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It is known from the wave-like motion of microtubules in motility assays that

the piconewton forces that motors produce can be sufficient to bend the fila-

ments. In cellular phenomena such as cytosplasmic streaming, molecular

motors translocate along cytoskeletal filaments, carrying cargo which entrains

fluid. When large numbers of such forced filaments interact through the sur-

rounding fluid, as in particular stages of oocyte development in Drosophila
melanogaster, complex dynamics are observed, but the detailed mechanics

underlying them has remained unclear. Motivated by these observations,

we study here perhaps the simplest model for these phenomena: an elastic

filament, pinned at one end, acted on by a molecular motor treated as a

point force. Because the force acts tangential to the filament, no matter what

its shape, this ‘follower-force’ problem is intrinsically non-variational, and

thereby differs fundamentally from Euler buckling, where the force has a fixed

direction, and which, in the low-Reynolds-number regime, ultimately leads to

a stationary, energy-minimizing shape. Through a combination of linear stability

theory, analytical study of a solvable simplified ‘two-link’ model and numerical

studies of the full elastohydrodynamic equations of motion, we elucidate

the Hopf bifurcation that occurs with increasing forcing of a filament, leading

to flapping motion analogous to the high-Reynolds-number oscillations of a

garden hose with a free end.
1. Introduction
Motor protein translocation along cytoskeletal filaments within eukaryotic cells, a

phenomenon which is central to many aspects of physiology and development,

underlies one of the most fundamental examples of ‘fluid–structure’ interactions

in cellular biology: the phenomenon of cytoplasmic streaming. Discovered first in

aquatic plants in 1774 by Bonaventura Corti [1], it is now known to take place in a

broad spectrum of aquatic and terrestrial organisms [2]. In each case of motor

protein–filament pairs—typically myosin–actin in plants and kinesin–microtubules

in animals—cargo carried along by the motors entrains cytoplasmic fluid,

creating flows whose degree of organization reflects the architecture of the fila-

ment network. While in mature plants the filaments tend to be anchored along

the interior cell wall, in young developing plant cells, and also in mature cells

whose cytoskeleton has been transiently chemically disrupted, there is strong evi-

dence for a self-organization process [3] which probably involves filament

buckling and alignment by the very flows created by the moving motors [4]. In

the case of animals, the paradigm is oogenesis in the fruit fly Drosophila [5], in

which a dense network of microtubules emanates from the entire periphery of

the oocyte, so that one end of each filament is anchored at the oocyte boundary,

while the distant end is free within the cellular interior. Direct visualizations [6] of

the streaming flows (by means of endogenous tracer particles) and the micro-

tubules (fluorescently labelled) show that the flows are disordered on the scale

of the oocyte and are time-dependent on the scales ranging from seconds to

many minutes. While the long-time variation reflects changes in the composition

of the cytoskeletal fluid, the short-term variations arise from motion of the fila-

ments in response to the streaming flows. We note that streaming is also
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Figure 1. Schematic of a horizontal flexible filament clamped at one end
with a follower force G applied at its tip. The filament position is defined
by r(s, t), with 0 � s � L being the arclength, or, equivalently, by the tan-
gent angle u(s, t), providing the coordinates of the clamped end. The local
tangent and unit vectors are t̂(s, t) and n̂(s, t), respectively.

Table 1. Summary of names, values and references from the literature of
the parameters used in the paper.

parameter name symbol value reference

filament length L 10220 mm Ganguly

et al. [6]

bending modulus

of the filament

A 10223 N m2 Gittes

et al. [22]

dynamic viscosity of

the fluid

m 1 Pa s Ganguly

et al. [6]

force of molecular

motor

F 325 pN Svoboda &

Block [23]
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present in neuronal contexts, but there filaments are often

strongly cross-linked by microtubule-associated proteins [7].

In addition to these rather complex examples of filament

dynamics, we recall that, in the context of ‘motility assays’, it

has been observed that single filaments forced by carpets

of motors on a surface can undergo a variety of buckling

instabilities, particularly when one end is pinned by a ‘defect’

in the monolayer of motors [8,9]. Similar instabilities were also

observed in microtubules gliding in axoplasm, in which

microtubules would undergo ‘serpentine’ movements when

encountering an obstacle [10]. Although these examples of

filament deformation induced by molecular motors are well

known and the subject of considerable study [11–14], in the

situation appropriate to streaming a precise formulation and

analysis of these problems has been lacking, despite the

recent research by Monteith et al. [15], which accurately mod-

elled the real biological system. Our goal here is to present

such an analysis, focusing on the simplest example possible

in order to fully understand the underlying physics: a single

filament hosting a molecular motor, with one filament end

attached to a wall and the other free. A similar set-up has

been considered in a computational model based on a rep-

resentation of the filament by a string of passive beads, with

an active bead at its tip [16]. The more complex multifilament

problem with many molecular motors moving along each fila-

ment, like that observed in Drosophila oocyte streaming, will be

discussed elsewhere [17].

Unlike in motility assays [9], a filament responding to the

forces produced by motors moving along it corresponds to a

motor-induced force that is always tangential to the filament.

Known in the mechanics literature as a ‘follower force’ [18],

this type of problem is intrinsically different from conventional

Euler buckling where opposing thrusting forces are applied

along a fixed axis, independent of the filament configuration.

As a consequence, the follower-force problem is intrinsically

non-variational. Prior studies of this dynamics were primarily

in the context of macroscopic systems, for which damping

is minimal [19,20]. In such systems there is a well-known

flutter instability that can occur for sufficient forcing. This idea

has recently been incorporated into a model for eukaryotic

flagellar motion [21] as a novel explanation for the origin of

the beating waveform, and the present work is very much in

the same spirit.

In §2, we formulate the simplest low-Reynolds-number

follower-force problem, in which the motor exerts a force

on the filament but does not itself produce flow, and demon-

strate numerically the existence of a Hopf bifurcation when

the force exceeds a finite threshold. This threshold is deter-

mined through a linear stability analysis in §3. A simplified

‘two-link’ model of the kind used in inertial problems is

solved in §4 to elucidate the nature of the instability. A gen-

eralization of the problem to include the fluid flow created by

the molecular motor is presented in §6, and §7 is a discussion

of future possible extensions of the model.
2. Elastohydrodynamics
Here, we derive the low-Reynolds-number equations of motion

for a slender, elastic filament, clamped at one end and subject

to a compressive follower force G, with constant magnitude

G, moving in a Newtonian fluid of viscosity m and confined

to the plane z ¼ 0. It has length L, diameter b, with L/b ¼ 50,
constant circular cross section and bending modulus A. We

parametrize the filament shape r(s, t) by its arclength 0 � s �
L (figure 1). In table 1 we summarize the names, the values

and the references from the literature of the parameters used

throughout the text. Note that the filament could have been

modelled as either clamped or hinged as both conditions can

be found in real biological systems. Though we chose to

focus on the case of a clamped filament, the dynamics obtained

from the following analysis also occurs for a filament hinged at

one end.
2.1. Governing equations
We assume the standard elastic energy associated with a

bent filament, expressed in terms of its curvature k(s, t) as

Eel ¼ (A=2)
Ð L

0 k2(s, t)ds, with a vanishing intrinsic curvature

[24], thus neglecting shearing stresses. Inextensibility is imposed

through the Lagrangian multiplier L(s, t) and the energy func-

tional associated with the local arclength conservation reads

Eten ¼ � 1
2

Ð L
0 L(s, t)ds [25]. After computing functional deriva-

tives of the total energy, we obtain the classical elastic force

per unit length for an inextensible filament, fe, as

f e ¼ �Arssss � (Lrs)s, ð2:1Þ
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where subscripts indicate differentiation. At the clamped end

we have the boundary conditions

r(0, t) ¼ 0 and rs(0, t) ¼ êx, ð2:2Þ

as the filament is fixed and horizontal, while at the free end

rss(L, t) ¼ 0 ð2:3Þ

and

� Arsss(L, t)� L(L, t)rs(L, t) ¼ �Grs(L, t), ð2:4Þ

which capture the fact the filament is torque-free and that the

force at the tip and the external force must balance. As the fol-

lower force acts tangentially, it is non-conservative. It is this

feature that gives rise to the complex dynamics in this problem.

In the Stokesian regime, the drag force acting on the fila-

ment from the surrounding flow is classically given in the

slender limit by resistive-force theory (RFT) [26,27] which

provides a local relation between the local filament velocity,

rt, and the hydrodynamic force per unit length exerted by

the surrounding fluid, fh. When no background flow is

present, we have

f h ¼ �(zk t̂t̂ þ z?n̂n̂) � rt, ð2:5Þ

where t̂ and n̂ are the local tangent and normal unit vectors,

and z?, zk (with z? ¼ 4pm/[ln(L/b) þ 1/2] [28] and

z?=zk ! 2 as L/b!1) are the drag coefficients in the per-

pendicular and parallel direction, respectively [26,27]. For

simplicity, we assume h;z?/zk ¼ 2, even if a more accurate

expression can be used [29], but for the sake of generality we

write explicitly h throughout the paper. While slender-body

theory [27,30,31], which consists of a more accurate treatment

of the drag force to include non-local effects, could be used,

RFT has been shown to be a valid alternative for single fila-

ments that are not too highly deformed, and its use

significantly reduces the complexity of the mathematical

formulation [25,32–37].

The instantaneous balance of forces for the filament is

given by fe þ fh ¼ 0, hence

� (zkt̂t̂ þ z?n̂n̂) � rt � Arssss � (Lrs)s ¼ 0: ð2:6Þ

Exploiting the two-dimensional Frenet–Serret equations,

t̂s ¼ �kn̂ and n̂s ¼ kt̂, this can be rewritten as

rt ¼
1

z?
[A(kss � k3)þ kL] n̂þ 1

zk
(3Akks � Ls) t̂: ð2:7Þ

(Note that the form of the elastic component of the normal

force often seen in the literature [25], A(kss þ (1/2)k3), is

equivalent to that in (2.7) under the redefinition of the

Lagrange multiplier: L! L þ (3/2)Ak2.)

If we rescale lengths by L, time by the relaxation time

z?L4/A and the Lagrangian multiplier by the elastic force

A/L2, then in dimensionless units equation (2.7) becomes

rt ¼ (kss � k3 þ kL) n̂þ h(3kks � Ls) t̂: ð2:8Þ

If we now differentiate (2.8) with respect to arclength,

separate the normal and tangent components, and note that

rs . rts ¼ 0 to ensure local inextensibility (rs . rs ¼ 1), we obtain

the coupled equations describing the evolution of the tangent

angle, u, and the tension, L

ut ¼ �ussss � [L� 3(hþ 1)u2
s ]uss � (hþ 1)Lsus ð2:9Þ
and

Lss � h�1u2
sL ¼ �h�1u4

s þ 3u2
ss þ (3þ h�1)ususss, ð2:10Þ

in which we have used the relation us ¼ k.

It is important to note that in differentiating equation (2.8)

with respect to arclength, the boundary condition r(0, t) ¼ 0

is lost. To restore the missing boundary condition physical

insight is required. At s ¼ 0, the filament is not only fixed,

but, trivially, it has zero velocity, i.e. rt(0, t) ¼ 0. This con-

sideration then leads to boundary conditions for u(0, t) and

L(0, t) when directly evaluating equation (2.7) at s ¼ 0.

These are

usss(0, t)� us(0, t)3 þ us(0, t)L(0, t) ¼ 0 ð2:11Þ

and

Ls(0, t)� 3us(0, t)uss(0, t) ¼ 0, ð2:12Þ

respectively. The condition rs(0, t) ¼ êx becomes u(0, t) ¼ 0,

while equation (2.3), us(1, t) ¼ 0, and equation (2.4), uss(1,

t) ¼ 0 and L(1, t) ¼ s, where

s ;
GL2

A
ð2:13Þ

is the dimensionless ratio between the strength of the force at

the tip and the elastic force and is the one relevant parameter

governing the dynamics of the filament. Note that as the force

is compressive (G . 0), s is always positive.
2.2. Dynamical features of a follower force
The non-variational form of the follower force differs intrin-

sically from conventional Euler buckling in which the

compressive force is always in a given direction. Examina-

tion of the equations of motion linearized around the

straight filament, studied in much more detail in §3, reveals

important physical insights into the expected dynamics. If y
denotes the y component of the position of the filament,

the linearized non-dimensional form of equation (2.8) is

classically given by

yt ¼ �yxxxx � Lyxx: ð2:14Þ

If we calculate the rate of change of the (non-dimensional)

bulk energy

E ¼ 1

2

ð1

0

(y2
xx � Ly2

x) dx, ð2:15Þ

then repeated integrations by parts and imposition of the

boundary condition (2.4) yields the result

Et ¼ �
ð1

0

(yxxxx þ Lyxx)2 dx� syt(1)yx(1): ð2:16Þ

The integral term is clearly negative semi-definite, and absent

the final term (as in Euler buckling) it would drive the energy

monotonically downwards. The boundary term arises from

the fact that the follower force always acts tangentially, and

it is clear that, depending on its sign, the follower force

either removes or injects energy into the system, possibly

giving rise to persistent motion as discussed below.
2.3. Buckling and flapping
The governing equations (2.9) and (2.10), together with the

corresponding boundary conditions, were discretized using

second-order centred finite differences in the bulk and
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one-sided differences at the edges. The resulting nonlinear

system of algebraic equations was solved using Newton’s

method. To overcome the constraint of the time step arising

from the stiff nature of equation (2.9), a backward Euler

method, which is an implicit A-stable numerical scheme,

was used [38]. The equations were decoupled using the

values at the previous time step [39].

Numerical results for a horizontal filament to which a small

perturbation was initially introduced identify three different

dynamical behaviours depending on the value of s, as

illustrated in figure 2. For s � 20.4 the filament returns mono-

tonically to its original straight configuration (illustrated for

s ¼ 15 as the blue solid line). In the interval 20.4 � s � 37.5,

the filament displays decaying oscillations (the case with s ¼

33 is shown as the red dashed line). Finally, above the threshold

s � 37.5, we find that any perturbation grows and the motion

settles into a finite-amplitude periodic oscillation (see inset of

figure 2 in the case s ¼ 80).

Inspecting in more detail the dynamics of the filament for

s � 37.5 as shown in figure 3, we see that after a transient whose

duration diminishes as the value of s increases (figure 3a,b), the

filament traces a self-sustained wave reminiscent of the waving

of spermatozoa flagella [40]. Interestingly, recent research [21]

has shown that a follower force model could be used to explain

such a wave-like beating of flagellates. The origin of such a

waving motion however differs as it arises from the collective

dynamics of the molecular motors against the flagellar load

which cause sliding of adjacent filaments.

The filament buckles as the external force keeps compres-

sing it in the tangential direction while both the elastic

restorative force and the drag force oppose it, giving rise to

this flapping dynamics. It is worth stressing that this novel

dynamics arises from the presence of the fluid in the low-

Reynolds-number regime. For an inertial filament with no

fluid, the dynamics is indeed different [41]. We next plot in

figure 3c the amplitude of the oscillations as a function of s.

The tip displacement shows a clear Hopf bifurcation before

reaching a plateau (a consequence of the finite length of the fila-

ment). The frequency of oscillation, which was computed

applying the fast Fourier transform to the time evolution of

the tip displacement, grows roughly linearly withs (figure 3d).
3. Linear stability analysis
The numerical results in the previous section reveal that

increasing values of s are accompanied by a transition from

stability to decaying oscillations, and finally a Hopf bifurcation

to flapping dynamics. We now turn to a theoretical analysis

of this transition.

To study buckling instabilities, linear stability analysis has

been exploited in several contexts, spanning from column

buckling under compression—a variant of Euler buckling—

with different boundary conditions (e.g. clamped–free,

hinged–free, hinged–hinged, clamped–clamped) [41,42], to

filament buckling in linear shear flow [37] or extensional

flows [35,36,43,44]. Because the follower force compresses

the filament, a certain critical value above which the filament

buckles is expected to exist. Here, linear stability analysis is

used to analytically compute the critical compression force.

Assuming small deviations from the initial, straight

configuration, equation (2.6) simplifies as x � s, t̂ � (1, yx),

and n̂ � (yx,� 1). The problem then turns into solving the

two coupled nonlinear equations (2.9) and (2.10) to Lx ¼ 0,

with L(1, t) ¼ s, which leads to L(x, t) ¼ s and

yt ¼ �yxxxx � Lyxx, ð3:1Þ

with the boundary conditions

y(0, t) ¼ yx(0, t) ¼ yxx(1, t) ¼ yxxx(1, t) ¼ 0: ð3:2Þ

We first note that standard, so-called static methods à la
Euler [45] fail to predict buckling in our case, as consistent

with classical analyses in the inertia-dominated limit [41,46].

A static eigenvalue-based linear stability will only succeed

in the case where the forcing arises from conservative forces.

In the situation considered in this paper, the external force

acts in a manner which depends on the position and configur-

ation of the entire filament, and is thus non-conservative.

For systems with non-conservative forces in inertia-dominated

problems, the critical value for which the beam buckles

and becomes unstable has been computed using a dyna-

mic criterion [46,47]. Here, we extend the analysis to the

viscous-dominated regime.

We start by assuming a solution to the linearized

problem, equation (3.1), of the form

y(x, t) ¼ ŷ(x) evt, ð3:3Þ

where v is the growth rate. This leads to the ordinary

differential equation (ODE)

ŷxxxx þ sŷxx þ vŷ ¼ 0, ð3:4Þ

whose general solution is given by

ŷ(x) ¼ C1 cosha1xþ C2 sinha1xþ C3 cosa2xþ C4 sina2x,

ð3:5Þ

with

a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

4
� v

r
� s

2

s
ð3:6Þ

and

a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

4
� v

r
þ s

2

s
: ð3:7Þ

The values of the constants Cj are obtained by imposing the

boundary conditions in equation (3.2), leading to a standard
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4 � 4 matrix whose determinant is required to be zero. After

some simplifications, the equation for the growth rate, v, can

be shown to read

s2 � 2v(1þ cosha1 cosa2)þ s
ffiffiffiffiffiffiffi
�v
p

sinha1 sina2 ¼ 0, ð3:8Þ

which, with the ai defined in (3.7), does not have a

closed-form solution, but can be easily solved numerically.

Alternatively, we can also solve equation (3.4) directly

numerically, viewed either as a boundary value problem or

as an eigenvalue problem. For the former, a shooting

method is used with the appropriate initial guess in the

neighbourhood of the first transition (s � 20.05). For the

latter, the problem turns into solving Lŷ ¼ vŷ. The operator

L ; �d4=dx4 � sd2=dx2 is discretized using centred finite

differences in the bulk of the stencil and sided differences

at the ends, and the eigenvalues are determined with the

QR algorithm. Both methods were implemented and used

to test the results obtained from the numerical solution of

equation (3.8), showing excellent agreement.

The linear stability results identify three different beha-

viours as a function of the value of s. These are illustrated

in figure 4 where we plot the real part (blue triangles) and

imaginary part (red stars) of the computed growth rate, v.

The former represents the rate of growth (or decay) of the per-

turbation, while the latter the frequency of oscillation, which

is therefore the frequency of beating. When s � 20.05, the

growth rate is negative and y(x, t) decays exponentially. Start-

ing at s � 20:05, the growth rate becomes complex, but its

real part remains negative, consistent with the numerical

results from the previous section showing oscillatory decay.

The real part of the growth rate finally becomes positive at

a critical value, s* � 37.69 (figure 4), indicating the onset of

the instability and the bifurcation to oscillations about the

horizontal, straight configuration.
The comparison between the numerical results and linear

stability analysis shows a very good agreement not only for

the critical value of s at which the oscillations arise (s ¼ 20.4

versus 20.05) and at which the system becomes unstable

(s* ¼ 37.5 versus 37.69), but also for the frequency of oscil-

lations (figure 3b). Notably, the frequencies are in good

agreement also for large values of s when linear stability

analysis does not strictly apply.
4. Two-link filament model
Having shown that the linear stability analysis of the elastohy-

drodynamic PDEs can explain the onset of flapping dynamics,

we now consider a simpler two-link filament model, in a

manner similar to the case in which damping is negligible
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[18,48], with the aim of illustrating in a low-dimensional

dynamical system the origin of oscillatory motion.

We consider a simple discrete model for an elastic filament

composed of two rigid links of length ‘ joined together at

point A and constrained to remain in the plane z ¼ 0 (figure 5).

Elasticity is included by introducing two torsional springs,

each with spring constant k. The two degrees of freedom of the

system are the angles u1(t) and u2(t) that define the configuration

of the links. They are zero when both rods are horizontal and

increase in the clockwise direction. The follower force, G, acts

at the tip of the second rod, always pointing tangentially along

it. The filament moves in a creeping flow and its drag force is

assumed to be concentrated at points A and B only.

For this model, the locations of points A and B are,

respectively,

rA ¼ A�O ¼ ‘( cos u1, sin u1) ð4:1Þ

and

rB ¼ B�O ¼ ‘( cos u1 þ cos u2, sin u1 þ sin u2), ð4:2Þ

and their velocities are

vA ¼ _rA ¼ ‘ _u1(�sin u1, cos u1) ð4:3Þ

and

vB ¼ _rB ¼ ‘[ _u1(�sin u1, cos u1)þ _u2(�sin u2, cos u2)], ð4:4Þ

where the dot denotes a time derivative. The follower

force is defined as G ¼ �Gt̂, with G . 0 its magnitude and

t̂ ¼ ( cos u2, sin u2) the unit tangent vector joining A and B.

Under the assumption of creeping flow, the drag forces are

FA ¼2 zvA and FB ¼2 zvB, with z some effective drag

coefficient, while the restoring moments due to the torsion

springs acting on the two rods are 2ku1 at point O and

2k(u2 2 u1) at point A.

The equations of motion are obtained applying the

principle of virtual work

G � drBþFB � drBþFA � drA� ku1du1� k(u2� u1)(du2� du1)¼ 0,

ð4:5Þ

where drB, drA, du1 and du2 are the virtual displacements.

Invoking the arbitrariness of du1 and du2, we obtain

S sin (u1 � u2)� [2 _u1 þ _u2 cos (u1 � u2)]� 2u1 þ u2 ¼ 0 ð4:6Þ
and

� _u1 cos (u1 � u2) _u2 þ u1 � u2 ¼ 0, ð4:7Þ

where time was rescaled by ~t ¼ kt=z‘2, and we introduced the

controlling dimensionless number, S ¼ G‘/k, playing a role

similar to s in the previous section. Note that if we enforce

u1 ¼ u2 ¼ u, then the previous equations reduce to

3 _uþ u ¼ 0, ð4:8Þ

which shows that the follower force, which always points

inwards, does not play any role and that udecays exponentially,

as we would expect.

We solved equations (4.6)–(4.7) numerically using the

Matlab ODE solver ‘ode45’, which is based on an explicit

Runge–Kutta (4,5) formula and is suitable in this case as

the equations are non-stiff [49]. The initial conditions are

random, small perturbations to both angles.

Our numerical results, shown in figure 6, indicate that,

again, three different dynamics are possible. With increasing

values of S, the system goes from asymptotic stability (S ,

2), to stability with oscillations (2 � S , 3), to exhibiting

stable, self-sustained oscillations (S � 3).

To capture these transitions, we may again take advan-

tage of linear stability. By linearizing the equations of

motion about the equilibrium configuration u1 ¼ u2 ¼ 0, and

assuming solutions of the form uj ¼ ûj ev
~t, we obtain

S(û1 � û2)� v(2û1 þ û2)� 2û1 þ û2 ¼ 0 ð4:9Þ

and

� v(û1 þ û2)þ û1 � û2 ¼ 0, ð4:10Þ

and non-trivial solutions are found when the determinant of

the corresponding matrix is zero, namely v2 þ 2(3 2 S)v þ
1 ¼ 0, whose solutions are

v+ ¼ S� 3 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(S� 4)(S� 2)

p
: ð4:11Þ

We may then use equation (4.11) to predict the dynamics,

and we obtain five different cases:

a. if S�2, then v+, 0, and the system is stable;

b. for 2 , S , 3, Re(v+), 0 and Im(v+)=0, so the

perturbations die away in an oscillatory manner;

c. if S¼ 3, then Re(v+)¼ 0 and Im(v+)=0, hence the system

is stable and shows periodic oscillations with constant

amplitude;

d. for 3, S , 4, Re(v+). 0 and Im(v+)=0, and thus we

obtain exponentially growing oscillations;

e. when S� 4, v+. 0, i.e. the system is unstable and u1, u2

simply diverge.

In cases d and e, the linear instability saturates to nonlinear

self-sustained oscillations when the full nonlinear equation

is considered. Once again, linear stability is thus in good

agreement with the results from the nonlinear equations

of motion.

In conclusion, the two-link model studied in this section

captures the dynamics of the full nonlinear elastohydro-

dynamic problem. In particular, we have shown that when

S ¼ G‘/k � 3, which represents, analogously to s, the ratio

between the strength of the follower force and the elastic

force, self-sustained oscillations are indeed possible.
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5. Physical interpretation
The analysis in §2.2 showed that the boundary term of the

r.h.s. of equation (2.16) arises from the non-variational

nature of the follower force. Here, we simulate the full

nonlinear elastohydrodynamics equations and demonstrate

that it is indeed the term responsible for the self-sustained

motion observed.

Choosing the value s ¼ 37.8 allows the tip oscillations to

remain small. We plot in figure 7a the values of the tip velocity,

yt(1), slope, ys(1), and their product. Over the period of oscil-

lation T, which is defined such that the tip displacement is

maximum at t ¼ 0, the tip reaches the minimum at t ¼ T/2

and crosses the x-axis twice, with minimum and maximum

speeds at t ¼ T/4 and t ¼ 3T/4, respectively. By contrast, the

filament tangent at the tip, ys(1), has its maximum value at

about t ¼ T/8 and minimum at about t ¼ 5T/8, becoming

zero slightly before t ¼ 3T/8 and t ¼ 7T/8.
While the term 2syt(1)ys(1) is positive, it injects energy

into the system until the tangent at the tip crosses the

x-axis. At this point, it becomes negative and it therefore

withdraws energy until the tip reaches its minimum displace-

ment. Afterwards, it becomes positive again and the cycle

repeats, but with the mirrored configuration (T/2 , t , T ).

For reference, we show in figure 7b the filament configuration

over a half-period.

To better understand this dynamics, we may also exploit

the two-link model previously studied, with dynamics illus-

trated by figure 7c for S ¼ 3.5. Initially, the follower force

compresses the two-link structure and the links are pushed

downwards (0 , t , T/4). Then, the first link reaches its

lowest point (i.e. highest restorative moment) and stops

moving, while the second link keeps rotating (t ¼ 3T/8). By

doing so, the follower force, which has followed the second

link, exerts a lower moment and the restorative effect

becomes predominant. Hence, the first link moves upwards
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êx

molecular motor

force exerted
on the fluid

G

G

G

G
cargo

microtubule

force exerted
on the filament

Figure 8. A filament clamped on one side (s ¼ 0) and subject to a ‘fluid-entraining’ follower force at the other end (s ¼ L). At the tip, the compressive follower
force acts on the filament (black arrow), while the moving cargo acts on the surrounding fluid as a point force (green) creating the flow with streamlines illustrated
in blue. Inset: a detailed picture of the forces acting on the filament and the fluid.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170491

8

and the second link downwards until stopping and inverting

its motion (t ¼ T/2). This dynamics repeats periodically and

prevents the establishment of a steady state.

By examining both the continuous and discrete models,

we thus see that the effect of the follower force is to constantly

inject and remove energy into the system, thus preventing

any stable configuration to be reached and giving rise to

periodic, self-sustained oscillations.
6. Fluid-entraining follower force
When molecular motors translocate along microtubules, they

not only exert a force on the filament, but also entrain fluid

as they carry cargo. While the motor-induced force on the fila-

ment was included in the analysis of previous sections, the

fluid flow created by the motor and the associated drag on

the filament were neglected. Here, we include these effects

by approximating cargo-motor assembly as a point force

located at the tip of the filament, so that the three-dimensional

(3D) flow that arises is that of a Stokeslet [50]. As at the tip, we

now have both a concentrated load acting on the filament (the

follower force) and a concentrated force setting the flow; we

refer to this combination as ‘fluid-entraining’ follower force

(see illustration in figure 8).

6.1. Equations of motion
When molecular motors walk along the microtubule towards

its free end, they create a flow that follows their direction of

motion while applying a force on the filament in the opposite

direction. We assume the link between the filament and the

cargo to be rigid. As the magnitude of the force exerted on

the filament while the molecular motor walks along it is G, a

simple force balance shows that the force exerted on the fluid

also has strength G (inset of figure 8). The fluid flow on the fila-

ment centreline created by the point force at s ¼ L is therefore

u(s) ¼ (1=8pm) G(s; L) � (Gt̂(L)), where G(s; L) is the Green’s

function tensor (with dimensions of inverse length) appro-

priate to the boundary conditions imposed on the fluid

equations. In the following, we consider the 3D fluid flow
created by a point force in an unbounded domain, and thus

ignore the presence of any boundary (though the analysis

could be repeated in this case along the same lines).

Using again the RFT approximation, the hydrodyna-

mic force density acting on the filament in the presence of a

background flow is given by

f h ¼ �(zkt̂t̂ þ z?n̂n̂) � (rt � u), ð6:1Þ

and thus the equations of motion become

(zkt̂t̂ þ z?n̂n̂) � (rt � u) ¼ �Arssss � (Lrs)s, ð6:2Þ

or, in dimensionless form,

(h�1t̂t̂ þ n̂n̂) � (rt � jsu) ¼ �rssss � (Lrs)s, ð6:3Þ

where j ¼ z?/8pm.

The Green’s function is singular at s ¼ L; thus a regulariz-

ation is needed in order to avoid overestimating the

magnitude of the velocity produced by the point force.

To achieve this, we use the expression for a regularized

Stokeslet derived by Cortez et al. [51], characterized by a

single regularization parameter d.

To set the value of d, we use the following physical argu-

ment. The velocity field at a distance r from a regularized

point force with strength F decays as u � F/8pm(r þ d). We

require that the magnitude of the fluid flow at the location of

the point force, F/8pmd, be equal to the motor speed umotor.

To determine d, we thus need to know the magnitude of the

point force, the speed of the molecular motor, and the viscosity

of the medium. Our work was inspired by phenomena invol-

ving cytoplasmic streaming in Drosophila oogenesis, where

the measured viscosity can reach m � 1 Pa s [6], three orders

of magnitude larger than water. Typical speeds of molecular

motors in animals are fractions of micrometre per second,

while the forces they exert are on the piconewton scale [23].

Considering the full range of viscosities, we obtain d �
1027 2 1024 m, the smaller values associated with the higher

viscosities. Adopting the value 1026 m as representative of

the situation in Drosophila, we see that d/L � 0.05–0.1 as

microtubules are usually some 10–20 mm long [6].
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Let ~u ¼ t̂(1) � ~G(s; 1), with ~G(s; 1) the regularized Green’s

tensor [51]. The generalization of equations (2.9) and (2.10)

to the fluid-entraining force is, respectively,

ut ¼ �ussss � [L� 3(hþ 1)u2
s ]uss � (hþ 1)Lsus � js~us � n̂

ð6:4Þ

and

Lss � h�1u2
sL ¼ �h�1u4

s þ 3u2
ss þ (3þ h�1)ususss þ h�1js~us � t̂:

ð6:5Þ

While the boundary conditions at the free end remain the

same, an evaluation of equation (6.3) at s ¼ 0 shows that

the presence of the background flow leads to the condition

usss(0, t)� us(0, t)3 þ us(0, t)L(0, t)þ js~u(0, t) � n̂(0, t) ¼ 0

ð6:6Þ

for the tangent angle and

Ls(0, t)� 3us(0, t)uss(0, t)� h�1js~u(0, t) � t̂(0, t) ¼ 0 ð6:7Þ

for the Lagrangian multiplier. Note that while, in this study,

we ignore the presence of any boundaries from a hydro-

dynamic standpoint, the value of ~u(0, t) would be set to

zero if the Green’s function used was the one which includes

the presence of the wall [52].

6.2. Linear stability analysis
By projecting equation (6.3) in the normal and tangent direc-

tions and after neglecting higher-order terms, we obtain

Lx ¼ h�1js~u ð6:8Þ

and

yt ¼ �yxxxx � Lyxx þ js(~v� ~uyx), ð6:9Þ

where ~u ¼ K1 þ K2(x� 1)2 and ~v ¼ K1yx(1)þ K2(x� 1)

[y� y(1)] are the linearized components of the regularized

non-dimensional fluid flow ~u, with

K1 ¼
(x� 1)2 þ 2d2

[(x� 1)2 þ d2]3=2

and K2 ¼
1

[(x� 1)2 þ d2]3=2
: ð6:10Þ

We note that far away from the point force (jx 2 1j � d) the

dominant flow component falls off as that of a Stokeslet,

~u � 1=jx� 1j. Interestingly, the term Lxyx does not appear in

equation (6.9) as the product n̂ � Lxrx is identically zero. In
other words, the fact that the tension varies along the filament

length enters the equation only throughL, but not its derivative.

We use the same dynamic criterion described previously

to determine the value at which the filament buckles and

becomes unstable. We compute the Lagrange multiplier

first, requiring L(1, t) ¼ s, and then solve by finite differences

the eigenvalue problem

ŷxxxx � Lŷxx þ js{K1ŷx(1)þ K2(x� 1)[ŷ� ŷ(1)]

� ŷx[K1 þ K2(x� 1)2]} ¼ vŷ, ð6:11Þ

with the boundary conditions ŷ(0) ¼ ŷx(0) ¼ ŷxx(1) ¼
ŷxxx(1) ¼ 0. Through the dynamics of the tip, the hydro-

dynamic point force changes position in time, and thus the

resulting fluid flow is time-dependent. This is the origin

of the terms containing ŷ(1) and ŷx(1) in (6.11). The numeri-

cal implementation of this eigenvalue problem is more

challenging than in the absence of entrained flow and great

care is needed, especially when discretizing the boundary

conditions and the local terms.

6.3. Results
The equations of motion were solved numerically using the

procedure described in §2.3. Unsurprisingly, the dynamics

has remained qualitatively unaltered, as shown in figure 9a.

Here, again three dynamical regimes may be identified. The

filament starts showing decaying oscillations at s � 32.4

and becomes unstable undergoing a supercritical Hopf bifur-

cation at s* � 67.7 (figure 9b). The transition points between

the different regimes are well captured by linear analysis

which predicts the growth rate to become complex at s �
32.17 (decaying oscillations) and to cross the imaginary axis

at s* � 67.92 (Hopf bifurcation).

Why is the flow delaying the onset of self-sustained oscil-

lations? The point force located at the tip of the filaments

induces a fluid flow in the direction opposite to that of the

compressive force, resulting in an added tension along the

filament, and thus an effective compression which is lower

than that of the no-fluid-entraining follower force case.

Consequently, the transition from stable to unstable occurs

at a larger value of s.
7. Discussion
Inspired by experimental observations of persistent waving

motion of microtubules driven by molecular motors,
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particularly during oocyte development in Drosophila [6], we

have explored the simplest model of motor-driven filament

motion. In this ‘follower-force’ model, a compressive motor

force G acts tangentially at the free end of the filament whose

shape is found by balancing the forcing with elasticity and

low-Reynolds-number fluid drag. Numerical studies of the

full nonlinear elastohydrodynamics equations led to the discov-

ery of a flapping instability that arises as the control parameter,

s ¼ GL2/A, is varied. As is typically the case in a Hopf bifur-

cation, the linearized filament dynamics first develops

damped oscillations at an intermediate value ofsbefore exhibit-

ing self-sustained limit cycle motion beyond some critical value,

s*, both of which are also well captured by a linear stability

analysis.

It is worth noting that a follower force located somewhere

other than at the tip of the filament leads to the same flapping

dynamics. In that case, the length which enters the definition

of control parameter would no longer be the filament length

L, but the actual motor location. A more detailed analysis will

be discussed elsewhere [17].

Motivated by these findings, we then proposed as a

toy model a discrete two-link system in which elasti-

city was included via two torsion springs. Linear stability

analysis of this simpler dynamical system identified five

different regions depending on the value of the control

parameter S ¼ G‘/k, in full agreement with the results of

numerical simulations.

Molecular motors entrain fluid while moving along micro-

tubules. To capture this effect, we next developed a more

realistic continuum model based on approximating the forcing

of the motor with its cargo on the surrounding fluid as that

due to a localized force. As here we consider motors walking

towards the free end of microtubules, the flow they create

points in the same direction, thus creating an effective flow-

induced tension and delaying the onset of flapping. Although

the details of buckling are quantitatively different in the pres-

ence of this induced fluid flow, the physics of flapping is

essentially the same.

Having quantified the value for the onset of oscillations, it

is important to relate it to the biological system which motiv-

ated its study, namely the Drosophila oocyte. Despite the

model being an idealized version of the real system, in which
many molecular motors move along the filament, a speculative

comparison may still be made. The force exerted on the fila-

ments by the molecular motors is known to be, as already

discussed, of the order of piconewtons and microtubules are

approximately 20 mm in length. Despite the lack of information

in the literature about the bending modulus of microtubules in

this specific context, we may estimate their rigidity from the

direct measurements by Gittes et al. [22] for a single micro-

tubule in vitro, A � 10223 N m2. With these numbers, we

obtain that s � 120, indicating that the forcing from molecular

motors is large enough to lead to buckling and oscillations in

the biological system.

The work in this study is but a first step towards capturing

the full interplay of elastic and fluid mechanical forces in cyto-

plasmic streaming. We have focused our analysis on the case of

a single filament in an infinite fluid and subject to a force loca-

lized at its end. To capture biological dynamics, these

simplifications should be relaxed, in particular because we

know that: (i) multiple molecular motors walk along each

microtubule and they are not necessarily positioned at its

tip, possibly interacting hydrodynamically; (ii) motors

stochastically bind and unbind to the filaments, providing sto-

chasticity to both the long-range forces in the fluid and the

localized forces to the filaments; (iii) microtubules are not

found in isolation but tend to be densely packed, and therefore

subject to steric and hydrodynamic interactions; and (iv) in the

specific case of Drosophila which motivated this study, the

entire motor protein–filament network is located inside a

closed cavity (the oocyte), and the confinement of an incom-

pressible fluid provides another way for the filament to

undergo long-range interactions. The example of fluid–

structure interaction addressed in this study will provide a

fundamental basis to tackle these extensions and address the

dynamics of complex systems in cellular biophysics.
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