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2University Côte d’Azur, Inria, INRA, CNRS, UPMC University Paris 06, BIOCORE team, Sophia-Antipolis, France
3University Grenoble-Alpes, CNRS, LIPhy, Grenoble, France

HdJ, 0000-0002-2226-650X; SC, 0000-0001-7652-727X; NG, 0000-0003-2549-6631;
JG, 0000-0002-1329-7558

The growth of microorganisms involves the conversion of nutrients in the

environment into biomass, mostly proteins and other macromolecules. This

conversion is accomplished by networks of biochemical reactions cutting

across cellular functions, such as metabolism, gene expression, transport

and signalling. Mathematical modelling is a powerful tool for gaining an

understanding of the functioning of this large and complex system and the

role played by individual constituents and mechanisms. This requires

models of microbial growth that provide an integrated view of the reaction

networks and bridge the scale from individual reactions to the growth of a

population. In this review, we derive a general framework for the kinetic

modelling of microbial growth from basic hypotheses about the underlying

reaction systems. Moreover, we show that several families of approximate

models presented in the literature, notably flux balance models and

coarse-grained whole-cell models, can be derived with the help of additional

simplifying hypotheses. This perspective clearly brings out how apparently

quite different modelling approaches are related on a deeper level, and

suggests directions for further research.
1. Introduction
Bacterial growth curves have exerted much fascination on microbiologists, as

eloquently summarized by Frederick Neidhardt in his short commentary ‘Bac-

terial growth: constant obsession with dN/dt’ published almost 20 years ago

[1]. When supplied with a defined mixture of salts, sugar, vitamins and trace

elements, a population of bacterial cells contained in liquid medium is capable

of growing and replicating at a constant rate in a highly reproducible manner.

This observed regularity raises fundamental questions about the organization

of the cellular processes converting nutrients into biomass.

Work in microbial physiology has resulted in quantitative measurements of

a variety of variables related to the cellular processes underlying growth. These

measurements have usually been carried out during steady-state exponential or

balanced growth, that is a state in which all cellular components as well as the

total volume of the population have the same constant doubling time, implying

that the concentrations of the cellular components remain constant [2]. The

measurements have enabled the formulation of empirical regularities, also

called growth laws [3], relating the macromolecular composition of the cell to

the growth rate [4,5]. A classical example is the linear relation between the

growth rate and the fraction of ribosomal versus total protein, a proxy for the

ribosome concentration, over a large range of growth rates [6–9]. The reported

regularities between the growth rate and the macromolecular composition of

the cell are empirical correlations and should not be mistaken as representing

a causal determination of cellular composition by the growth rate [6,10]. In

fact, it has been shown that, for certain combinations of media, the same

growth rate of E. coli may correspond to different ribosome concentrations [6].
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Figure 1. (a) Population of n growing cells with different sizes. (b) Volume
Vol of a growing population of cells. (c) Total mass Ci and concentration ci of
molecular constituents i in a population with volume Vol (each constituent is
indicated by a different colour).
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To unravel causal relations, it is necessary to go beyond cor-

relations and consider the biochemical processes underlying

microbial growth. These processes notably include the

enzyme-catalysed transformation of substrates into precursor

metabolites, the conversion of these precursors into macromol-

ecules by the gene expression machinery, the replication of the

cell when its macromolecular content has attained a critical

mass and the regulatory mechanisms on different levels con-

trolling these processes [11–14]. Moreover, for identifying

causality, a dynamic perspective on microbial growth focusing

on transitions between different states of balanced growth, and

the time ordering of events during the transitions, is more

informative than considering a population at steady state

[10]. Whereas most measurements have been obtained under

conditions of balanced growth, in which experiments are

easier to control and reproduce, data on transitions from one

state of balanced growth to another are also available in the lit-

erature (reviewed in [4]). One classical example is the

measurements of the temporal ordering at which RNA, protein

and DNA attain their new steady-state concentrations after a

nutrient upshift [5,15]. Recent experimental technologies,

allowing gene expression and metabolism to be monitored in

real time, have opened new perspectives for studying the

dynamics of bacterial growth on the molecular level [16,17].

The large and complex networks of biochemical reactions

enabling microbial growth have been mapped in great detail

over the past decades and, for some model organisms, much

of this information is available in structured and curated data-

bases [18,19]. While a huge amount of knowledge has thus

accumulated, a clear understanding of the precise role

played by individual constituents and mechanisms in the func-

tioning of the system as a whole has remained elusive. For

example, it is well known that in the enterobacterium E. coli
the concentration of the second messenger cAMP increases

when glycolytic fluxes decrease, leading to the activation of

the pleiotropic transcription factor Crp. However, the precise

role of this mechanism in the sequential utilization of different

carbon sources by E. coli remains controversial [20,21].

Mathematical models have great potential for dissecting

the functioning of biochemical reaction networks underlying

microbial growth [22–24]. To be useful, they need to satisfy

two criteria. First, they should not be restricted to subsystems

of the cell, but provide an integrated view of the reaction net-

works, including transport of nutrients from the environment,

metabolism and gene expression. In particular, they should

account for the strong coupling between these functions:

enzymes are necessary for the functioning of metabolism,

while the metabolites thus produced are precursors for

enzyme synthesis. In the words of Henrik Kacser, one of the

pioneers of metabolic control analysis, ‘to understand the

whole, you must look at the whole’ [25]. Second, models of

microbial growth should be multilevel in the sense of expres-

sing the growth of a population in terms of the functioning

of the biochemical reaction networks inside the cells. Growth

amounts to the accumulation of biomass, that is proteins,

RNA, DNA, lipids and other cellular components produced

in well-defined proportions from nutrients flowing into the

cells. The two criteria amount to the requirement that models

should capture the autocatalytic nature of microbial growth,

the production of daughter cells from growth and division of

mother cells.

Precursors of such integrated, multilevel models are the

simple autocatalytic models of Hinshelwood, capable of
displaying steady-state exponential growth and a variety

of responses to perturbations reminiscent of the adaptive

behaviour of bacteria [26]. Another early example is the

coarse-grained model of a growing and dividing E. coli cell

[27], which has evolved over the years into a model of a

hypothetical bacterial cell with the minimal number of genes

necessary for growing and dividing in an optimal environment

[28]. In addition, we mention so-called cybernetic models

describing growth of microbial cells on multiple substrates

[29–31], and the E-CELL computer environment for whole-

cell simulation [32]. In recent years, integrated, multilevel

models of the cell have received renewed attention with the

landmark achievement of a model describing all individual cel-

lular constituents and reactions of the life cycle of the human

pathogens Mycoplasma genitalium [33] and other genome-scale

models of bacteria [34]. In addition, several coarse-grained

models describing the relation between the macromolecular

composition of microorganisms and their growth rate have

been published [24,35–39].

At first sight, the above-mentioned models of microbial

growth are quite diverse, in the sense that they have a differ-

ent scope and granularity, make different simplifications, use

different approaches to obtain predictions from the model

structure and originate in different fields (microbiology,

theoretical biology, biophysics and biotechnology). The aim

of this review is, first, to show how a general framework

for the kinetic modelling of microbial growth, including an

analytical expression for the growth rate, can be mathemat-

ically derived from few basic hypotheses. Second, we show

how additional simplifying assumptions lead to approximate

kinetic models that do not require the biochemical reaction

networks to be specified in full. The resulting models exem-

plify two widespread modelling approaches, flux balance

analysis (FBA) and coarse-grained whole-cell modelling.

The discussion of the different hypotheses and assumptions,

including those related to the measurement units employed,

which are often not explicit and/or buried in the (older) lit-

erature, reveals how the models are related on a deeper

level. This will be instrumental for identifying their respective

strengths and weaknesses as well as for indicating new direc-

tions in the study of the biochemical reaction networks

underlying microbial growth.
2. Growth of microbial populations
An obvious view on microbial growth starts by considering

the individual cells in a growing population (figure 1a). We

denote by n(t) the number of cells at time t (h). Individual

cells in a temporal snapshot of the population have different

sizes, as they are in different stages between birth and div-

ision. Moreover, cell sizes at birth and division are different
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[40–42]. As a consequence, the size of the cells in a popu-

lation at time t is best described by a statistical distribution.

This distribution may change over time and with the exper-

imental conditions. For instance, in conditions supporting a

higher growth rate, the average size of the cell in the popu-

lation is larger [6,43]. Several models of the cell size

distribution and its dependence on the experimental con-

ditions have been proposed, based on different hypotheses

about the criterion determining when a cell divides (reviewed

in [42,44]). When the size distribution is known at every time

t, the number of cells in a growing population can be directly

used to estimate the volume of the population.

In what follows, however, we will adopt another point of

view and ignore the individual cells making up a population.

Instead, we directly quantify the growing population in terms

of its expanding volume Vol (l) (figure 1b), that is, the sum of

the volumes of the cells in the population. This aggregate

description is appropriate when one is interested in concen-

trations of molecular constituents on the population level

rather than in individual cells, as in the kinetic models devel-

oped below. Moreover, it corresponds to most data available

in the experimental literature, obtained by pooling the

contents of all cells in a (sample of the) population.

We model the growth of a population of microorganisms by

means of a deterministic ordinary differential equation (ODE):

_Vol ¼ m � Vol; ð2:1Þ

that is, the growth rate m (h21) of the population is defined as the

relative increase of the volume of the population. Both Vol and m

are functions of time t (h). For a constant steady-state growth rate

m¼ m*, we obtain the following explicit solution of equation (2.1):

Vol(t)¼ Vol(0) . em* � t, where Vol(0) represents the initial popu-

lation volume. The doubling time of a population with a

growth rate m* is given by t1/2 ¼ ln2/m*. This is a direct conse-

quence of the solution of equation (2.1), which stipulates that

Vol(t1/2)¼ 2Vol(0)¼ Vol(0) . em* � t1/2, and therefore ln2¼ m* . t1/2.

The growth rate as defined by equation (2.1) is sometimes

also called specific growth rate, in order to indicate that it

concerns the increase in population volume per unit of popu-

lation volume ( _Vol=Vol), instead of the absolute increase in

population volume ( _Vol). In what follows, we will drop the

qualifier ‘specific’. The growth rate definition of equation

(2.1) should be distinguished from another definition of the

growth rate as 1/t1/2, that is, the number of doublings of

the population volume per time unit. While the two defi-

nitions result in a quantity with the same unit, they do not

mean the same thing and differ by a factor of ln2 [4].

Below, we use the growth rate definition of equation (2.1).

Models that do not distinguish individual cells but lump

them into an aggregate volume have been called non-segre-

gated as opposed to segregated models that do make this

distinction [45–47]. If the population is composed of cells

with the same growth rate, not much is lost by ignoring indi-

vidual cells and using the population-level description of

equation (2.1) (see the electronic supplementary material).

There are situations, however, in which this assumption is

not appropriate and in which essential features of the

growth kinetics are shaped by the heterogeneity of the popu-

lation [48–51]. For example, it was recently proposed that the

lag observed in diauxic growth of E. coli on a glycolytic and

gluconeogenic carbon source (e.g. glucose and acetate) is due

to the responsive diversification of the population into two

subpopulations upon the depletion of the (preferred)
glycolytic carbon source and that only one of these subpopu-

lations continues growth on the gluconeogenic carbon source

[49]. Non-segregated models are obviously not suitable for

describing such phenomena and models describing the

dynamics of the distribution of individual cells in a

population or of subpopulations need to be used instead.
3. Volume and macromolecular content of cells
The model of equation (2.1) is unstructured in the sense that it

does not take into account the biochemical processes enabling

cells to grow. By contrast, so-called structured models

[45–47] explicitly describe molecular constituents of the cell

and the biochemical reactions in which they are involved.

Let Ci (g) be the (dry) mass of molecular constituent i con-

tained in volume Vol (figure 1c). A common assumption

supported by experimental data ([52] and references therein)

is that the volume of the population is proportional to the bio-

mass, that is, the total mass of the molecular constituents of

the cells:

Vol �
X

i

Ci ¼ B, ð3:1Þ

with B (g) the biomass. Another way to frame the assumption

is to say that the biomass density is constant. In other words,

Vol ¼ d �
X

i

Ci ¼ d � B, ð3:2Þ

where 1/d (g l21) denotes the constant biomass density. For bac-

terial cells, the cytoplasmic biomass density has a value of about

300 g l21 [53,54], meaning that 70% of the cell content is water.

Macromolecules make up most of the biomass. For E. coli,
Bremer & Dennis [6] conclude that the sum of protein, RNA

and DNA accounts for between 65% and 73% of the total cellular

dry mass, depending on the growth rate, whereas Basan et al.
[55] report a stable proportion of approximately 90%. In all of

these cases, protein constitutes the largest mass fraction.

Consistent with the decision above to consider the

population as a non-segregated volume, we define the con-

centration ci (g) of each molecular constituent i in a

population as

ci ¼
Ci

Vol
: ð3:3Þ

If the cells all have the same concentration of constituent i,
that is, if molecules are evenly distributed between the

cells, then ci also applies to the individual cells (see the elec-

tronic supplementary material). While this is a suitable

approximation in many cases, there are also situations

where variability of enzyme and metabolite concentrations

occurs and may lead to a heterogeneous population of cells

with different growth phenotypes [50,56].

An immediate consequence of the above definition is the

following relation:

X
i

ci ¼
P

i Ci

Vol
¼ B

Vol
¼ 1

d
: ð3:4Þ

In words, the assumption of the proportionality of volume

and biomass implies that the total concentration of molecular

constituents
P

i ci in a growing cell population is constant.

While this corresponds to measurements for balanced

growth, not many data are available for growth transitions

(but see [57]).



rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170502

4
The dynamics of each molecular constituent i are modelled

by means of an ODE, obtained from equations (2.1) and (3.3):

_ci ¼
_Ci � Vol� Ci � _Vol

Vol2
¼

_Ci

Vol
� Ci

Vol
�

_Vol

Vol

¼
_Ci

Vol
� m � ci: ð3:5Þ

Note that a dilution term due to the growth of the population

appears in the equation describing the dynamics of ci. As a con-

sequence, if the mass of a specific molecular constituent i remains

constant ( _Ci ¼ 0), but the population continues to grow (m . 0),

its concentration decreases (_ci < 0), as intuitively expected.

The growth rate itself is directly connected to the

concentrations of the molecular constituents, because

m ¼
_Vol

Vol
¼ d �

X
i

_Ci

Vol
¼ d �

_B
Vol

: ð3:6Þ

Therefore, while it makes sense for a specific constituent i
to dilute out when it is not produced, no growth dilution

occurs if the mass of all molecular constituents remains con-

stant ( _Ci ¼ 0 for all i). In the latter case, it follows from

equation (3.6) that the growth rate is 0 by definition.

It is increasingly realized that growth dilution may have

important physiological consequences [52,58,59] and there-

fore cannot be neglected in mathematical models of cellular

processes. In particular, the interaction of a synthetic circuit

with the growth physiology of the cell, and the changes in

the growth rate this entails, may have an unexpected non-

linear feedback on the dilution of transcription factors and

thus on the functioning of the circuit. This was illustrated

by a synthetic circuit in E. coli in which the alternative T7

RNA polymerase regulates itself and a fluorescent protein.

Expression of the fluorescent protein causes a metabolic

burden, impairing growth and thus growth dilution of T7

RNA polymerase. The resulting positive feedback was

shown to lead to two different phenotypes: growth and

growth arrest [59].

An important special case of microbial growth occurs

when the growth rate and the concentrations of the individual

molecular constituents are constant over time, that is, m ¼ m*

and ci ¼ c*i, for all i. From ci ¼ Ci/Vol¼ c*i it follows that a

doubling of the volume Vol of the population is accompanied

by a doubling of the mass Ci of each molecular constituent,

which explains why this situation of steady-state exponential

growth is also referred to as balanced growth [2,60].
4. Biochemical reactions underlying microbial
growth

The molecular constituents of the cell are continually pro-

duced and consumed by biochemical reactions. Many of

these reactions are enzyme-catalysed, such as the metabolic

reactions involved in the conversion of nutrients from the

environment into building blocks for macromolecules

(amino acids, nucleotides) and energy carriers (ATP,

NADH). The building blocks and energy are consumed in

large part by the transcription and translation reactions pro-

ducing macromolecules. The metabolic reactions together

form the metabolic network of the cell [14,61].

The term _Ci=Vol in equation (3.5) represents the net effect

of the biochemical reactions on the concentration of
molecular constituent i, separate from growth dilution.

Usually, for intracellular reactions, the quantities of molecu-

lar constituents are expressed in molar rather than mass

units. Hence, we introduce Xi ¼ Ci/ai, with Xi (mol) the

molar quantity of constituent i and ai (g mol21) the molar

mass of i. The reason for this change in units is that kinetic

models of biochemical reactions are based on the physical

encounters of molecules in the cell [62,63], which is best

expressed in terms of molar quantities. With this unit

conversion, and xi ¼ Xi/Vol, equation (3.5) becomes

_xi ¼
_Xi

Vol
� m � xi: ð4:1Þ

The term _Xi=Vol can be further developed by explicitly

accounting for the reactions producing and consuming the

ith molecular constituent. Consider the jth reaction, in

which constituent i participates with stoichiometry Nij, that

is, reaction j produces a net change of Nij molecules of con-

stituent i. If the reaction produces constituent i, then Nij .

0, whereas if it consumes constituent i, then Nij , 0 (if con-

stituent i is not altered in the reaction, then Nij ¼ 0). We

define Ni as the (row) vector of stoichiometry coefficients of

constituent i for all reactions in the system. Moreover, we

define the (column) vector of reaction rates v, such that vj is

the rate of the jth reaction (mol l21 h21).

With the help of the above concepts, the effect of the bio-

chemical reactions on the concentrations of molecular

constituents can be rewritten as

_xi ¼ Ni � v� m � xi, ð4:2Þ

or in more compact form, denoting the (column) vector of the

concentrations of all molecular constituents by x:

_x ¼ N � v� m � x: ð4:3Þ

This is the classical formulation of stoichiometry models of

biochemical reactions, extended with a dilution term

[62,64]. Equation (4.3) does not explicitly take into account

that the reaction rates v depend on the concentrations of the

molecular constituents participating in the reactions. That

is, it would be more appropriate to write v in functional

form v(x). The model of equation (4.3) describes the bio-

chemical reaction system on the population level. If all cells

have the same reaction rates, then the model applies also to

the individual cells (see the electronic supplementary

material). It should be noted though that reaction rates may

differ between cells, even when the concentrations x of cellu-

lar constituents are identical, due to the intrinsic stochasticity

of biochemical reactions [63].

As a consequence of the conversion of Ci to Xi and the

introduction of reaction stoichiometries, the growth rate

becomes,

m ¼ d �
X

i

_Ci

Vol
¼ d �

X
i

ai �
_Xi

Vol

¼ d �
X

i

ai �Ni � v(x): ð4:4Þ

The growth rate thus equals the sum of all reaction rates in

mass units (
P

i ai �Ni � v(x) (g l21 h21)), that is the net rate

of accumulation of intracellular molecular constituents

within a unit volume per unit time, relative to the total

amount of molecular constituents within a unit volume

(1/d (g l21)). The latter quantity can equivalently be written

as
P

i ai � xi, following equation (3.4) and xi ¼ ci/ai.
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Figure 2. (a) Population of cells with volume Vol growing at a rate m,
described by the model of equations (4.5) and (4.6). The reactions fuelling
growth involve intracellular constituents with concentrations x. The dots rep-
resent the molecular constituents and the arrows biochemical reactions. (b)
Idem, but extended with a bioreactor environment from which the cells
take up nutrients and into which they excrete by-products (with concen-
trations y). This extended system is described by equations (5.4) – (5.7).
The boundary of the environment is schematized by the pink rectangle.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170502

5

Combining all of the above, we obtain the following

model for a growing microbial population:

_x ¼ N � v(x)� m � x ð4:5Þ

and

m ¼ d �
X

i

ai �Ni � v(x): ð4:6Þ

We emphasize that the explicit expression for m in equation

(4.6) is not an ad hoc definition, but mechanically follows

from the basic modelling assumptions underlying the stoichi-

ometry model of equation (4.5), notably the assumption of

constant biomass density. Figure 2a schematically projects

the reaction network on a growing microbial population.

Textbooks on the modelling of biochemical reaction systems

detail the different rate laws that specify how the reaction rates vj

depend on the concentrations x [62,64]. A common choice, rely-

ing on first principles, is to assume mass–action kinetics for the

reactions, based on the random encounter of molecules in a

well-mixed volume [62,63]. In many situations, however, it is

more convenient to lump individual reactions into aggregate

reactions that are described by approximate rate laws such as

(reversible and irreversible) Henri–Michaelis–Menten kinetics,

Monod–Wyman–Changeux kinetics, Hill kinetics, etc. [62,64].

The Henri–Michaelis–Menten rate law for an irreversible,

enzyme-catalysed reaction with substrate concentration x
and enzyme concentration e reads: v(x, e) ¼ Vmax � x=(Km þ x),

with Vmax ¼ kcat � e, where kcat (min21) is the so-called catalytic

constant of the enzyme, quantifying the maximum number of

substrate molecules converted per enzyme per minute. This

expression, and many other approximate kinetic rate laws, can

be derived from mass–action kinetics when making appropri-

ate assumptions on the time scale of the rate of the elementary

reaction steps. In the case of the Henri–Michaelis–Menten

rate law, this concerns the association/dissociation of enzyme

and substrate and the formation of the product [65,66].
5. Growth in a changing environment
Some of the reactions changing the molecular constituents of

the cell correspond to exchanges with the environment, that

is the uptake of substrates and the excretion of products.

The environment is not explicitly modelled by equations

(4.5) and (4.6) and the entries in v corresponding to the

rates of these exchange reactions are therefore treated as

external inputs. For many purposes, however, it is more
appropriate to extend the model and include a (simple) rep-

resentation of the environment. In what follows, we equate

the environment with a bioreactor filled by a liquid

medium of fixed volume containing the growing population

of microorganisms as well as external substrates and pro-

ducts. The substrate and product concentrations in the

medium are denoted by the vector y. Usually, external con-

centrations are expressed in terms of units g l21, that is

mass in a fixed volume of medium.

The dynamics of the substrate and product concentrations

in the medium can be described by the following differential

equation:

_y ¼ ay � E � v(x, y) � Vol

Volmedium

� �
, ð5:1Þ

where E is the stoichiometry matrix for the exchange reac-

tions, ay is the diagonal matrix of molar mass coefficients

of the external metabolites (g mol21) and Volmedium is the

(constant) volume of the medium (l). Usually, Vol�
Volmedium. The multiplication of ay . E . v(x, y) by Vol

expresses the fact that the total rate of consumption of sub-

strates and accumulation of products depends on the

volume of the growing microbial population. The division

of the resulting product by Volmedium means that we are inter-

ested in the concentration of these substrates and products in

the medium. Equation (5.1) can be rewritten in a more classi-

cal form by explicitly using the biomass variable B (g),

introduced in the previous section, and the concentration of

biomass in the medium b (g l21), defined as b ¼ B/Volmedium.

It follows with equation (3.2) that

Vol

Volmedium
¼ d �

P
i Ci

Volmedium
¼ d � b ð5:2Þ

and, consequently,

_y ¼ d � ay � E � v(x, y) � b: ð5:3Þ

The above considerations lead to the following extended

model, taking into account the dynamics of exchanges with

the environment (figure 2b):

_x ¼ N � v(x, y)� m � x, ð5:4Þ
_y ¼ d � ay � E � v(x, y) � b, ð5:5Þ
m ¼ d �

X
i

ai �Ni � v(x, y) ð5:6Þ

and

_b ¼ m � b, ð5:7Þ

where we have used the equalities

m ¼
P

i
_CiP

i Ci
¼

_B
B
¼

_b
b

, ð5:8Þ

to obtain the biomass differential equation. For some pur-

poses, it is useful to split the reaction rate vector v(x, y) into

rates of exchange reactions vex(x, y) and rates of internal reac-

tions vint(x), where obviously the latter do not depend on the

concentration of external substrates.

Interestingly, the above model can be used to derive an

explicit relation between growth rate and substrate avail-

ability. A key insight for the derivation is that due to

coupling of the molar mass coefficients and the stoichiometry

coefficients, the expressions for the internal reaction rates in

the right-hand side of equation (5.6) cancel out. Consider

an arbitrary internal reaction, irreversibly converting one
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Figure 3. Population of cells growing in a bioreactor with metabolic reactions
that involve free metabolites with concentrations xM and metabolites incor-
porated into biomass with masses C0M. The dots represent the molecular
constituents and the arrows biochemical reactions. The dashed reactions rep-
resent the incorporation of free metabolites into the biomass. This extended
system is described by modifying equations (5.4) – (5.7) with new expressions
for the steady-state dynamics of the metabolic network (equation (6.5)) and
the growth rate (equation (6.1)).
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molecule of reactant A into nab molecules of reactant B (with

molar masses aa and ab, respectively) at a rate vab. Note that

the reaction rate vab occurs twice in the sum of equation (5.6):

2aavab (for reactant A) and abnabvab (for reactant B). How-

ever, due to mass conservation, we must have abnab ¼ aa,

so that the two terms in the sum cancel out. Extending this

argument to every internal reaction gives

m ¼ d �
X

i

ai �Ni � v(x, y) ¼ d �
X

k

ay,k � (� Ek) � v(x, y), ð5:9Þ

where Ek denotes the kth row of E, corresponding to external

metabolite k, and ay,k the kth diagonal element of ay. In

words, the only remaining terms are the rates of the exchange

reactions, because they occur only once in the sum of

equation (5.6). The minus sign in 2E is explained by the fact

that, for uptake reactions, the sum of equation (5.6) includes

the increase of intracellular biomass components rather than

the decrease of extracellular metabolites (the opposite for

excretion reactions). Note that it follows from equations (5.3),

(5.8) and (5.9) that
P

k _yk þ _b ¼
P

k _yk þ m � b ¼ 0, expressing

mass conservation.

Furthermore, assume that the exchanges of the cells with

the environment can be reduced to the uptake of a single

substrate S, used for the production of biomass. The concen-

tration of the substrate in the medium is denoted by s, its

molar mass as and its uptake rate vs. Note that, in this case,

y ¼ s, ay ¼ as and E ¼ 2 1, so that we obtain m ¼ d . as
.

vs(x, s). That is, the growth rate is directly proportional to

the substrate uptake rate, a relation sidestepping the bio-

chemical reactions taking place inside the cells. If we

further choose a saturating function for the uptake kinetics,

vs(x, s) ¼ Vmax � s=(Ks þ s), we obtain the so-called Monod

equation [67]

m ¼ mmax �
s

Ks þ s
, ð5:10Þ

with mmax ¼ d � as � Vmax. The Monod equation, which has the

same mathematical form as the Henri–Michaelis–Menten

rate law, is a well-known phenomenological relation that

has been shown to fit quite well data of the steady-state

growth rate of bacteria as a function of a single growth-limit-

ing substrate [3,67]. More complex uptake patterns may occur

when several substrates are available [68–71]. While in many

bacteria the availability of a preferred carbon source represses

the utilization of other, secondary carbon sources, a phenom-

enon known as carbon catabolite repression (CCR) [20], low

growth rates or mixtures of secondary carbon sources with-

out the preferred carbon source may disable CCR and lead

to the co-utilization of different carbon sources.

In equations (5.4)–(5.7) it is implicitly assumed that the

only changes in the concentrations of substrates and products

in the environment occur through exchanges with the grow-

ing microbial population, making it an instance of a batch

culture. The model can be easily adapted to other environ-

ments, such as continuous culture or fed-batch culture

[72,73]. In a continuous culture, a fixed amount of medium

per time unit, including microbial cells, is replaced by fresh

medium, whereas in a fed-batch culture, nutrients are

added over time without removing spent medium (and

Volmedium is no longer constant). While these different bio-

reactor regimes have been mostly used in the context of

biotechnological applications, it is interesting to remark that

complex natural environments, such as the digestive tracts
of vertebrates and insects, can profitably be modelled as

coupled series of bioreactors [74,75].

Equations (5.4)–(5.7) form a self-consistent kinetic model

of a growing microbial population, taking up nutrients from

the environment, converting these into biomass, and excreting

by-products. In theory, the model is capable of accomodating

all internal reactions and reactions exchanging substrates and

products with the environment, from enzymatic reactions to

signalling pathways and transcription and translation. Some

of the examples of whole-cell models mentioned in the intro-

duction can be seen, to some extent, as instances of this

general scheme [28,32]. In practice, such models are not easy

to build though. They quickly become very complex to

handle, with hundreds of reactions and molecular constituents

whose concentrations evolve on very different time scales.

Moreover, many of the parameter values will be unknown

or known only within an order of magnitude, creating difficult

model identification problems [76–78].
6. Connecting metabolism and growth: flux
balance analysis

The practical difficulties encountered when dealing with

large kinetic models of microbial cells have motivated

approximate models that are based on a number of simplify-

ing assumptions. One well-known example are so-called FBA

approaches [79–81]. Below we summarize how flux balance

models can be obtained from the general modelling frame-

work of equations (5.4)–(5.7), by progressively introducing

additional modelling assumptions.

A first simplifying assumption consists in limiting the

scope of the models to metabolism alone, disregarding pro-

teins and other macromolecules. It may seem somewhat

paradoxical to exclude the major constituents of biomass

from a model of microbial growth, but equation (3.6) can

be replaced with a new definition of the growth rate, based

on the rate of consumption of biomass precursor metabolites.

To this end, similar to what was proposed in a recent review

of FBA [79], we distinguish between free metabolites and the

same metabolites incorporated into proteins and other macro-

molecules. The former, with concentration vector xM, are

included in the model, whereas the latter, with mass vector

C0M, are not, although they will be used in the derivation of

the model (figure 3). The biomass B (g) is assumed to consist

only of the mass of metabolites incorporated into proteins
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and other macromolecules, that is, B ¼
P

l C0M,l where l runs

over the incorporated metabolites. For reasons of consistency,

we also restrict d, the inverse biomass density, to these incor-

porated metabolites. In agreement with the above, we define

a new vector vM, consisting of the rates of the exchange reac-

tions and the reactions that produce metabolites in xM, as well

as the corresponding stoichiometry matrix NM.

The coefficients bl ¼ C0M,l/B represent the mass fractions

of the incorporated precursor metabolite in the biomass. By

definition, bl � 0 and
P

l bl ¼ 1, and we further suppose,

as a second simplifying assumption, that these mass fractions

are constant. The biomass composition has been empirically

determined for several microorganisms, usually for a specific

growth condition [82–84]. The incorporation of the precursor

metabolites into the biomass, in the proportions bl in which

they compose the latter, can be seen as a macroreaction. To

unambiguously define this macroreaction, we introduce the

reaction rate vector v0M, which describes the rate of incorpor-

ation into proteins and other macromolecules of the (free)

metabolites. More precisely, v0M,l (mol l21 h21) represents the

rate of incorporation of the metabolite having concentration

xM,l. Many of the rates v0M,l will be 0, because the correspond-

ing metabolites are not included in the biomass (bl ¼ 0). In

principle, the degradation of macromolecules back to precur-

sor metabolites would lead to additional reaction rates, but,

given that proteins, the main component of biomass, are

usually stable on the time scale of interest [85,86], the reverse

reactions are ignored here.

From the above, and from applying the general growth

rate expression of equation (4.6) to the biomass constituents

C0M,l, it follows that

m ¼ d �
X

l

al � v0M,l(xM,l) ¼ d � vB(xM), ð6:1Þ

where vB (g l21 h21) is defined as the rate of the biomass

macroreaction, that is, the total rate of incorporation of pre-

cursor metabolite mass into biomass per unit volume of the

cell population. Moreover, the dynamics of the mass of

each incorporated metabolite l in the growing microbial

population is given by

_C
0
M,l ¼ al � v0M,l(xM,l) � Vol ¼ d � al � v0M,l(xM,l) � B: ð6:2Þ

We also obtain from the definition of the biomass composition

that

_C
0
M,l ¼ bl � _B ¼ bl � m � B, ð6:3Þ

so that combining equations (6.2) and (6.3) yields an expression

for the rates of the individual incorporation reactions:

v0M,l(xM,l) ¼
bl

d � al
� m ¼ bl

al
� vB(xM): ð6:4Þ

In words, the rate of incorporation of each individual metabolite

is proportional to the rate of the biomass reaction, modulated by

the factor bl/al.

The assumption of a constant biomass composition,

leading to equation (6.4), means that the ratio of the time-

varying variables C0M,l and B is constant. Hence it follows

from equations (3.2) and (3.3) that the concentrations of the

pools of incorporated precursor metabolites c0M,l are also con-

stant for all l (i.e. c0M,l ¼ C0M,l/Vol¼ bl/d). This can be

interpreted as assuming that any changes in a slowly varying

environment lead to a rapid adjustment of the rates in the

metabolic network, and consistent with this, a rapid
adjustment of concentrations of the free metabolites, so as to

obtain invariant steady-state concentrations of the incorpor-

ated precursor metabolites. In other words, the metabolic

system is at quasi-steady state with respect to the environment

[62,87]. Indeed, measured in vivo response times of many

metabolite pools in E. coli are on the order of seconds to min-

utes [16,88], whereas the concentrations of external substrates

in equation (5.5) vary on a time scale set by the growth rate

when they remain well above the half-saturation constant Ks

defining the uptake kinetics. As an aside, we note that constant

concentrations of incorporated precursor metabolites do not

exclude that the concentrations of individual enzymes, not

modelled here, may vary over time [89].

When further assuming, third, that growth dilution of

metabolite concentrations xM can be ignored, as its effect is

negligible with respect to the turn over of metabolite pools

by enzyme-catalysed reactions, we obtain the following modi-

fication of the stochiometry model of equation (5.4), now

restricted to the metabolic network and the consumption of

biomass precursor metabolites by the biomass reaction:

0 ¼ (NM NB) � vM(x�M, y)
vB(x�M)

� �
, ð6:5Þ

where NB ¼ ( . . . , 2 bl/al, . . . )T. The quasi-steady-state value

of the metabolite concentrations is indicated by an asterisk (*).

A fourth key simplification underlying FBA, in line with

the quasi-steady state of metabolism, is to ignore the kinetics

of the reactions and consider only fluxes, that is reaction rates

at steady state. As a consequence, the explicit dependence of

fluxes on concentrations disappears from the model and the

fluxes become the new variables of the system:

0 ¼ (NM NB) � vM

vB

� �
, ð6:6Þ

where we have dropped the steady-state symbol (*) from the

fluxes.

Equation (6.6) is a linear system that is usually degener-

ate, in the sense that the number of rows in the matrix (NM

NB) is much smaller than the number of columns. As a con-

sequence, the system does not have a unique, but an

infinite number of solutions, given by the kernel of the stoi-

chiometry matrix, ker(NM NB) [90]. Hence, an infinite

number of flux distributions satisfy the stoichiometry con-

straints. The space of solutions can be reduced by taking

into account additional inequality constraints on the fluxes,

obtained (directly or indirectly) from measurements:

vM � vM � �vM, ð6:7Þ

where vM and �vM are lower and upper bounds on the fluxes,

respectively.

One specific case of interest are measurements of the

uptake and excretion fluxes vM,ex. If these measurements

are sufficiently precise, then a subset of solutions may be

obtained in which the possible values for intracellular, non-

measured fluxes remain within tight bounds. This approach,

called (stoichiometric) metabolic flux analysis (MFA) [91],

underlies, for example, the analysis of the influence of a

post-transcriptional regulator, CsrA, on the flux distribution

in central carbon metabolism in E. coli [92]. From measure-

ments of the uptake and excretion fluxes of wild-type and

mutant strains growing on glucose, estimates of glycolytic

fluxes were obtained that, combined with measurements of

metabolite pools and gene expression, allowed one to
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pinpoint the effect of CsrA on the activity of PfkA, a central

glycolytic enzyme. If measurements are reduced to exact

values, that is if vM,ex ¼ vM,ex ¼ �vM,ex, then the addition of

the corresponding equality constraints may under certain

conditions lead to a unique solution of equation (6.6) [93].

While flux measurements can thus be used to reduce the sol-

ution space, in many cases this is not enough to obtain

sufficiently informative predictions of intracellular fluxes. One

way to proceed is to select within the remaining set of solutions

those that satisfy some optimization criterion, an approach called

FBA [80,94]. The most frequently chosen criterion is the maximi-

zation of the growth rate. The choice of this criterion is based on

the argument that a higher growth rate provides a selective

advantage to microorganisms, because it allows competitors

for shared resources to be outgrown. In our case, following

equation (6.1), the growth rate is proportional to the rate of the

biomass reaction, so that growth-rate maximization results in a

linear optimization problem:

Find vM,opt ¼ arg max
vM

vB, for vM satisfying

equations ð6:6Þ and ð6:7Þ: ð6:8Þ

FBA has been used in many applications [95], such as predicting

growth rates of E. coli on different carbon sources [96] and in

different mutants before and after adaptive evolution [97].

Various extensions of classical FBA as summarized by

equation (6.8) have been proposed in the literature. For our pur-

pose, a relevant extension is dynamic FBA. In this case, the

solution of the FBA problem is embedded in a model of the

dynamically changing environment, such that the concentration

of external metabolites y provides constraints on the fluxes:

vM(y) � vM � �vM(y): ð6:9Þ

In particular, nutrient uptake fluxes depend on the concentration

of external metabolites. This dependence may, for example,

follow a Henri–Michaelis–Menten rate law, as proposed in the

previous section. Following the convention that uptake fluxes

are negative, an uptake flux in vM, involving external metabolite

k, will typically have an upper bound 0 and a lower bound 2ky,k .

yk/(Ky,k þ yk), where ky,k (mol l21 h21) is the maximum uptake

rate of external metabolite k, and Ky,k (mol l21) is its half-satur-

ation constant. In dynamic FBA, in particular the so-called

static optimization variant [98], at each time point t with a

specific value of y¼ y(t), the following linear optimization

problem is solved:

Find vM,opt(y) ¼ arg max
vM

vB, for vM satisfying

equations ð6:6Þ and ð6:9Þ: ð6:10Þ

The resulting values of the flux distribution vM,opt(y), and the

flux of the biomass reaction vB,opt(y) leading to the maximal

growth rate d . vB,opt(y), enter the model of the dynamically

changing environment

_y ¼ d � ay � E � vM,opt(y) � b ð6:11Þ

and

_b ¼ d � vB,opt(y) � b: ð6:12Þ

Notice that, in general, the flux distribution vM,opt(y) is not

unique. To make the problem well-posed, additional criteria

for selecting optimal solutions need to be specified. To this

end, approaches to sample the set of possible flux distributions

in a computationally efficient and biologically meaningful

manner have been developed [99,100]. Other approaches explore
the set of possible solutions by tying its geometry to the structure

of the underlying reaction network [101,102].

The main limitation of FBA and dynamic FBA is that these

approaches require strong assumptions to be made. To com-

pensate for the absence of kinetic information, cells are

hypothesized to optimize a specific objective function, here

the growth rate. In many cases the use of growth-rate maximi-

zation is debatable [103,104] and it is not straightforward to

specify in advance which alternative objective criterion is

appropriate. The focus on metabolism excludes proteins and

other macromolecules from the model. The absence of these

major biomass constituents requires the definition of a new

biomass reaction, which comes with additional assumptions

on the dynamics of metabolite concentrations. Moreover,

FBA models occlude the fundamental autocatalytic nature of

the cell, in the sense that the products of metabolism are uti-

lized for synthesizing proteins that in turn control metabolic

reactions as well as transcription and translation processes

[105]. While a number of extensions of FBA have been pro-

posed in the literature [34,106–112], these do not entirely

make up for the above-mentioned limitations.
7. Connecting gene expression, metabolism and
growth: coarse-grained whole-cell models

Another way to sidestep the full complexity of the metabolic

and gene regulatory networks controlling microbial growth is

to preserve the modelling scheme of equations (5.4)–(5.7), but

to simplify the equations in a different way. The kinetics of

the reactions, and notably the regulatory interactions shaping

the kinetics, are no longer ignored, as in the previous section.

However, instead of accounting for individual molecular con-

stituents of the cell, these are lumped into a few classes of

constituents with their corresponding macroreactions. These

approximations result in a model with the same scope, but

that provides a more coarse-grained picture of the cell.

An example of this approach are so-called self-replicator

models. These models provide a high-level description of

the functions involved in the growth of a population, notably

the conversion of external substrates into metabolic precur-

sors (metabolism) and the synthesis of macromolecules,

notably proteins, from these precursors (gene expression).

The self-replicatory nature of the system originates in the cat-

alytic role of the proteins in both metabolism (enzymes) and

gene expression (RNA polymerase, ribosome). The principle

of self-replicator models of microorganisms can be found in

the work of Hinshelwood [26], Gánti [113] and Koch [114],

to cite some early examples. More recently, Molenaar et al.
[37] used self-replicator models as an analytical tool for

explaining the phenomenon of overflow metabolism in var-

ious bacteria. They proposed that this wasteful excretion of

carbon sources during fast growth arises from a trade-off

between what the authors call metabolic efficiency (high pro-

duction of precursors per unit substrate) and catabolic

efficiency (high production of precursors per unit enzyme).

An example of a self-replicator system is shown in figure 4.

In this case, following the scheme of equations (5.4)–(5.7), y ¼
s represents the concentration of an external substrate, and x ¼
( p, r, m)T the concentrations of precursor metabolites P, ribo-

somes and other components of the gene expression

machinery R, and enzymes M, respectively. The entries of

the reaction rate vector v ¼ (vp, vr, vm)T denote the substrate
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M

R
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vM

vr

Figure 4. Self-replicator model of bacterial growth, corresponding to the kin-
etic model of equations (7.1) – (7.4) with three macroreactions describing the
conversion of external substrate (S) into metabolic precursors (P) which are
used for the synthesis of ribosomes and other components of the gene
expression machinery (R) and enzymes making up the metabolic machinery
(M) (adapted from [36]). M enables the conversion of external substrates into
precursors, while R is responsible for the production of M and R itself. The
(auto)catalytic activity of the metabolic machinery and the gene expression
machinery thus allows the cell to replicate its protein contents, the major
constituent of biomass. Solid arrows represent material flows and dashed
arrows regulatory interactions.
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uptake rate, enzyme production rate and ribosome production

rate, respectively. With these substitutions, the general model

of equations (5.4)–(5.7) can be rewritten as

_p
_r
_m

2
4

3
5 ¼ np �nr �nm

0 1 0
0 0 1

2
4

3
5 �

vp(m, s)
vr(r, p)
vm(r, p)

2
4

3
5� m �

p
r
m

2
4

3
5, ð7:1Þ

_s ¼ �d � as � vp(m, s) � b, ð7:2Þ
m ¼ d � ap � np � vp(m, s) ð7:3Þ

and

_b ¼ m � b, ð7:4Þ

where np, nr, nm are stoichiometry constants, and as and ap (g

mol21) are the molar mass coefficient of substrate and precursor

molecules, respectively. We also introduce am and ar, the molar

mass coefficients of the components of the metabolic and gene

expression machinery, respectively. The expression for the

growth rate is obtained from mass conservation, which implies

(as explained in §5) that ap . nr¼ ar and ap . nm ¼ am.

Note that, like in the previous section, protein degradation

is ignored in the model, motivated by the observations that

the half-lives of proteins are usually sufficiently long to be

ignored on the time scale of interest. Moreover, the only

macromolecules we consider are proteins, thus excluding

RNA and DNA. This is motivated by the fact that the mass

fraction of RNA and DNA is limited, maximally approxi-

mately 20% in E. coli [6], but it should be remarked that the

gene expression machinery includes ribosomal RNA in

addition to ribosomal proteins.

Equation 7.3, the expression for the growth rate, can be

further analysed by making some additional assumptions

beyond the fundamental hypothesis of constant biomass den-

sity [36]. Neglecting the contribution of the metabolic

precursors to the biomass, we obtain from equation (3.2) that

Vol ¼ d � (RþM), ð7:5Þ

where R þM is the total amount of protein (in units g).

As R ¼ ar . r . Vol and M ¼ am . m . Vol, it follows from

equation (7.5) that ar . r þ am . m ¼ 1/d and therefore

ar � _rþ am � _m ¼ 0. The equations describing the dynamics

of r and m are therefore not independent, and one of

them may be dropped from the system of equation (7.1).

Moreover, substituting the expressions for _r and _m into
ar � _rþ am � _m ¼ 0, and using the equalities between the

stoichiometry constants and the molar mass coefficients due

to mass conservation, allows us to obtain an insightful

approximate expression for the growth rate:

m ¼ d � (ar � vr þ am � vm) ð7:6Þ
¼ d � ap � (nr � vr þ nm � vm): ð7:7Þ

That is, the growth rate equals the total mass of protein syn-

thesized per unit time and unit volume, or equivalently the

total mass of precursors consumed for protein synthesis per

unit time and unit volume (ap . (nr . vr þ nm . vm) (g l21 h21)),

normalized by the total mass of protein per unit volume

(1/d (g l21)).

In what follows, we will write vps ¼ nr . vr þ nm . vm for

the total protein synthesis rate (mol l21 h21). Furthermore,

we introduce the following kinetic expressions for vps and vp:

vps(p, r) ¼ kr � r �
p

pþ Kr
ð7:8Þ

and

vp(s, m) ¼ km �m �
s

sþ Km
, ð7:9Þ

where kr, km are catalytic constants (min21) and Kr, Km

half-saturation constants (mol l21). Note that m, while not

explicitly included in the model, is given by the conservation

equation ar � _rþ am � _m ¼ 0.

Giordano et al. [36] set nr . vr ¼ l . vps and nm . vm ¼ (1 2 l)
. vps, for 0 � l � 1, and by means of the above expressions for

vps and vp, the value of l resulting in the maximum growth

rate during steady-state exponential growth was determined.

The empirical regularities relating the growth rate to the ribo-

mal protein mass fraction [24] could thus be reproduced. The

analysis can be generalized to the situation where the system is

not in steady state, but makes a transition from one state of

balanced growth to another following a nutrient upshift. In

this case, l is not constant, but time-varying. Using concepts

from optimal control theory [115], it can be shown that the l

leading to optimal biomass accumulation has a bang-bang

profile, alternating periods of exclusive synthesis of R with

periods of exclusive synthesis of M, until the new steady

state is reached. A regulatory strategy defining l in terms of

p and r was proposed that approximates this optimal solution.

Interestingly, this strategy has structural similarities with the

action of the ppGpp system in E. coli, known to play an impor-

tant role in growth control [116]. Several other coarse-grained

models based on assumptions similar to the ones developed

above can be found in the literature, all describing aggregated

autocatalytic processes converting nutrients into proteins

[24,35,37–39,117,118]. Some of the models are analysed from

an optimization perspective, whereas others detail regulatory

mechanisms controlling the growth rate in response to changes

in the environment.

In the example above, coarse-graining of the microbial cell

was carried out a priori, based on our understanding of the

major cellular functions involved in microbial growth. An

alternative to this top-down approach would be to start from

an extensive characterization of the individual molecular con-

stituents and the biochemical reactions in which they are

involved and to group these together into functional modules.

This bottom-up approach relies on appropriate criteria for

defining modules, based on the structure or the dynamics of

the network. A discussion of the wide variety of criteria
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Figure 5. Overview of some of the fundamental modelling choices made in
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proposed is beyond the scope of this review (see [119] instead).

Once a modular structure of the network has been determined,

however, the dynamics of each module can be described by

formulating a macroreaction and defining a kinetic rate law

for the macroreaction. Such an approach has been used, for

example, for modelling the accumulation of lipids and carbo-

hydrates in unicellular microalgae [120]. The modules in this

study were defined by a time scale decomposition, grouping

together molecular constituents that are at quasi-steady state

on a given time scale (see also [121]).

The use of an abstract representation of cellular com-

ponents and processes is a strength of self-replicators and

other coarse-grained models, but also their limitation. It nota-

bly makes it more difficult to quantitatively account for data

on the molecular level, for example perturbations of specific

reactions or the addition of specific components to the

growth medium. By contrast, the representation of individual

biochemical reactions is a strength of FBA models discussed in

the previous section. However, these models lack the dynamic

feedback from gene expression and growth to metabolism that

distinguishes self-replicator models. Can one imagine hybrid

FBA–self-replicator models that combine the strengths of

both? Given that the model simplifications underlying the

two approaches are quite different, this may not be easy to

achieve, although some interesting variants of FBA, including

additional flux constraints derived from the catalytic activity

and molecular weight of proteins, should be mentioned here

[34,106,107,109,110]. An alternative strategy would be to

embed a detailed kinetic model of some module of interest

within a coarse-grained model of the entire cell. The latter

strategy of localized fine-graining in a global coarse-grained

model may strike an adequate compromise between the simul-

taneous needs of molecular detail, model tractability and

adequacy with the experimental data.
8. Concluding remarks
The growth of microorganisms arises from the conversion of

nutrients in the environment into biomass, mostly proteins

and other macromolecules, by intracellular networks of

biochemical reactions. The aim of this paper has been to

review the literature in the context of a general modelling

framework derived from basic assumptions about microbial

growth and biochemical reaction networks. In particular,

we have considered the cells in a population as a non-

segregrated aggregate, characterized by their combined

volume rather than by a distribution of individual cells. Con-

centrations of molecular constituents were correspondingly

defined over the entire population volume and, at all times,

the total mass of molecular constituents was assumed

proportional to the population volume (constant biomass

density). The dynamics of this system was described by a

deterministic ODE model. Figure 5 summarizes some of the

fundamental modelling choices underlying the modelling

framework developed here [45–47].

The modelling framework has allowed the discussion of a

broad variety of models integrating growth of microbial popu-

lations with the dynamics of the underlying reaction networks.

The contribution of this paper does not so much lie in the deri-

vation of the modelling framework, because most of the

assumptions made and arguments advanced can be found

in the (older) literature. Rather, the interest lies in bringing
these insights together and making explicit modelling assump-

tions that are often forgotten or whose consequences may not

always be recognized, including the careful consideration of

the units of the different quantities. For example, this has

brought to the fore that the first-order growth dilution term

appearing in many models originates from the proportionality

of the biomass and aggregate population volume. Moreover,

the definition of biomass as the mass sum of the molecular

consituents in the cell population was seen to lead to an expli-

cit, analytic expression for the growth rate (instead of a

heuristic definition added a posteriori). Finally, the fact that

the total concentration of molecular constituents is constant

contributes a constraint that can be usefully exploited for

model calibration [37,38]. In general, making explicit the

assumptions that underlie a model is critical for its use as a

‘logical machine’ converting assumptions about biological

processes into testable predictions [122].

The focus on non-segregated, deterministic models entails

a bias in that it ignores such important phenomena as trans-

port, cell division and population heterogeneity. The

existence of a lipid membrane containing proteins that

allow the uptake and secretion of metabolites is one of the

defining characteristics of microbial cells. A specific class of

self-replicator models, sometimes referred to as protocells,

addresses this issue by coupling biochemical processes

inside the cell to the growth of the cell membrane, in some

cases explicitly accounting for the three-dimensional cell

shape and cell division [37,123,124]. The engineering of

actual protocells is an interesting branch of ongoing work

at the frontier of biological chemistry and biophysics

[125,126], with applications in biotechnology [127]. Biomass

synthesis and cell division are precisely coordinated during

microbial growth [128], but the underlying mechanisms

involved are still not well understood. Some variants of the

above-mentioned protocell models, describing biomass

accumulation and cell division in yeast on the global level,

have integrated a simplified representation of the network
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controlling the cell cycle to provide a mechanistic basis for the

synchronization of growth and division [124,129].

Population heterogeneity plays a key role in such diverse

phenomena as resistance to antibiotics and biofilm formation.

Heterogeneity often arises from the stochasticity of biochemi-

cal reactions, amplified by the small numbers of the cellular

constituents involved in the reactions, especially in gene

expression [63,130]. Stochastic models are necessary to

explore bistability, the mathematical property that lies at

the heart of the above-mentioned forms of population hetero-

geneity, but that cannot be analysed with the deterministic

models discussed here. While full-scale stochastic models of

the biochemical networks underlying cellular growth and

division are rare, some models do introduce stochastic vari-

ables for mRNA and protein constituents [33,129]. For

instance, one of the interesting aspects of the whole-cell

model of M. genitalium [33] is that it combines a variety of

different modelling formalisms for different cellular func-

tions, including deterministic (FBA) models of metabolism,

deterministic (ODE) models for cell division, and stochastic

models for transcription, translation, and degradation of

mRNA and proteins.

To a first approximation, current modelling efforts push

in two directions. The first strategy attempts to construct

whole-cell models that are as complete as possible, including

a maximum of knowledge of cellular components and their

interactions on the molecular level. The resulting models pro-

vide a detailed executable map of the cell with a variety of

uses, for example the in silico screening of the effects of

drug candidates, the design of genetically-modified organ-

isms or the identification of gaps in our knowledge [131].

Owing to their size and complexity, the models are difficult

to build, maintain, and revise however, requiring a sustained

community effort for all but the simplest cells. Moreover, the

level of detail included in the models may not make them

most suitable for apprehending global principles of growth

control shared between different microorganisms.

A second strategy consists in increasing the coarseness of

the models while preserving their scope, notably by coupling

growth to intracellular biochemical processes. The resulting

models are much more tractable from a mathematical and com-

putational point of view, and they are particularly suited for

exploring the consequences of hypotheses on the global archi-

tecture of growth control. On the other hand, by stripping away

molecular details and focusing on a few explanatory principles,

such coarse-grained models run the risk of losing key features

of microbial cells. In particular, the complexity of regulatory
mechanisms may lead to unexpected cross-talk between cellu-

lar functions not accounted for in abstract models but possibly

critical for their predictive success. Moreover, in addition to

contributing to the beauty of living systems [132], the molecu-

lar details of regulatory mechanisms may also be important for

matching the model with quantitative data and for understand-

ing evolutionary trajectories of microorganisms. As an

illustration of the latter point, a recent study attributed the

increased growth of an E. coli strain in minimal media observed

in adaptive laboratory evolution experiments to specific point

mutations in the b subunit of RNA polymerase [133].

In our view, one of the most promising directions for

further work lies in finding original combinations of the

above-mentioned strategies. In particular, local fine-graining

of functions of interest in a coarse-grained model of the cellu-

lar machinery responsible for growth and division may yield

models that are at the same time robust over a range of

growth conditions and that can be related to specific regulat-

ory mechanisms on the molecular level. From the point of

view of experimental validation, such models would have

the advantage that predictions of the behaviour of modules

developed in molecular detail can be directly tested against

experimental data, as they will correspond to measurable

concentrations of molecular constituents. At the same time,

the embedding of detailed modules in a global model of cel-

lular physiology will widen its applicability to experimental

scenarios in which growth or other major aspects of the phys-

iological state are perturbed. The approach also exemplifies

the well-known adage that models are not universal but

developed for a specific question. Indeed, combining local

fine-graining with a coarse-grained view of cellular physi-

ology does not yield a single model, but rather a family of

models each developing in detail a specific function or

mechanism, depending on the question at hand.
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