Letter to the Editor

Open Access

Spontaneous type 1 pattern, ventricular arrhythmias and sudden cardiac death in Brugada Syndrome: an updated systematic review and meta-analysis

Ahmed Bayoumy^{1,2,3}, Meng-Qi GONG⁴, Ka Hou Christien Li⁵, Sunny Hei Wong^{1,2}, William KK Wu^{2,6}, Guang-Ping LI⁴, George Bazoukis⁷, Konstantinos P Letsas⁷, Wing Tak Wong⁸, Yun-Long XIA⁹, Tong LIU⁴, Gary Tse^{1,2,*}; International Health Informatics Study (IHIS) Network

¹Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China ²UK Shine Lawrence (M. 1997) State (M. 19

²Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China

³Faculty of Medicine, University of Amsterdam, The Netherlands

⁴Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China

⁵Faculty of Medicine, Newcastle University, United Kingdom

⁶Department of Anaesthesia and Intensive Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China

⁷Second Department of Cardiology, Evangelismos General Hospital of Athens, Athens, Greece

⁸School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China

⁹Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China

J Geriatr Cardiol 2017; 14: 639-643. doi:10.11909/j.issn.1671-5411.2017.10.010

Keywords: Brugada syndrome; Risk stratification; Spontaneous type 1; Sudden cardiac death; Ventricular arrhythmia

Brugada syndrome (BrS) is primary electrical disorder characterized by ST segment elevation with right bundle branch block morphology in patients with apparent structurally normal hearts.^[1] It predisposes affected individuals to ventricular tachycardia/fibrillation (VT/VF) and sudden cardiac death (SCD).^[2] A number of studies have identified risk factors that are associated with a more malignant course of disease. These include male gender, syncope, a spontaneous type 1 ECG pattern, family history of SCD, family history of Brugada syndrome, loss-of-function mutations in the SCN5a gene, inducible VT/VF during programmed electrical stimulation. Of these risk factors, many studies have demonstrated that the presence of a spontaneous type 1 pattern is associated with a significantly higher risk of VT/VF or SCD, but other studies have demonstrated a lack of significant predictive value.

Three meta-analyses have addressed the prognostic value of a spontaneous type 1 Brugada pattern. Firstly, Letsas, *et al.*^[3] examined its predictive value in six studies involving 2219 asymptomatic patients only, demonstrating a 3.6-fold increase in the risk of future arrhythmic events. Secondly, Wu, *et al.*^[4] examined only prospective studies (n = 8) that included 1150 patients, demonstrating a 4-fold increase in the risk. Finally, Gehi, *et al.*^[5] examined also only prospec-

tive studies (n = 3) in 935 patients, demonstrating a relative risk of 4.7. In this study, we performed an updated systematic review and meta-analysis, which includes the largest number of studies and patient numbers.

PubMed and Embase were searched for studies that investigated the association between a spontaneous type 1 Brugada pattern on the ECG and ventricular arrhythmias and SCD in Brugada syndrome. The following search terms were used for both databases: "Brugada syndrome spontaneous type 1". The search period was from the beginning of the database through to 30th June 2017 without language restrictions. The following inclusion criteria were used: (1) the study was a case-control, prospective or retrospective cohort study in human subjects with a Brugada phenotype; and (2) data on the relationship between a type 1 pattern and adverse events (appropriate implantable cardioverter defibrillator shocks, VT/VF, and SCD) were reported.

A total of 139 and 10 entries were retrieved from Pub-Med and Embase, respectively. After reference trawling and excluding overlapping populations, a total of 6561 Brugada patients from 24 studies were included.^[6-29] The mean age was 44 ± 16 years and 73% of the patients were male, with a mean follow-up of 50 ± 36 months. Table 1 shows the baseline characteristics of these studies and the study populations. Quality analysis of the included studies

^{*}Correspondence to: tseg@cuhk.edu.hk

http://www.jgc301.com; jgc@jgc301.com | Journal of Geriatric Cardiology

Studios	Study	Sample size (<i>n</i>)	1 ~~	Males	Endnainta	Follow-up dura- Univariate or		Multivorista variablas	
Studies	design		Age		Endpoints	tion (months)	multivariate	Multivariate variables	
Kitamura T, <i>et al</i> . ^[8]	R	304	30	169	VT/VF	91	U	-	
Sieira J, et al. ^[9]	Р	400	41	233	SCD + ICD Shock	81	U	-	
Andorin A, et al. ^[13]	R	106	11	58	SCD + ICD Shock + VT/VF	54	М	Age and ICD	
Casado-Arroyo R, et al. ^[11]	Р	447	45	336	SCD + ICD Shock + VT/VF	50	U	-	
Kawazoe H, et al. ^[12]	R	143	46	140	VF	83	U	-	
Rivard L, et al. ^[10]	R	105	46	83	aSCD + appropriate ICD shocks	60	М	Max Tp-e and QRS in lead 6	
Conte G, et al. ^[16]	Р	176	43	118	Appropriate ICD shocks	84	U	-	
Dores H, et al. ^[15]	R	55	42	30	Appropriate ICD shocks	74	U	-	
Maury P, et al. ^[14]	R	325	47	258	SCD + appropriate ICD shocks	48	М	Sp1 ST elevation, SCN5A mutation, family history of SCD, QRS duration, Max Tp-e	
Okamura H, et al. ^[17]	R	218	46	211	SCD + appropriate ICD shocks	78	М	Sp1, Syncope, inducibility of VF (PES+)	
Son MK, <i>et al.</i> ^[19]	R	69	48	68	Appropriate/inappro- priate ICD shocks	57	М	Age, presence of palpitations, sVT before implantation of ICD	
Tokioka K, <i>et al</i> . ^[18]	R	246	48	236	SCD + ICD Shock + VF	45	U	-	
Hiraoka M, et al. ^[20]	Р	460	52	432	SCD + VF	43	U	-	
Daoulah A, et al. ^[21]	R	25	32	25	Appropriate ICD shocks	41	NA	-	
Delise P, et al. ^[23]	Р	320	43	258	SCD + VF	40	М	Syncope, basal type 1 ECG	
Nishii N, et al. ^[22]	Р	108	49	10	Appropriate ICD shocks	72	U	-	
Probst V, et al. ^[25]	R	1029	45	745	SCD + appropriate ICD shocks	32	М	Symptoms at diagnosis (aSCD/asympto- matic/syncope), Sp1, age, gender, EPS	
Richter S, et al. ^[24]	Р	186	43	115	aSCD + appropriate ICD shocks + VF	57	U		
Giustetto C, et al.[27]	Р	166	42	138	aSCD + appropriate ICD shocks + VF	30	U	-	
Kamakura S, et al. ^[26]	R	330	51	315	SCD + VF	49	U	-	
Benito B, et al. ^[28]	Р	384	46	272	SCD + VF	58	М	Gender, previous AF, symptoms at diagnosis (syncope, aSCD), Sp1, EPS	
Eckardt L, <i>et al</i> . ^[29]	R	212	45	152	Appropriate ICD shocks + VF	40	U	-	
Brugada J, et al. ^[6]	Р	547	41	408	SCD + VF	24	М	Gender, Sp1, syncope, EPS (inducible)	
Priori SG, et al. ^[7]	Р	200	41	152	Cardiac arrest	34	U	-	

Table 1. Characteristics of the studies included in this meta-analysis.

AF: atrial fibrillation; aICD: appropriate implantable cardioverter defibrillator; aSCD: aborted sudden cardiac death; EPS: electrophysiological study; ICD: implantable cardioverter defibrillator; M: multivariate; NA: not available; P: prospective; R: retrospective; sVT: sustained ventricular tachycardia; U: univariate; VF: ventricular fibrillation.

by using the Newcastle-Ottawa Scale was shown in Table 2. The main finding of our meta-analysis is that the presence of a spontaneous type 1 pattern on the ECG confers 2.3 times the risk of ventricular arrhythmias or SCD in Brugada syndrome. There was a low level of heterogeneity ($I^2 = 42\%$) with

significant publication bias (Kendall's tau = 0.37, P < 0.05).

The ECG is a simple and non-invasive test that provides information on cardiac electrophysiological properties of the test subjects. A spontaneous Brugada pattern indicates the presence of both depolarization and repolarization abnor-

Journal of Geriatric Cardiology | jgc@jgc301.com; http://www.jgc301.com

		Selection			Outcome					
Studies	Representa- tiveness of the exposed cohort		Ascer- tainment of expo- sure	Outcome of in- terest not present at start of study	Comparability	Assessment of outcome		Adequacy of completeness of follow-up	Total score (0–9)	
Priori SG, et al. ^[7]	1	0	1	0	0	1	1	1	5	
Brugada J, et al. ^[6]	1	0	1	1	0	1	1	1	6	
Benito B, et al.[28]	1	0	1	1	0	1	1	1	6	
Delise P, et al. ^[23]	1	0	1	1	2 (gender, family history of SCD)	1	1	1	8	
Probst V, et al. ^[25]	1	0	1	1	0	1	1	1	6	
Nishii N, et al. ^[22]	1	0	1	1	0	1	1	1	6	
Daoulah A, et al. ^[21]	1	0	1	0	0	1	1	1	5	
Hiraoka M, et al. ^[20]	1	0	1	1	2 (gender, family history of SCD)	1	1	1	8	
Son MK, et al.[19]	1	0	1	0	1 (gender)	1	1	1	6	
Tokioka K, et al. ^[18]	1	0	1	0	1 (family history of SCD)	1	1	1	6	
Conte G, et al. ^[16]	1	0	1	1	2 (gender, family history of SCD)	1	1	1	8	
Dores H, et al. ^[15]	1	0	1	0	2 (gender, family history of SCD)	1	1	1	7	
Okamura H, et al. ^[17]	1	0	1	0	2 (gender, family history of SCD)	1	1	1	7	
Andorin A, et al. ^[13]	1	0	1	1	2 (gender, family history of SCD)	1	1	1	8	
Casado-Arroyo R, et al. ^[11]	1	0	1	1	2 (gender, family history of SCD)	1	1	1	8	
Kawazoe H, et al. ^[12]	1	0	1	0	2 (gender, family history of SCD)	1	1	1	7	
Rivard L, et al. ^[10]	1	0	1	1	1 (gender)	1	1	1	7	
Kitamura T, et al. ^[8]	1	0	1	0	2 (gender, family history of SCD)	1	1	1	7	
Sieira, et al. ^[9]	1	0	1	1	1 (gender)	1	1	1	7	

Table 2. NOS risk of bias scale for included cohort studies.

NOS: Newcastle-Ottawa scale; SCD: sudden cardiac death.

malities at baseline, which represent substrates for re-entrant arrhythmogenesis.^[30–32] This is in contrast to the presence of a type 2 or type 3 Brugada pattern, which can be converted to a type 1 pattern using drug challenge.^[33] In addition to this type 1 characteristic pattern, detailed analyses of conduction and repolarization intervals from the 12-lead ECG can aid risk stratification.^[34–37] For example, a recent meta-analysis has demonstrated that prolonged $T_{peak}-T_{end}$ intervals, which represent a higher dispersion of repolarization, whilst another showed that fragmented QRS complex,^[38] which indicates dispersion of conduction, are associated with higher risk of ventricular arrhythmias and sud-

den death in Brugada syndrome. Our meta-analysis shows patients with spontaneous type 1 Brugada pattern are at a high risk of adverse events. The ECG is a valuable tool that can aid clinicians to identify such high-risk individuals, who will require primary prevention by implantable cardioverterdefibrillator insertion.

Acknowledgements

Tse G and Wong SH thank the Croucher Foundation of Hong Kong for the support of their clinical assistant professorships.

http://www.jgc301.com; jgc@mail.sciencep.com | Journal of Geriatric Cardiology

Study name	Statisti	cs for ea	ch study			Hazard ratio and 95% Cl					
	Hazard ratio	Lower limit	Upper limit	Z-Value	<i>P</i> -Value						
Kitamura T, <i>et al</i> . ^[8]	2.940	0.783	11.046	1.597	0.110		1	+	⊢		
Sieira, et al. ^[9]	2.700	1.325	5.503	2.734	0.006				⊢		
Andorin A, et al.[13]	5.900	1.172	29.696	2.153	0.031						
Jasado-Arroyo R, et al.[1	1] 1.780	0.981	3.231	1.896	0.058						
Kawazoe H, et al.[12]	2.810	1.316	5.998	2.670	0.008				⊢		
Rivard L, et al.[10]	3.800	1.100	13.124	2.111	0.035				■		
Conte G, et al.[16]	2.500	1.160	5.389	2.338	0.019				_		
Dores H, et al.[15]	1.100	0.251	4.825	0.126	0.899				_		
Maury P, et al.[14]	3.660	1.368	9.789	2.585	0.010						
Okamura H, et al.[17]	6.810	2.501	18.542	3.754	0.000			-			
Son MK, et al.[19]	1.360	0.622	2.972	0.771	0.441						
Tokioka K, et al.[18]	7.224	1.657	31.493	2.632	0.008						
Hiraoka M, et al.[20]	1.050	0.445	2.476	0.111	0.911			-			
Daoulah A, et al.[21]	37.870	2.219	646.372	2.510	0.012			-			
Delise P, et al.[23]	6.200	1.317	29.191	2.308	0.021						
Nishii N, et al.[22]	0.668	0.324	1.374	-1.097	0.273		-	∎∔-			
Probst V, et al.[25]	1.600	0.890	2.877	1.570	0.116			┼╋╋╌			
Richter S, et al.[24]	3.103	0.766	12.573	1.586	0.113			+			
Giustetto C, et al.[27]	1.600	0.215	11.923	0.459	0.646			_ _			
Kamakura S, et al.[26]	2.310	0.671	7.952	1.327	0.184						
Benito B, et al.[28]	1.400	0.589	3.326	0.762	0.446			-+=			
Eckardt L, et al.[29]	16.008	2.203	116.332	2.740	0.006			-		\rightarrow	
Brugada J, et al. ^[6]	2.860	0.682	11.989	1.437	0.151						
Priori SG, et al.[7]	2.100	0.669	6.593	1.271	0.204				<u> </u>		
Random-effects mode	el 2.126	1.744	2.593	7.450	0.000			•			
						0.01	0.1	1	10	100	
							Lower risk	F	ligher risl	k	

Figure 1. Forest plot demonstrating the hazard ratios for ventricular arrhythmias and sudden cardiac death with a spontaneous type 1 Brugada pattern.

References

- Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. *J Am Coll Cardiol* 1992; 20: 1391–1396.
- 2 Tse G, Liu T, Li KH, *et al.* Electrophysiological mechanisms of Brugada syndrome: insights from pre-clinical and clinical studies. *Front Physiol* 2016; 7: 467.
- 3 Letsas KP, Liu T, Shao Q, *et al.* Meta-analysis on risk stratification of asymptomatic individuals with the brugada phenotype. *Am J Cardiol* 2015; 116: 98–103.
- 4 Wu W, Tian L, Ke J, *et al.* Risk factors for cardiac events in patients with Brugada syndrome: A PRISMA-compliant metaanalysis and systematic review. *Medicine* 2016; 95: e4214.
- 5 Gehi AK, Duong TD, Metz LD, *et al.* Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. *J Cardiovasc Electrophysiol* 2006; 17: 577–583.
- 6 Brugada J, Brugada R, Brugada P. Determinants of sudden cardiac death in individuals with the electrocardiographic pattern of Brugada syndrome and no previous cardiac arrest. *Circulation* 2003; 108: 3092–3096.
- 7 Priori SG, Napolitano C, Gasparini M, et al. Natural history of Brugada syndrome: insights for risk stratification and management. *Circulation* 2002; 105: 1342–1347.
- 8 Kitamura T, Fukamizu S, Kawamura I, et al. Clinical characteristics and long-term prognosis of senior patients with Brugada syndrome. JACC Clin Electrophysiol 2017; 3: 57–67.

- 9 Sieira J, Conte G, Ciconte G, et al. A score model to predict risk of events in patients with Brugada Syndrome. Eur Heart J 2017; 38: 1756–1763.
- 10 Rivard L, Roux A, Nault I, *et al.* Predictors of ventricular arrhythmias and sudden death in a quebec cohort with Brugada syndrome. *Can J Cardiol* 2016; 32: 1355 e1–e7.
- 11 Casado-Arroyo R, Berne P, Rao JY, *et al.* Long-term trends in newly diagnosed Brugada syndrome: implications for risk stratification. *J Am Coll Cardiol* 2016; 68: 614–623.
- 12 Kawazoe H, Nakano Y, Ochi H, *et al.* Risk stratification of ventricular fibrillation in Brugada syndrome using noninvasive scoring methods. *Heart Rhythm* 2016; 13: 1947–1954.
- 13 Andorin A, Behr ER, Denjoy I, *et al.* Impact of clinical and genetic findings on the management of young patients with Brugada syndrome. *Heart Rhythm* 2016; 13: 1274–1282.
- 14 Maury P, Sacher F, Gourraud JB, *et al.* Increased T_{peak} - T_{end} interval is highly and independently related to arrhythmic events in Brugada syndrome. *Heart Rhythm* 2015; 12: 2469–2476.
- 15 Dores H, Reis Santos K, Adragao P, *et al.* Long-term prognosis of patients with Brugada syndrome and an implanted cardioverter-defibrillator. *Rev Port Cardiol* 2015; 34: 395–402.
- 16 Conte G, Sieira J, Ciconte G, *et al.* Implantable cardioverter-defibrillator therapy in Brugada syndrome: a 20-year single-center experience. *J Am Coll Cardiol* 2015; 65: 879–888.
- 17 Okamura H, Kamakura T, Morita H, et al. Risk stratification in patients with Brugada syndrome without previous cardiac

642

Journal of Geriatric Cardiology | jgc@jgc301.com; http://www.jgc301.com

arrest-prognostic value of combined risk factors. *Circ J* 2015; 79: 310–317.

- 18 Tokioka K, Kusano KF, Morita H, et al. Electrocardiographic parameters and fatal arrhythmic events in patients with Brugada syndrome: combination of depolarization and repolarization abnormalities. J Am Coll Cardiol 2014; 63: 2131–2138.
- 19 Son MK, Byeon K, Park SJ, et al. Prognosis after implantation of cardioverter-defibrillators in Korean patients with Brugada syndrome. *Yonsei Med J* 2014; 55: 37–45.
- 20 Hiraoka M, Takagi M, Yokoyama Y, et al. Prognosis and risk stratification of young adults with Brugada syndrome. J Electrocardiol 2013; 46: 279–283.
- 21 Daoulah A, Alsheikh-Ali AA, Ocheltree AH, et al. Outcome after implantable cardioverter-defibrillator in patients with Brugada syndrome: the gulf Brugada syndrome registry. J Electrocardiol 2012; 45: 327–332.
- 22 Nishii N, Ogawa M, Morita H, *et al.* SCN5A mutation is associated with early and frequent recurrence of ventricular fibrillation in patients with Brugada syndrome. *Circ J* 2010; 74: 2572–2578.
- 23 Delise P, Allocca G, Marras E, *et al.* Risk stratification in individuals with the Brugada type 1 ECG pattern without previous cardiac arrest: usefulness of a combined clinical and electrophysiologic approach. *Eur Heart J* 2011; 32: 169–176.
- 24 Richter S, Sarkozy A, Paparella G, *et al.* Number of electrocardiogram leads displaying the diagnostic coved-type pattern in Brugada syndrome: a diagnostic consensus criterion to be revised. *Eur Heart J* 2010; 31: 1357–1364.
- 25 Probst V, Veltmann C, Eckardt L, *et al.* Long-term prognosis of patients diagnosed with Brugada syndrome: Results from the FINGER Brugada Syndrome Registry. *Circulation* 2010; 121: 635–643.
- 26 Kamakura S, Ohe T, Nakazawa K, *et al.* Long-term prognosis of probands with Brugada-pattern ST-elevation in leads V1-V3. *Circ Arrhythm Electrophysiol* 2009; 2: 495–503.
- 27 Giustetto C, Drago S, Demarchi PG, et al. Risk stratification of the patients with Brugada type electrocardiogram: a community-based prospective study. Europace 2009; 11: 507–513.

- 28 Benito B, Sarkozy A, Mont L, *et al.* Gender differences in clinical manifestations of Brugada syndrome. *J Am Coll Cardiol* 2008; 52: 1567–1573.
- 29 Eckardt L, Probst V, Smits JP, *et al.* Long-term prognosis of individuals with right precordial ST-segment-elevation Brugada syndrome. *Circulation* 2005; 111: 257–263.
- 30 Tse G, Wong ST, Tse V, Yeo JM. Depolarization vs. repolarization: what is the mechanism of ventricular arrhythmogenesis underlying sodium channel haploinsufficiency in mouse hearts? *Acta Physiol (Oxf)* 2016; 218: 234–235.
- 31 Tse G, Wong ST, Tse V, Yeo JM. Variability in local action potential durations, dispersion of repolarization and wavelength restitution in aged wild-type and Scn5a^{+/-} mouse hearts modelling human Brugada syndrome. *J Geriatr Cardiol* 2016; 13: 930–931.
- 32 Tse G, Wong ST, Tse V, Yeo JM. Determination of action potential wavelength restitution in Scn5a+/- mouse hearts modelling human Brugada syndrome. *J Geriatr Cardiol* 2017; 14: 595–596.
- 33 Bayes de Luna A, Brugada J, Baranchuk A, *et al.* Current electrocardiographic criteria for diagnosis of Brugada pattern: a consensus report. *J Electrocardiol* 2012; 45: 433–442.
- 34 Tse G. Both transmural dispersion of repolarization and of refractoriness are poor predictors of arrhythmogenicity: a role for iCEB (QT/QRS)? J Geriatr Cardiol 2016; 13: 813–814.
- 35 Tse G. Novel conduction-repolarization indices for the stratification of arrhythmic risk. J Geriatr Cardiol 2016; 13: 811–812.
- 36 Tse G, Yan BP. Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. *Europace* 2017; 19: 712–721.
- 37 Tse G. (Tpeak-Tend)/QRS and (Tpeak-Tend)/(QT × QRS): novel markers for predicting arrhythmic risk in the Brugada syndrome. *Europace* 2017; 19: 696.
- 38 Meng L, Letsas KP, Baranchuk A, *et al.* Fragmented QRS as an electrocardiographic predictor for arrhythmic events in patients with Brugada syndrome: a meta-analysis. *Front Physiol* 2017; 8: 678.