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Abstract

We develop time-varying association analyses for onset ages of two lung infections to address the 

statistical challenges in utilizing registry data where onset ages are left-truncated by ages of entry 

and competing-risk censored by deaths. Two types of association estimators are proposed based on 

conditional cause-specific hazard function and cumulative incidence function that are adapted 

from unconditional quantities to handle left truncation. Asymptotic properties of the estimators are 

established by using the empirical process techniques. Our simulation study shows that the 

estimators perform well with moderate sample sizes. We apply our methods to the Cystic Fibrosis 

Foundation Registry data to study the relationship between onset ages of Pseudomonas aeruginosa 
and Staphylococcus aureus infections.
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1 Introduction

Association analysis of bivariate correlated event times is often of interest in genetic family 

studies, demography, and medical investigations. For example, in the Cystic Fibrosis 

Foundation Registry (CFFR) data, the onset ages of Pseudomonas aeruginosa (Pa) and 

Staphylococcus aureus (Sa) are closely monitored, since these two bacterial infections are 

commonly observed in patients with cystic fibrosis (CF) and often lead to deterioration of 

lung functions (Kosorok et al., 2001; Flume et al., 2007, 2009). Bacteria have elaborate 

chemical signaling systems that enable them to communicate within and between species. 

The interplay between microorganisms in CF airway may influence disease prognosis and 

response to therapy (Rogers et al., 2010). To examine the possible interaction between Pa 
and Sa, we focus on the association between the onset ages of these two infections. There is 

extensive work in quantifying the association between paired event times when they are 

subject to independent censoring; see Hougaard (2000) for an overview. However, in the 

studies with composite endpoints, the event times of interest are often subject to competing-

risk censoring. If a CF patient died before he/she has developed any infection, the event 

times of interest would be dependently censored by the competing event death, which 

complicates the quantification of the association between the onset ages of these two 

respiratory infections.

There are a few attempts in extending methods from bivariate survival data to bivariate 

competing risks settings. Some commonly used global dependent measures (e.g., Kendall’s 

τ and Spearman’s correlation) can be extended for bivariate competing risks data. However, 

as onset of lung infections during childhood occurs at various ages, the direction and 

strength of the association between the onset ages of Pa and Sa infections may vary with 

time.

Hence a time-varying association analysis is more appropriate. Some local-dependent 

measures have been adapted from bivariate survival data to bivariate competing risks data. 

Bandeen-Roche and Liang (2002) and Bandeen-Roche and Ning (2008) focused on a cause-

specific cross-hazard ratio, and Cheng and Fine (2008) proposed an alternative 

representation of the association measure based on bivariate hazard functions. The 

estimation of the two equivalent measures requires binning the observed time region into 

finer grids and assuming constant association within each grid.

We are interested in the association between Pa and Sa infections over a life course between 

1.5 and 20 years of age, a period when frequent infections occur that are also closely 

correlated with other key clinical outcomes of CF, such as growth and nutritional status. As a 

first attempt, we resort to time-varying association measures that do not require binning or 

the piecewise-constant assumption. Cheng et al. (2007) proposed two association measures 

for bivariate competing risks data based on bivariate cause-specific hazard (CSH) functions 

and bivariate cumulative incidence functions (CIFs), and developed nonparametric inference 

without any model assumptions. However, their methods cannot be readily applied to 

analyze the association between Pa and Sa infections as both event times are truncated at 

ages of entry (Lai et al., 2004). Left truncation is very common in registry data as subjects 
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must be alive and have a certain disease to be included in a registry. Therefore, there is a 

need to develop association analysis for bivariate competing risks data with left truncation.

To incorporate left truncation, in this paper we consider conditional CSH functions and 

conditional CIFs. A Nelson–Aalen type estimator of the bivariate cumulative CSH function 

is proposed as is done in Cheng et al. (2007). To estimate the bivariate conditional CIF, we 

need an estimator for the bivariate conditional survival function of times to composite 

events. Nonparametric estimators of the bivariate survival function under independent 

censoring have been proposed by Campbell (1981), Dabrowska (1988), Burke (1988), Pruitt 

(1991), Prentice and Cai (1992), and van der Laan (1996a) among others. There has also 

been some work on estimating a bivariate distribution when observations are subject to 

truncation; see for example Gürler (1996, 1997) and Gijbels and Gürler (1998) for 

application when a single component of the bivariate data is subject to truncation, van der 

Laan (1996b) and Huang et al. (2001) for bivariate truncated data, and Shen (2006), Shen 

and Yan (2008), Shen (2010), and Dai and Fu (2012) for bivariate truncated and censored 

data. In our application, when we consider bivariate distribution of times to composite 

events, the event times are subject to bivariate truncation and right censoring. However, the 

methods proposed in Shen (2006), Shen and Yan (2008), and Shen (2010) require iteration 

algorithms to calculate the distribution estimates, which are computationally intensive and 

impractical for our data that involve 15,176 subjects. Recently, Dai and Fu (2012) proposed 

an estimator for the bivariate unconditional survival function based on a polar coordinate 

transformation, using the data with bivariate left-truncation and random censoring. They 

then constructed an inversely weighted estimator for the unconditional bivariate distribution 

function based on which an estimator of the truncation probability was obtained, coupled 

with the bivariate survival estimator for the truncation times. It is not clear how the estimator 

would perform if we use their bivariate survival estimator divided by the truncation 

probability estimator to obtain the bivariate conditional survival function. Hence, in Section 

2, we extend the Dabrowska method for the bivariate conditional survival function, which 

does not require iteration or estimation of intermediate unconditional quantities and the 

truncation probability.

The rest of this paper is organized as the following. To quantify the association between the 

onset age of Pa and that of Sa among CF patients that are subject to competing-risk 

censoring and left truncation, we define two association measures as functions of the 

conditional cumulative CSH functions and the conditional CIFs in Section 2.2. For the time-

varying association measure based on the conditional cumulative CSH functions, we 

propose a nonparametric estimation procedure based on the Nelson–Aalen type of 

estimators. For the time-varying association measure defined by the conditional CIFs, we 

develop a nonparametric estimator using the generalization of the Dabrowska (1988, 1989) 

estimator. Details on the estimators and test procedures are given in Section 2.3. The 

asymptotic properties of the proposed estimators and test statistics are established in Section 

2.4. We conduct simulation studies to evaluate the finite-sample properties of our estimators 

and to examine the size and the power of our proposed tests in Section 3. The practical 

utility of our methods is illustrated in an analysis of the CFFR data in Section 4. We 

conclude with some remarks in Section 5.
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2 Method

2.1 Data and notation

The CFFR contains information on majority of CF patients who have been treated by 

accredited CF centers in United States (FitzSimmons, 1993). Time to first Pa infection and 

time to first Sa infection among living CF patients are the event times of interest. The two 

infection times are naturally correlated, and their association is the focus of this study. The 

occurrence of one infection does not preclude the occurrence of the other. Hence, we treat 

the two infection times among living patients as observable bivariate event times that are 

subject to competing-risk censoring by death. Let T1 (T2) be the onset age of a Pa (Sa) 

infection in a patient, and let ε1 = 1 (ε2 = 1) if the subject obtained a Pa (Sa) infection. If a 

subject died without a Pa or Sa infection, then T1 or T2 would be the age at death with ε1 or 

ε2 being 2. (T1, T2) reported in the CFFR are subject to usual independent censoring by the 

end of the observational period. In our data analysis in Section 4, we will exclude those 

subjects who had lung infections at the study entry. Hence, (T1, T2) are also subject to left 

truncation by ages at entry to CFFR, because a subject has to qualify the following criteria to 

be included in the study: to be alive, diagnosed with CF, reported to CFFR and free of any 

lung infection by entry.

Though the two infection times are subject to the same independent censoring time and the 

same truncation time in our application, censoring or truncation times can be different in 

another type of bivariate competing risks data. For example, in a familial study of dementia, 

the onset age of dementia may be competing-risk censored by death, and the administrative 

censoring times of the two individuals in a mother–child pair may be different. Here, we 

adopt the notation that can incorporate both types of bivariate competing risks data. Let (C1, 

C2) be independent censoring times and (V1, V2) be left truncation times for a pair. One 

observes nothing if T1 ≤V1 or T2 ≤V2, and observes (X1, δ1, X2, δ2, V1, V2) if T1 >V1 and 

T2 >V2 (Andersen et al., 1993), where Xj = min(Tj, Cj)(j = 1, 2) and δj is equal to 1 if the 

individual developed a Pa or Sa infection, equal to 2 if the individual died without the 

infection, and 0 otherwise. Note that δj, j = 1, 2, are defined for the actual data with left-

truncation and administrative right-censoring, and are closely related to the cause indicators 

εj, j = 1, 2, in that δj = εj if an event is observed, and 0 otherwise. The observed data contain 

n i.i.d. replicates of (X1, δ1, X2, δ2, V1, V2), denoted by {(X1i, δ1i, X2i, δ2i, V1i, V2i), i = 1, 

…, n}.

2.2 Time varying association measures

Assume that (T1, T2) are independent of (C1, C2, V1, V2) and P(Vj <Cj) = 1, j = 1, 2. We 

first define an association measure based on the CSH functions. The CSH function in the 

bivariate setup is

(1)
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The notation  looks rather complicated, where the superscripts correspond to individuals 

1 and 2, which can be two event times from the same subject, and the subscripts correspond 

to the k-th failure from individual 1 and the l-th failure from individual 2. The similar 

notation will be used throughout the paper. We can write (1) as

(2)

where S(u, v) = P(T1 > u, T2 > v) is the joint survival function of (T1, T2) and 

 denotes the bivariate cause-specific CIF. Hence 

 is the instantaneous failure rate that individual 1 in the pair fails at time u and 

individual 2 fails at time v, given that the pair are free of any events by time (u, v). Similarly, 

the marginal CSH functions of Tj (j = 1, 2) can be written as

where Sj (u) = P(Tj > u) is the marginal survival function of Tj and 

is the cause k marginal CIF for individual j, k = 1, 2.

The importance of CIFs is well recognized in analyzing competing risks data in the literature 

(Gray, 1988;Kalbfleisch and Prentice, 2002). Since  quantifies the proportion of 

subjects failing from each of the cause-specific endpoints,  is often preferred over 

CSH functions. In our study, we focus on association analysis of cause 1 events, which is of 

our primary interest. Note that in this application since the cause 2 events of death are the 

same for the paired data,  and  are well defined at any (u, v), but the cross-

cause or cause 2 quantities may not be well defined at all time points. For example, 

is only meaningful when u ≤ v and  is only defined when u = v. In a more 

general application where cause 1 events may be dependently censored at different cause 2 

event times, our methods can be readily applied to cause 2 association as well as cross-cause 

associations.

Cheng et al. (2007) proposed two time-dependent association measures. One of them is 

based on CSH functions and given by

where  and  are the univariate and 

bivariate cumulative CSH functions with respect to cause 1 events. As , and 
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 take on values from 0 to ∞, ϕ(s, t) ranges from 0 to ∞, where the value of 1 indicates 

independence on the cumulative hazards at (s, t), values > 1 suggest positive associations, 

and values between 0 and 1 correspond to negative associations.

The other association measure is based on CIFs. Notice that  captures the 

identifiable aspects of cause 1 association between T1 and T2. Hence the cause 1 association 

measure is given by

ψ(s, t) takes on values from 0 to ∞, with ψ = 1 corresponding to independence on the CIFs 

at (s, t), and ψ >1 (or 0 < ψ < 1) stands for a positive (or negative) association. As CIFs 

have direct probability interpretations, ψ(s, t) can be thought of as

which in our example measures the excessive (or prohibitive) risk for a CF patient to acquire 

a Pa infection before time s contributable to the fact that this patient has acquired a Sa 
infection before time t. In contrast, ϕ(s, t) is defined based on cumulative CSH functions and 

may not have straightforward interpretations. However, the cause k CIFs may be affected by 

noncause k events through their influence on the overall survival function of times to first 

events. Hence the strength of ψ may be affected by the association in failures from other 

causes. On the other hand, ϕ for cause k events is not affected by noncause k events. Though 

ϕ may not be as appealing as ψ in terms of interpretations, the comparison of ϕ and ψ gives 

us insight into how different causes interact with each other. In addition, the estimation of 

ψ(s, t) naturally leads to the estimation of ϕ(s, t). Therefore, in this paper we will adapt both 

time-varying association measures ψ(s, t) and ϕ(s, t) to bivariate left-truncated competing 

risks data.

Next, we briefly discuss the identifiability of ψ(s, t) and ϕ(s, t). For any distribution function 

H, denote the left and right endpoints of its support by aH = inf{t : H(t) > 0} and bH = inf{t : 
H(t) = 1}, respectively. For j = 1, 2, let Fj, Qj and Gj denote the distribution functions of Tj, 

Cj and Vj, respectively. Assume that aGj ≤ min(aFj, aQj) and bGj ≤ min(bFj, bQj) for j = 1, 2. 

Woodroofe (1985) pointed out that Fj, Qj, and Gj are all identifiable if the assumptions hold.

Furthermore, when the distributions of T and V have the same lower bound, that is aFj = aGj 
(j = 1, 2), we consider the conditional association measures for cause 1 event defined as

and
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(3)

Here, we define  and , where 

 is the bivariate conditional CIF and 

S(u, v|a) = P(T1 > u, T2 > v|T1 ∧ T2 > a) is the bivariate conditional survival function. 

Similarly, we define the marginal conditional CIFs and survival functions 

 and Sj (u|a) = P(Tj > u|T1 ∧ T2 ≥ a), j = 1, 2.

2.3 Estimation of cause-specific association measures

Estimating ϕ(s, t)—First, we consider the estimation of ϕ(s, t) based on the observed left-

truncated competing risks data {(X1i, δ1i, X2i, δ2i, V1i, V2i ), i = 1, …, n}. Nelson–Aalen 

type of estimators (Nelson, 1972; Aalen, 1978) will be constructed to estimate the involved 

bivariate and univariate cumulative CSH functions in ϕ(s, t). For this purpose, we define the 

cause-specific double-event process  for k, l = 1, 

2, and the at-risk process R(u, v) = I{V1 < u ≤ X1, V2 < v ≤ X2}. Conditional on the 

observations being left truncated, the expectation of R(u, v) is E{R(u, v)|T1 >V1, T2 >V2} 

which equals

(4)

where K(u, v) = P(V1 < u ≤ C1, V2 < v ≤ C2) and p = P(T1 >V1, T2 >V2) is the un-truncated 

probability. Similarly, the conditional expectation of  is

Thus,

Henceforth, we will simply denote the conditional expectations as  and ER if there is 

no ambiguity. Since
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(5)

it can be estimated by plugging in the corresponding empirical processes for the unknown 

population quantities. Let  and 

. Then

Similarly, we define the single-event processes 

and . Their corresponding empirical processes are 

denoted by  and . The univariate cumulative hazard functions are estimated 

by

Therefore, when aFj > aGj, a consistent estimator of ϕ(s, t) is given by

Note that we cannot estimate  using , where 

 and , since the estimator 

 actually estimates , where 

. Similarly, we cannot estimate  using 

, where  and 

.

Since the data are left-truncated, we are not able to test whether or not aFj > aGj. In 

applications, some a > aFj is selected so that the size of the observed risk set at a is not too 
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small (Gross and Lai, 1996), and both  and  are defined. Hence, a consistent 

estimator of ϕ(s, t|a) is given by

where , and . 

is similar to  except that the integration is now from a instead of the lower end of 

support. Using the approach of Cheng et al. (2007), we consider the integrated weighted 

averages ϕ̂ * as the test statistics for ϕ(s, t) = 1 for all s ∈ [a, τ1], t ∈ [a, τ2]:

where τ1 > a and τ2 > a, and W̃(s, t) is a stochastic weighting function which is bounded 

between 0 and 1 and converges in probability to a deterministic weighting function.

Estimating ψ(s, t)—Next, we consider the other association measure that was defined in 

(3).

In order to estimate  in (3), we need to estimate both S(u, v|a) = P(T1 > u, T2 > v|

T1 ∧ T2 > a) and . In this paper, we propose a Dabrowska type estimator 

(Dabrowska, 1988) for the conditional survival function S(u, v|a). The estimator is similar to 

the one that was considered in Shen and Yan (2008), except that the lower bound of the 

integration is from a instead of 0.

Define the Dabrowska estimator

where the expressions for Ŝ1(s|a), Ŝ2(t|a), and L̂ are given in the Appendix. Thus, we 

estimate  as follows:

Notice that when there is no truncation  is reduced to a nonparametric estimator 

considered in Cheng et al. (2007). Similarly, for j = 1, 2, we obtain the marginal estimators 

 and , for k, l = 1, 2. 

Plugging the univariate and bivariate estimators into (3), we have
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Based on ψ̂
D(s, t|a), we obtain the following integrated weighted average as the test statistic 

for ψ(s, t|a) = 1 for all s ∈ [a, τ1], t ∈ [a, τ2]:

where W̃ is some stochastic weighting function as the one defined for ϕ̂*.

2.4 Asymptotic properties

The asymptotic properties of the above estimators and tests were established using the 

empirical process theories; see the technical appendix of the Supplementary Material for 

details. For any (s, t) ∈ [a, τ] = [a, τ1] × [a, τ2], we have  and 

 converge weakly to mean zero Gaussian processes. Coupled 

with the asymptotic properties of the estimators for marginal quantities, we have weak 

convergence of  and  and asymptotic 

normality of  and . Bootstrap validity also holds for both the 

estimators and the tests.

3 Simulation studies

The modified Dabrowska estimator—We first conduct a simulation study to evaluate 

the finite sample performance of the modified Dabrowska estimator for bivariate left-

truncated and right-censored data. We adopt a simulation setting similar with the one in 

Shen (2010). More specifically, we simulate bivariate event times (T1, T2) from a bivariate 

survival function S(u1, u2) = exp{–(u1 + u2) – max(u1, u2)}. Marshall and Olkin (1967) 

introduced the so-called Marshall–Olkin bivariate exponential model assuming that the joint 

survival function of T1 and T2 has the form S(t1, t2) = exp{–λ1 t1 – λ2 t2 – λ12 max(t1, t2)}. 

For simplicity, we let λ1 = λ2 = λ12 = 1. The left truncation times (V1, V2) are generated 

from an exponential distribution with mean 0.1. To make sure Cj > Vj, j = 1, 2, we let Cj = 

Vj +Wj, where Wj are simulated from an exponential distribution with mean 4. For each 

dataset, we generate 50 or 100 pairs of data where Tj > Vj, j = 1, 2. The proportion of 

censoring is about 10%.

In Table 1, we present averages of the estimates (EST) of the bivariate survival function at 

different time points based on 2000 datasets. Their empirical standard errors (ESE), averages 

of bootstrap standard errors (BSE), and coverage rates (Cov) of 95% confidence intervals 

based on the BSE and asymptotic normality are also given in Table 1. The averages of 

survival function estimates are close to the true values that range from 0.26 to 0.64. The 

empirical standard errors agree with the bootstrap standard errors, especially when n = 100. 

The standard errors decrease and coverage rates slightly improve when the sample sizes 

increase from 50 to 100. The proposed modified Dabrowska estimator is easy to implement 
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and performs well for a sample of size 50 in this simulation setting. In contrast, the existing 

methods (Shen, 2006; Shen and Yan, 2008; Shen, 2010) require iterative algorithms and are 

computationally extensive. On the other hand, our estimator is developed for the conditional 

survival function, while the iterative methods (Shen, 2006; Shen and Yan, 2008; Shen, 2010) 

provide estimation of both unconditional and conditional survival functions. Hence, our 

simulation results are not directly comparable to those reported in the literature. However, 

the magnitude of bias appears comparable to those reported in Shen (2010).

Tests based on ϕ(s, t) and ψ(s, t): Another simulation study is conducted to examine the 

performance of ϕ̂(s, t) and ψ̂
D(s, t). We adopt a simulation setting similar with that used in 

Cheng et al. (2007). More specifically, let ( ) denote the paired failure times of interest 

and ( ) denote the paired failure times for the competing risks. The vector of random 

variables ( ) is drawn from a normal distribution with 

mean zero and covariance matrix . In this study, we explore five 

combinations of ρ1, ρ2 and ρ3. The truncation variables V1 and V2 are independently drawn 

from an exponential distribution with mean θ. For j = 1, 2, the Cj ’s are defined as Cj = Dj 

+Vj, such that P(Vj < Cj ) = 1, where Dj ’s are independent of Vj ’s and are uniformly 

distributed on the interval (u1, u2). For each dataset, we generate 200 or 300 replicates of 

(X1, δ1, X2, δ2, V1, V2), where  and  for j 
= 1, 2.

For each scenario, we generate 500 datasets, and for each dataset, we compute ϕ̂(s, t|a) and 

ψ̂
D(s, t|a). The value of a is chosen to be 0.1. The integrated association measures are 

estimated over time points [0.4, 1] × [0.4, 1]. The associations over the region are of equal 

importance, hence we have used a simple uniform weight function here. Other weight 

functions such as weighting proportionally by number of subjects at risk may be useful in 

other applications that focus on associations at certain time points. The test statistics log ϕ̂* 

and  are calculated and their bootstrap standard errors are computed based on 250 

bootstrap samples. The tests are at level .05, rejecting H0 if the absolute standardized 

statistic exceeds 1.96. The results are summarized in Table 2.

Under the first scenario of ρ1 = ρ2 = ρ3 = 0, both ϕ* = ψ* = 1, and the rejection rates are 

close to the nominal significant level 0.05. Under the other five scenarios, the powers of 

rejecting the null hypotheses H0 : ϕ* = 1 and H0 : ψ* = 1 vary. Since the censoring 

proportions range from 0.15 to 0.19 for the five alternatives, the varying powers mainly 

depend on the strength of association in ϕ* and ψ* and sample sizes. The powers increase 

when the sample size increases from 200 to 300 across the five alternatives. When there is 

strong positive association between paired cause 1 event times (ρ1 = 0.5) and weaker 

dependence between two competing events within a subject (ρ2 = 0.3), the two association 

measures are about 2 (ϕ* = 1.78 and ψ* = 2). That is, given one subject has developed the 

cause 1 event, the other subject in the same pair would be twice likely to develop the cause 1 

event, as compared with the case that the two subjects act independently. With the presence 
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of strong association in cause 1 events, the powers are 0.93 or above for the sample size of 

200. When there is weaker association between paired cause 1 event times (ρ2 = 0.3) and 

stronger positive association between two competing events within a subject (ρ1 = 0.5), the 

rejection rates decrease from 90s percent to 60s percent for the sample size of 200. When ρ2 

takes on a negative value (ρ2 = −0.3) and ρ1 = 0.5 and ρ3 = 0, we observe negative 

associations ϕ* = 0.46 and ψ* = 0.42. The powers further decrease to be in low 50s and high 

40s percent for a sample of 200. However, for a sample of 300, the powers are still 

reasonable. When there is some weak cross-cause association, for example ρ3 = 0.1 or ρ3 = 

−0.1, the powers are lower than the cases when there is no cross-cause association (ALT 2 

vs. ALT 4 and ALT 3 vs. ALT 5).

4 Cystic fibrosis study

We applied our time-varying association measures ψ(s, t) and ϕ(s, t) to the CFFR data. Our 

study focused on quantifying the association between Pa and Sa infections among living CF 

patients using the CFFR data collected during 1986–2007. Specifically, we examined the 

association between the onset of first Pa and the onset of first Sa in living CF patients. Those 

patients who had Pa and/or Sa infection at study entry were excluded. The analyses were 

restricted to 15,176 patients who were reported to CFFR and infection free at the study 

entry. Hence the onset ages in these 15,176 patients were left truncated at the patient ages at 

entry. They were also subject to independent administrative censoring or dependent 

censoring by death. This falls into the paradigm of left-truncated bivariate competing risks 

data when the lung infections are of interest.

The two time-varying estimates discussed in the method section were computed for this 

CFFR dataset, where the two event times of Pa and Sa were competing-risk censored by the 

same event of death. When only the cause 1 association is concerned, our estimating 

procedures are valid for the CFFR application, even though the procedures have been 

developed for the general bivariate competing risks data. For the association measure ϕ(s, t), 
it is not directly affected by the cause 2 event since we are focusing on the cause 1 

cumulative hazard functions. For ψ(s, t), we are using the Dabrowska estimator for the 

bivariate overall survival function in estimating the bivariate CIF. The Dabrowska estimator 

was developed under the general bivariate censoring setting, but it performs well under 

univariate censoring based on our unreported simulation results. In addition, the Dabrowska 

estimator can handle discrete cases when (T1, T2) have positive probability along the 

diagonal. Therefore, the methods developed in Section 2 can be readily applied to the CFFR 

application to quantify the association between the two lung infection times.

We aimed to examine the association measures between s = 1.5 and t = 20 (years), during 

which most first infections were acquired. If we defined the at-risk set as 

, then Y (1.5) = 4431, accounting for only 29% of the entire 

sample. The median truncation time is 2.3 years and 75% subjects had truncation times that 

were greater than 0.5. To avoid that the at-risk set at early ages is too small, we set a to be 

0.5. Figure 1 provides the marginal CIFs and cumulative CSH functions of Pa and Sa 
infections between 1.5 and 20 years. We can see that most first infections occurred during 
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this period of time and the cumulative risk of acquiring either infection by age 20 is above 

0.9. In contrast, the incidence of death is low during this period of time, with a cumulative 

risk of death among infection-free children around 0.01 by age 20. Hence, ignoring the 

competing risks censoring may not change the results much. However, we adopt the 

competing risks framework to emphasize that infection times are only well defined among 

living population. In this application, death plays a more important role in left truncation, as 

those subjects who died earlier were not included in the CFFR. In addition, both hazard 

functions of first Pa and Sa infections appear constant over time. This, coupled with low 

incidence of deaths, implies that the associations quantified based on the CIFs and 

cumulative CSH may be similar.

Figure 2 presents the estimated bivariate CIF during the period of 1.5 to 20 years, 

conditional on both infections occurring after 0.5 years after birth. The conditional bivariate 

CIF starts with 0.06 at (1.5, 1.5) and increases gradually over time approaching 0.72 at (20, 

20). In contrast, the CIF of Pa infection at year 20 is 0.93 and that of Sa infection is 0.96, 

which suggests negative association between the two infections at age 20. The association 

between the two infections is more apparent in Fig. 3 that presents the association estimates 

at the diagonal points. The top panel is the plot of ϕ̂(t, t), t = 1.5 – 20, based on the 

cumulative hazard functions. The bottom panel is the plot of ψ̂
D(t, t), which is based on 

CIFs with the bivariate CIF estimated by using the Dabrowska estimator of the bivariate 

overall survival function. The estimates and their 95% pointwise confidence intervals are 

given for each panel. The associations in the cumulative hazards functions have a similar 

pattern as the associations based on the CIFs though the former is noticeably more variable 

than the latter.

It is as expected since the hazard functions for the infections are stable and the incidence of 

death is low. Both curves started with positive associations at early ages and switched to 

negative associations at age 3.5 years. After age 5, we observe significantly negative 

associations between the two infection onset ages. The negative association at late ages may 

suggest bacterial competition. Pa and Sa infections at late ages tend to be persistent, and 

chronic colonization of one bacteria organism in lower respiratory track or lungs competes 

with another for space. On the other hand, early Pa and Sa infections are more likely to be 

transient and therefore, competition of these two pathogens would not have been established. 

Pa and Sa infections are likely to be positively associated during this early, transient phase, 

because both Pa and Sa are common environmental pathogens and hence, patients infected 

by Pa are likely to be those who had poorer clinical status (such as malnutrition) that 

rendered them to be more susceptible to other pathogens such as Sa.

Finally, we wanted to examine the importance of considering left truncation in the 

association analysis based on left truncated data. We naively applied the original method in 

Cheng et al. (2007) to this dataset, which completely ignored left truncation and the 

integration bound was set to be zero. The resulting association estimates are given in Fig. 4, 

which are noticeably higher than what are shown in Fig. 3. Therefore, it is crucial to 

properly take into account the effect of left truncation in the analysis in order to remove the 

spurious positive dependence between the two event times that is introduced by the common 

left truncation time.
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5 Discussion

In this paper, we have developed two nonparametric association estimators for bivariate 

survival data when both components are subject to left truncation and competing-risk 

censoring. Since left-truncation and competing event death are very common, especially in 

diseases associated with aging such as heart disease, cancer, stroke, and Alzheimer’s 

disease, there has been a need to develop novel statistical methods for these complex 

medical data. The present study provided a sophisticated statistical approach to analyzing 

left-truncation competing risks data in CFFR. An alternative way of approaching the CFFR 

data is to formulate the association in terms of transition intensities and transition 

probabilities under the multistate framework. However, due to the coexisting nature of the 

two lung infections, transition intensities and transition probabilities may not be as appealing 

as our proposed association measures that are closely related to standard association 

measures based on cumulative distribution functions.

Our approach can also be extended to obtain an estimator as the generalization of Prentice-

Cai (1992) estimator. This extension would further complicate the computation. In some 

applications, one might parameterize the distribution of truncated variables as G(x; θ) 

(Wang, 1989), where θ ∈ Θ ⊂ Rq, and θ is a q-dimensional vector. Further investigation is 

required for obtaining semiparametric association estimators.

The proposed method can also be extended tomultivariate competing risks data with left 

truncation. For an example, if we are interested in quantifying the familial association in 

ages of onset of first Pa infection among CF siblings, we may reasonably assume that the 

onset ages of infections among siblings have the same distribution. Under this assumption, 

our method can be extended to left-truncated multivariate competing risks data following the 

line of research in Tsai (1990); Cheng et al. (2009). It is also worth pointing out our current 

analysis is based on the independent assumption between (V1, V2) and (T1, T2), which may 

be relaxed to be quasi-independence, that is factorization of the joint density of failure and 

truncation times into a product proportional to the individual densities in the observable 

region. Quasi-independence has been considered by Tsai (1990) and Martin and Betensky 

(2005), among others, for left-truncated univariate or bivariate survival times. The quasi-

dependence may be quantified through Kendall’s concordance measure and estimated based 

on pairs where the event times are within the observation region and the concordance status 

is determinable. It will be interesting to develop our association analysis under thisweaker 

assumption and to formally test whether the quasi-independence holds in the CFFR 

application. These will be future research topics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

We now discuss how to construct a modified Dabrowska estimator based on the bivariate left 

truncated and right censored data. Consider the overall double-event process W11(u, v) = 

I{X1 ≤ u, δ1 ≠ 0, X2 ≤ v, δ2 ≠ 0} and its conditional expectation 

. Thus, we have

(1)

By (4) and (6), we have
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Similarly,

where W10(u, v) = I{X1 ≤ u, δ1 ≠ 0, V2 < v ≤ X2}, and

where W01(u, v) = I{X2 ≤ v, δ2 ≠ 0, V1 < u ≤ X1}. Note that Λ11, Λ10, and Λ01 are the 

conditional failure rates from both subjects or from a single subject, regardless of the causes. 

Hence, , where  are cause-specific hazard functions defined in (2). Now 

we define

Hence, a consistent estimator of L(dx, dy) in the Dabrowska representation is given by

where  and . The 

conditional marginal survival functions S1(s|a) and S2(t|a) can be estimated by
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Figure 1. 
Marginal CIFs and cumulative CSHs of Pa and Sa infections over time.
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Figure 2. 
Bivariate CIF of Pa and Sa infections over time.
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Figure 3. 
Time varying association estimates between Pa and Sa infection. Solid line is point estimate 

and dash line is 95% pointwise confidence interval. Top: Association analysis based on 

cumulative CSH. Bottom: Association analysis based on CIFs using the Dabrowska method.
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Figure 4. 
Naive time varying association estimates between Pa and Sa infection while ignoring left 

truncation. Top: Association analysis based on cumulative CSH. Bottom: Association 

analysis based on CIFs using the Dabrowska method.
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