238342

23. Carpenter SM, Nunes-Alves C, Booty MG, Way SS, Behar SM. A Higher Activation Threshold of Mem-

ory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis. Salgame P,

editor. PLoS Pathog. 2016; 12: e1005380. https://doi.org/10.1371/journal.ppat.1005380 PMID:

26745507

24. Woodworth JS, Shin DS, Volman M, Nunes-Alves C, Fortune SM, Behar SM. Mycobacterium tubercu-

losis directs immunofocusing of CD8+ T cell responses despite vaccination. J Immunol. 2011; 186:

1627–1637. https://doi.org/10.4049/jimmunol.1002911 PMID: 21178003

25. Nunes-Alves C, Booty MG, Carpenter SM, Rothchild AC, Martin CJ, Desjardins D, et al. Human and

Murine Clonal CD8+ T Cell Expansions Arise during Tuberculosis Because of TCR Selection. Lewin-

sohn DM, editor. PLoS Pathog. 2015; 11: e1004849. https://doi.org/10.1371/journal.ppat.1004849

PMID: 25945999

26. Tamura T, Ariga H, Kinashi T, Uehara S, Kikuchi T, Nakada M, et al. The role of antigenic peptide in

CD4+ T helper phenotype development in a T cell receptor transgenic model. Int Immunol. 2004; 16:

1691–1699. https://doi.org/10.1093/intimm/dxh170 PMID: 15477229

27. Gallegos AM, Pamer EG, Glickman MS. Delayed protection by ESAT-6-specific effector CD4+ T cells

after airborne M. tuberculosis infection. Journal of Experimental Medicine. 2008; 205: 2359–2368.

https://doi.org/10.1084/jem.20080353 PMID: 18779346

28. Jayaraman P, Jacques MK, Zhu C, Steblenko KM, Stowell BL, Madi A, et al. TIM3 Mediates T Cell

Exhaustion during Mycobacterium tuberculosis Infection. Lewinsohn DM, editor. PLoS Pathog. 2016;

12: e1005490–21. https://doi.org/10.1371/journal.ppat.1005490 PMID: 26967901

29. Ahonen CL, Doxsee CL, McGurran SM, Riter TR, Wade WF, Barth RJ, et al. Combined TLR and CD40

triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J Exp Med.

2004; 199: 775–784. https://doi.org/10.1084/jem.20031591 PMID: 15007094

30. Kurche JS, Haluszczak C, McWilliams JA, Sanchez PJ, Kedl RM. Type I IFN-dependent T cell activa-

tion is mediated by IFN-dependent dendritic cell OX40 ligand expression and is independent of T cell

IFNR expression. The Journal of Immunology. American Association of Immunologists; 2012; 188:

585–593. https://doi.org/10.4049/jimmunol.1102550 PMID: 22156349

31. Mehlhop-Williams ER, Bevan MJ. Memory CD8+ T cells exhibit increased antigen threshold require-

ments for recall proliferation. Journal of Experimental Medicine. 2014; 211: 345–356. https://doi.org/10.

1084/jem.20131271 PMID: 24493801

32. Lanzavecchia A, Sallusto F. Antigen decoding by T lymphocytes: from synapses to fate determination.

Nat Immunol. 2001; 2: 487–492. https://doi.org/10.1038/88678 PMID: 11376334

33. McKinstry KK, Golech S, Lee W-H, Huston G, Weng N-P, Swain SL. Rapid default transition of CD4 T

cell effectors to functional memory cells. J Exp Med. Rockefeller Univ Press; 2007; 204: 2199–2211.

https://doi.org/10.1084/jem.20070041 PMID: 17724126

34. O’Sullivan D, van der Windt GJW, Huang SC-C, Curtis JD, Chang C-H, Buck MD, et al. Memory CD8+

T Cells Use Cell-Intrinsic Lipolysis to Support the Metabolic Programming Necessary for Development.

Immunity. Elsevier Inc; 2014; 41: 75–88. https://doi.org/10.1016/j.immuni.2014.06.005 PMID:

25001241

35. Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV, et al. CD4 T Cell-Derived IFN-γ
Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be

Actively Repressed by PD-1 to Prevent Lethal Disease. Fortune SM, editor. PLoS Pathog. Public

Library of Science; 2016; 12: e1005667. https://doi.org/10.1371/journal.ppat.1005667 PMID: 27244558

36. Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD, Masopust D, et al. Cutting edge:

control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells.

The Journal of Immunology. 2014; 192: 2965–2969. https://doi.org/10.4049/jimmunol.1400019 PMID:

24591367

37. Woodworth JS, Cohen SB, Moguche AO, Plumlee CR, Agger EM, Urdahl KB, et al. Subunit vaccine

H56/CAF01 induces a population of circulating CD4 T cells that traffic into the Mycobacterium tubercu-

losis-infected lung. Mucosal Immunology. Nature Publishing Group; 2016; 10: 1–10. https://doi.org/10.

1038/mi.2016.70 PMID: 27554293

Impaired memory CD4+ T cell expansion in TB

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006704 November 27, 2017 27 / 29

https://doi.org/10.1038/ni1449
http://www.ncbi.nlm.nih.gov/pubmed/17351619
http://www.ncbi.nlm.nih.gov/pubmed/9234526
https://doi.org/10.1016/j.immuni.2013.09.013
https://doi.org/10.1016/j.immuni.2013.09.013
http://www.ncbi.nlm.nih.gov/pubmed/24238342
https://doi.org/10.1371/journal.ppat.1005380
http://www.ncbi.nlm.nih.gov/pubmed/26745507
https://doi.org/10.4049/jimmunol.1002911
http://www.ncbi.nlm.nih.gov/pubmed/21178003
https://doi.org/10.1371/journal.ppat.1004849
http://www.ncbi.nlm.nih.gov/pubmed/25945999
https://doi.org/10.1093/intimm/dxh170
http://www.ncbi.nlm.nih.gov/pubmed/15477229
https://doi.org/10.1084/jem.20080353
http://www.ncbi.nlm.nih.gov/pubmed/18779346
https://doi.org/10.1371/journal.ppat.1005490
http://www.ncbi.nlm.nih.gov/pubmed/26967901
https://doi.org/10.1084/jem.20031591
http://www.ncbi.nlm.nih.gov/pubmed/15007094
https://doi.org/10.4049/jimmunol.1102550
http://www.ncbi.nlm.nih.gov/pubmed/22156349
https://doi.org/10.1084/jem.20131271
https://doi.org/10.1084/jem.20131271
http://www.ncbi.nlm.nih.gov/pubmed/24493801
https://doi.org/10.1038/88678
http://www.ncbi.nlm.nih.gov/pubmed/11376334
https://doi.org/10.1084/jem.20070041
http://www.ncbi.nlm.nih.gov/pubmed/17724126
https://doi.org/10.1016/j.immuni.2014.06.005
http://www.ncbi.nlm.nih.gov/pubmed/25001241
https://doi.org/10.1371/journal.ppat.1005667
http://www.ncbi.nlm.nih.gov/pubmed/27244558
https://doi.org/10.4049/jimmunol.1400019
http://www.ncbi.nlm.nih.gov/pubmed/24591367
https://doi.org/10.1038/mi.2016.70
https://doi.org/10.1038/mi.2016.70
http://www.ncbi.nlm.nih.gov/pubmed/27554293
https://doi.org/10.1371/journal.ppat.1006704


38. Sallin MA, Sakai S, Kauffman KD, Young HA, Zhu J, Barber DL. Th1 Differentiation Drives the Accumu-

lation of Intravascular, Non-protective CD4 T Cells during Tuberculosis. Cell Rep. 2017; 18: 3091–

3104. https://doi.org/10.1016/j.celrep.2017.03.007 PMID: 28355562

39. Lee J, Martinez N, West K, Kornfeld H. Differential adjuvant activities of TLR7 and TLR9 agonists

inversely correlate with nitric oxide and PGE2 production. Bachschmid MM, Bachschmid MM, editors.

PLoS ONE. Public Library of Science; 2015; 10: e0123165. https://doi.org/10.1371/journal.pone.

0123165 PMID: 25875128

40. Henao-Tamayo M, Shanley CA, Verma D, Zilavy A, Stapleton MC, Furney SK, et al. The Efficacy of the

BCG Vaccine against Newly Emerging Clinical Strains of Mycobacterium tuberculosis. Scriba TJ, editor.

PLoS ONE. Public Library of Science; 2015; 10: e0136500. https://doi.org/10.1371/journal.pone.

0136500 PMID: 26368806

41. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with

distinct homing potentials and effector functions. Nature. 1999; 401: 708–712. https://doi.org/10.1038/

44385 PMID: 10537110

42. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, et al. Central Memory

CD4+ T Cells Are Responsible for the Recombinant Bacillus Calmette-Guérin ΔureC::hly Vaccine’s
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