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A B S T R A C T

Purpose
The clinical features, pathogenesis, and outcomes in children with adrenocortical tumors (ACTs)
without germline TP53 mutations have not been systematically studied. Herein, we describe these
correlates and analyze their association with outcome.

Patients and Methods
Genomic DNA was analyzed for TP53, CTNNB1, CDKN1C, ATRX, and chromosome 11p15 ab-
normalities. b-catenin expression and Ki-67 labeling index (LI) were evaluated by immunostaining.
Primary end points were progression-free (PFS) and overall survival.

Results
Median age of 42 girls and 18 boys was 3.3 years (range, 0.25 to 21.7 years). Complete resection
(stages I and II) was achieved in 32 patients, and 28 patients had stage III or IV disease. Consti-
tutional abnormalities of chromosome 11p15 occurred in nine of 40 patients, with six patients not
showing phenotype of Beckwith-Wiedemann syndrome. Three-year PFS and overall survival for all
patients were 71.4% and 80.5%, respectively. In single-predictor Cox regression analysis, age,
disease stage, tumor weight, somatic TP53mutations, and Ki-67 LI were associated with prognosis.
Ki-67 LI and age remained significantly associated with PFS after adjusting for stage and tumor
weight. Three-year PFS for 27 patients with Ki-67 LI$ 15%was 48.5% comparedwith 96.2% for 29
patients with Ki-67 LI, 15% (log-rank P = .002), and the rate of relapse increased by 24%with each
1-year increase in age at diagnosis (hazard ratio, 1.24; P = .0057).

Conclusion
Clinicopathologic features and outcomes of children with ACTs without germline TP53 mutations
overlapped those reported for children with germline TP53 mutations. Our findings highlight the
central role of genetic or epigenetic alterations on chromosome 11p15 in pediatric ACTs. Ki-67 LI is
a strong prognostic indicator and should be investigated to improve the histologic classification of
pediatric ACTs.

J Clin Oncol 35:3956-3963. © 2017 by American Society of Clinical Oncology

INTRODUCTION

Pediatric adrenocortical tumor (ACT) is an un-
common malignancy frequently associated with
Li-Fraumeni syndrome, a familial cancer pre-
disposition disorder caused by germline muta-
tions in the tumor suppressor gene TP53.1,2 ACT
is rarely associated with other genetic constitu-
tional disorders such as Beckwith-Wiedemann
syndrome (BWS), which results from deregulation

of a gene cluster on chromosome 11p153; multi-
ple endocrine neoplasia; neurofibromatosis; famil-
ial adenomatous polyposis; or congenital adrenal
hyperplasia.4,5

Our recent study6 showed that copy-neutral
loss of heterozygosity (LOH) of chromosomes 11
and 17 is the hallmark of pediatric ACTs asso-
ciated with germline TP53 mutations (mutTP53-
ACTs). Combined loss of maternal chromosome
11, duplication of paternal chromosome 11, and
loss of chromosome 17 harboring wild-type TP53
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occurs early in pediatric adrenocortical tumorigenesis. In general,
as the tumor increases in weight, it acquires additional genetic
alterations and exhibits increasingly aggressive behavior.6

However, approximately 50% of children with ACTs do not
harbor germline TP53 mutations.7 The mechanisms of tumori-
genesis and tumor progression as well as prognostic markers of
ACT in these patients have not been systematically evaluated. In
this retrospective study, we report clinical features, molecular
attributes, and outcomes in a relatively large cohort of children
with ACTs without germline TP53 mutations (wtTP53-ACTs).

PATIENTS AND METHODS

Patients and Biologic Samples
This was a retrospective study of patients with ACTs carrying

germline wild-type TP53 who were age , 22 years and enrolled in the St
Jude Children’s Research Hospital International Pediatric Adrenocortical
Tumor Registry (ClinicalTrials.gov identifier: NCT00700414; n = 48)
between 2003 and 2015 or the Children’s Oncology Group (COG)
ARAR0332 study (ClinicalTrials.gov identifier: NCT00304070; n = 12)
between 2006 and 2013. Matched blood and tumor DNA was collected
from 40 patients. For 20 patients, only tumor DNA (n = 14) or blood DNA
(n = 6) was available for molecular studies.

Written informed consent was obtained from parents or legal
guardians. The study was approved by the St Jude Institutional Review
Board and the COGRare Tumors Committee. Disease was staged according
to reported guidelines.8 Clinical management was uniform for those en-
rolled in COG ARAR0332 and varied as directed by primary physicians for
those enrolled in the International Pediatric Adrenocortical Tumor Registry.

TP53, CDKN1C, ATRX, and CTNNB1 Mutational Status
TP53 and CDKN1C coding regions, including the flanking intronic

sequence of each exon, were amplified by polymerase chain reaction and
sequenced on a 3730xl DNA Analyzer (Applied Biosystems). Large de-
letions of TP53 and ATRX were assessed using commercial multiplex
ligation-dependent probe amplification (MLPA) kits (PO56 TP53 pro-
bemix and P013 ATRX probemix; MRC-Holland, Amsterdam, the
Netherlands) as per manufacturer instructions.

Mutational status of CTNNB1 exon 3 was determined as previously
described.6 Immunostaining for b-catenin was performed on 4-mm
formalin-fixed paraffin-embedded tumor sections. Monoclonal Beta-
Catenin (14; Ventana Medical Systems, Tucson, AZ) was used as the
primary antibody and visualized using the iVIEW DAB Detection Kit
(Ventana Medical Systems).

Chromosome 11p15 Abnormalities
Matched blood and tumor DNA from 40 patients was analyzed for

11p15 chromosomal copy number alterations by using microsatellite
analysis.6 Gene dosage and methylation status were evaluated in blood
samples by using ME030-C3 BWS/RSS probemix (MRC-Holland) as pre-
viously described9 and quantified using Coffalyzer software (MRC-Holland).

Ki-67 Immunostaining
Formalin-fixed paraffin-embedded tumor sections were analyzed for

Ki-67 nuclear expression using primary polyclonal rabbit antisera for
Ki-67 (dilution, 1:500; Novocastra; Leica Biosystems, Buffalo Grove, IL)
and stained using routine protocols. Ten tumor areas were examined
under 3400 magnification, and the overall percentage of cells with
Ki-67–positive staining among the 10 fields was scored as the Ki-67 la-
beling index (LI). Ki-67 LI was considered high if $ 15% of tumor cell
nuclei were stained.

Gene Expression Analysis
PTTG1, BUB1B, AURKB, HLA-DPA1, andMKI67 mRNA expression

data were obtained from the Gene Expression Omnibus (GEO) repository
including 63 pediatric ACTs (GEO databases GSE76019 and GSE76021).
Experiments were performed as previously described.10

Statistical Analyses
The Kaplan-Meier method was used to estimate progression-free

(PFS) and overall survival (OS). PFS was defined as time elapsed from
diagnosis to progression or death, with times censored at the date of last
follow-up. OS was defined as time elapsed from diagnosis to death, with
times for living patients censored at last follow-up. The log-log method was
used to calculate the CIs for survival estimates.11,12 The log-rank test was
used to compare PFS or OS across groups according to presence or absence
of molecular and clinical features. Cox proportional hazards regression
models were used to evaluate the association of clinical and molecular
features with PFS or OS while accounting for stage (dichotomized as
stage # IV). The Wilcoxon rank sum test was used to explore Ki-67 LI
status in relation to age and tumor weight. TheWilcoxon rank sum test was
also used to determine association between mRNA gene expression and
TP53 status, and Cox regressionwas used to determine association between
gene expression and PFS. All tests were two sided, and no multiple-testing
adjustments were performed.

RESULTS

Patient Demographics and Clinical Correlates
Median age of the 60 eligible patients (42 females and 18

males) was 3.3 years (range, 0.25 to 21.7 years). Signs and
symptoms of virilization alone and associated with hyper-
cortisolism (Cushing syndrome) were seen in 23 and 10 patients,
respectively. There were no endocrine clinical signs or symptoms in
12 patients. Tumors were histologically characterized as carcinoma
(n = 43), adenoma (n = 10), and undetermined (n = 7). Thirty-two
patients had localized disease (stage I or II), and 28 had advanced
disease (stage III or IV). Clinical data are summarized in Table 1
and detailed in Appendix Table A1 (online only).

TP53, CTNNB1, and ATRX Mutational Status in Tumor
Samples

TP53 was analyzed in 54 of 60 patients, and somatic TP53
alterations were observed in nine samples (Fig 1A), including six
missense mutations (R158H, R175H, E180K, M246V, R273C, and
R273H), one nonsense mutation in exon 10 (R342*), and one
frameshift insertion at exon 5 (c.403_404insT).13 Complete de-
letion of TP53 occurred in one sample.

Activation of the Wnt pathway was determined by Sanger
sequencing of CTNNB1 exon 3 (n = 48) and by b-catenin im-
munostaining (n = 5). Mutations (n = 22) or positive nuclear
expression of b-catenin (n = 1) were identified in 23 (43%) of the
53 samples (Figs 2A and 2B). In four of these samples, mutations
were acquired in both CTNNB1 and TP53 (WT006, WT007,
WT008, and WT050; Appendix Table A1).

ATRX intragenic deletions were detected in two of 53 ACTs
analyzed byMLPA: one sample showed a deletion of exons 11 to 30
in the primary tumor and lung metastasis (WT006), whereas the
other showed a deletion in exons 6 to 15 (WT010). A missense
ATRX mutation (R2164S) was also identified in one of 12 samples
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analyzed by whole-exome sequencing (WT009).6 All three tumor
samples with an ATRX mutation also harbored a somatic TP53
mutation (Appendix Table A1).

Germline and Somatic 11p15 Genetic and Epigenetic
Alterations

Chromosome 11p15 encodes a cluster of imprinted genes
that positively and negatively regulate cell proliferation and
survival.14-16 These genes are differentially expressed in a parental
origin–dependent manner through H19DMR (imprinting control
region 1 [IC1]) and KvDMR (IC2). Insulin-like growth factor 2
(IGF2) is selectively expressed from the paternal allele, whereas the
cell-cycle inhibitor CDKN1C (p57KIP2) is preferentially expressed
from the maternal allele. High expression of IGF2 and low ex-
pression of CDKN1C, as seen in most pediatric ACTs,6 likely result
from copy-neutral LOH or imprinting defects within the 11p15
locus.6,17

Microsatellite markers and methylation-specific MLPA analysis
for chromosome 11p15 in blood DNA of 40 patients revealed
a homozygous pattern for all markers and hypermethylation at IC1
and hypomethylation at IC2 (Appendix Fig A1A, online only),
indicative of paternal uniparental disomy (UPD), in four patients
(WT001, WT031, WT043, and WT049), two of whom did not
exhibit clinical signs of BWS (WT0031 and WT043). In another
patient (WT002), a mosaic paternal UPD for 11p15 was identified,
with partial gain of methylation at IC1 and partial loss of meth-
ylation at IC2 (Appendix Fig A1B). An additional four patients
(WT003, WT009, WT023, and WT030) exhibited isolated loss of
methylation at IC2 (Appendix Fig A1C), suggesting silencing of
maternal alleles, as observed in 50% of patients with BWS.18 Of note,
patient WT003 had an incomplete BWS phenotype (hemihyper-
trophy), but no other features of BWS were seen in the remaining
three patients. CDKN1C mutations were not detected in the
germline DNA from 46 patients. Finally, analysis of corresponding
tumors revealed somatic LOH in 31 (86%) of 36 informative patient
cases, with selective loss of the maternal chromosome in all patients
for whom parental blood DNAwas available (n = 11; Appendix Fig
A1D). In addition, microsatellite analysis of 14 patients for whom
only tumor DNA was available, revealed a homozygous pattern
suggestive of LOH in 12 (86%), and UPD was excluded in all
patients for whom only blood DNA was available (n = 6).

Ki-67 LI
Immunohistochemical analysis of Ki-67 was performed in

tumor samples from 56 patients. Ki-67 LI was positive ($ 15%
tumor-cell nuclei stained) in 27 patients (48%; Fig 3A; Appendix
Table A1).

Outcome, Treatment, and Prognostic Factors
Of 60 patients, 32 were considered free of disease after sur-

gery, 13 had microscopic residual disease or tumor spillage during
surgery (stage III), and 15 had overt metastatic disease (stage IV).
The primary tumor was surgically resected in all cases except in
patient WT056. No patients with stage I (n = 18) or II (n = 14)
disease (excludingWT017, WT019, andWT027) received adjuvant
chemotherapy. Patients with tumor spillage or microscopic re-
sidual disease were typically treated with platinum-based che-
motherapy and mitotane. At a median follow-up of 3.4 years, 47
patients were alive, and 46 of them were free of disease. Thirteen
patients died as a result of progressive disease. The 3-year PFS and
OS for all patients were 71.4% (95% CI, 60.3% to 84.4%) and
80.5% (95% CI, 70.2% to 92.3%), respectively.

Consistent with earlier findings from adult ACTs,19 the
presence of somatic TP53 mutations was significantly associated
with poor prognosis. The 3-year PFS rates for patients with or
without somatic TP53 mutations were 38.9% (95% CI, 9.3% to
68.7%) and 79.4% (95% CI, 64.0% to 88.7%; P = .02), respectively
(Fig 1B). When stage IV disease was included in the Cox regression
model, presence of somatic TP53 mutations was no longer asso-
ciated with outcome (P = .21; Fig 1C). CTNNB1 status was not
significantly associated with PFS (P = .80; Fig 2C).

The 3-year PFS for the 27 patients with Ki-67 LI $ 15% was
48.5% (95% CI, 27.5% to 66.7%) compared with 96.2% (95% CI,
75.7% to 99.4%) for the 29 patients with Ki-67 LI, 15% (P= .002;

Table 1. Baseline Patient Demographic and Clinical Characteristics

Characteristic No. (%)

Sex
Female 42 (70)
Male 18 (30)

Age at presentation, years
Median 3.3
Range 0.25-21.7

Endocrine signs
Virilization alone 23 (38)
Virilization plus cushing 10 (17)
Cushing alone 12 (20)
No clinical signs 12 (20)
Aldosterone-producing tumor 3 (5)

Tumor histology
Adenoma 10 (17)
Carcinoma 43 (72)
Undetermined 7 (12)
Ki-67 LI $ 15% 27 (48) of 56

Surgery
Complete resection 32 (53)
Microscopic residual disease 28 (47)
Tumor spillage 10

Disease stage
I 18 (30)
II 14 (23)
III 13 (22)
IV 15 (25)

Tumor weight, g
, 200 39 (68) of 57
$ 200 18 (32) of 57

Treatment
Surgery alone 36 (60)
Surgery followed by chemotherapy 23 (38)
Chemotherapy alone 1 (2)

Outcome
Alive and free of disease 46 (77)
Alive with disease 1 (1)
Died 13 (22)

Molecular markers
Somatic 11p15 LOH 31 (86) of 36
Somatic CTNNB1 mutations/nuclear expression 23 (43) of 53
Somatic TP53 mutations 9 (17) of 54
Somatic ATRX mutations 3 (6) of 53

Abbreviations: LI, labeling index; LOH, loss of heterozygosity.

3958 © 2017 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY

Pinto et al



Fig 3B). Ki-67 LI remained significantly associated with PFS after
adjusting for disease stage (P = .0048; Fig 3C). Cox regression
modeling showed that among these 56 patients, rate of progression
or death for patients with stage IV disease was 21.9 times that for other
patients (95% CI, 5.25 to 91.46; P, .001), and rate of progression or
death for patients with Ki-67 LI $ 15% was 22.27 times that for
patients with Ki-67 LI , 15% (95% CI, 2.57 to 192.53; P = .0048).

Because higher tumor weight and older age are associated with
poor prognosis in children with ACTs in general,8,20-22 we analyzed
their association with Ki-67 LI. Median tumor weight was sig-
nificantly higher for patients with Ki-67 LI $ 15% than for those
with Ki-67 LI , 15% (191 v 93.2 g; P = .02). Ki-67 LI was not
significantly associated with age (P = .62), suggesting that Ki-67 LI
and age are independently associated with outcome. Thus, we fit
a Cox regressionmodel with age, tumor weight, disease stage (stage
IV v I to III), and Ki-67 LI (, 15% v$ 15%) as predictors of PFS.

In this model, tumor weight and disease stage showed potentially
meaningful associations with PFS but did not reach statistical
significance. However, rate of progression or death for patients with
Ki-67 LI$ 15%was 41.8 times that for patients with Ki-67 LI, 15%
(95% CI, 3.51 to 497.8; P = .003), and rate of relapse increased by
24% with each 1-year increase in age at diagnosis (hazard ratio, 1.24;
95% CI, 1.07 to 1.45; P = .0057; Appendix Table A2, online only).

We analyzed the expression of MKI67, which encodes Ki-67
protein, in two independent gene expression data sets from the
GEO repository of pediatric ACTs and found that MKI67 over-
expression as a single predictor was associated with worse PFS in
both cohorts (GSE76021, P = .001; GSE76019, P = .016) as well as
after adjustment for stage IV disease (GSE76021, P = .001;
GSE76019, P = .011).

Consistent with these findings, greater mRNA expression
of MKI67, PTTG1, BUB1B, and AURKB was found in ACT with
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adverse prognostic features (Appendix Fig A2, online only). Further-
more, MKI67 overexpression was correlated with low levels of HLA-
DPA1 (Appendix Fig A3, online only), which is significantly associated
with poor outcome.10,23 Expression of PTTG1, BUB1B, and AURKB
was significantly higher in those with mutTP53-ACTs compared with
wtTP53-ACTs. However, expression of IGF2 and MKI67 was similar,
irrespective of patients’ TP53 status (Appendix Fig A4, online only).

DISCUSSION

Our study reveals significant overlap in clinicopathologic features,
molecular attributes, pathogenesis, and outcomes among chil-
dren with wtTP53-ACTs and mutTP53-ACTs and captures dif-
ferences between these groups (Appendix Table A3, online only).

Approximately 90% of patients with mutTP53-ACTs develop
adrenocortical tumors by 5 years of age (peak incidence, 1 to 3
years); thereafter, the risk decreases and remains low throughout
life.21,22 In contrast, 37% of our patients with wtTP53-ACTs were
diagnosed after the age of 5 years. More than 90% of children with
mutTP53-ACTs secrete androgens or androgens plus cortisol,24

whereas this pattern of hormonal secretion is seen in only ap-
proximately 55% of patients with wtTP53-ACTs.

The differences in age of onset and hormonal secretion
pattern by ACTs may be attributed to adrenal cortex cell types
involved in the malignant transformation. Our findings suggest
that in children age , 5 years, regardless of genetic background,
ACTs arise from the transient embryonic adrenal cortex.25,26 A
smaller incidence peak in pubertal patients with wtTP53-ACTs
coincides with physiologic changes in the adrenal cortex during
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adrenarche.27 Strikingly, the female predominance in ACTs at
a young age (3:1) was not observed in children age$ 10 years (1:1)
in this study. Collectively, our findings and previous studies
suggest that predisposition to pediatric ACT depends on consti-
tutional factors such as TP53 mutations and chromosome 11p15
abnormalities2,28-31 and physiologic sex- and age-specific de-
velopmental changes in the adrenal cortex.32

Remarkable and consistent features of adrenocortical
tumors include chromosome 11p15 abnormalities and IGF2
overexpression,6,33-36 which are early events in adrenal cortex
tumorigenesis.6 IGF2 overexpression probably occurs as a result of
the combination of loss of maternal chromosome 11 and dupli-
cation of paternal chromosome 11,6,34 which occurs in virtually all
patients, irrespective of TP53 status.6

In this study, dysregulation of imprinted genes in chromosome
11p15 was noted in the germline of nine of 40 patients. Also, insertion
of foreign viral DNA (human herpesvirus 6 [HHV-6]) in the telo-
meric region of the short arm of chromosome 11 occurred in two
patients (WT005 and WT030), both of whom inherited integrated
HHV-6 from their fathers.6 HHV-6 chromosomal integration is
associatedwith changes in the hostmethylationmachinery to facilitate
integration.37 In fact, patientWT030 also had hypomethylation at IC2.
These findings suggest that irrespective of chromosome 11p15 status
in the germline, adrenocortical tumorigenesis requires IGF2 over-
expression and loss of a segment of or the entire maternal chro-
mosome 11p15 (copy-neutral LOH). Our observations are consistent
with the observation that in BWS, predisposition to ACT is highest
among those with germline paternal UPD.38
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Of clinical interest, six (67%) of nine patients in our study
harbored germline abnormalities of chromosome 11p15 but did
not have clinical signs of BWS. In these patients, IGF2 over-
expression (Appendix Fig A1E) might have been restricted to
tissues in which chromosome 11 underwent somatic copy-neutral
LOH. Consistent with this hypothesis, ACT tissues from all five
patients with germline chromosome 11p15 abnormalities had
LOH of chromosome 11p15 (Appendix Table A4, online only).
Our findings underscore the importance of detailed molecular
analysis of chromosome 11p15 status in the germline of all children
with embryonic tumors, especially Wilms tumor, hepatoblastoma,
rhabdomyosarcoma, ACT, and pancreatoblastoma, all of which are
associated with chromosome 11p15 abnormalities.39 Approxi-
mately 90% of adult adrenocortical carcinomas also overexpress
IGF2.17,30 Attempts to pharmacologically target the IGF2 pathway
with the IGF1 receptor inhibitor linsitinib in adult ACT was not
associated with improved outcome.40 This strategy has not been
used in pediatric ACT.

Activation of the Wnt signaling pathway is common in adult
adrenocortical adenomas and carcinomas,41-44 suggesting its oc-
currence early in tumor formation.6,43 In our patients with
wtTP53-ACTs, activating mutations in CTNNB1were frequent and
also observed in both adenomas and carcinomas. In contrast,
activating mutations in CTNNB1 are rare in patients with germline
TP53 mutations and seem to be mutually exclusive.6

Histologic classification of pediatric ACT has been contro-
versial because of the lack of prognostic specificity.20,45 Because
clinical presentation (age of onset and tumor pattern of hormonal
secretion) and molecular (germline TP53mutations, chromosome
11p15 abnormalities, and overexpression of IGF2) findings for
pediatric ACT are similar to those for adenoma, carcinoma, and
undetermined histology, we believe that they all represent a
spectrum of the same disease.

A strong association between Ki-67 LI and prognosis in adult
ACT has recently been established.46 Ki-67 is a cell proliferation
marker that is critical for chromosome segregation during cell
division.47 Given these findings, we investigated the prognostic
implications of Ki-67 LI in our pediatric cohort. Ki-67 LI $ 15%
and age were each independently associated with poor prognosis.
To further explore Ki-67 prognostic correlates, we reanalyzed
public data from our recent studies showing that expression of cell-
cycle regulators and HLA class II genes was associated with

outcome in pediatric ACT.6,10 WhenMKI67mRNA expression was
included in the analysis, it was positively associated with expression
of cell-cycle regulatory genes and strongly associated with out-
come. Therefore, Ki-67 LI may serve as an additional prognostic
marker that should be considered in the current histopathologic
classification of pediatric ACT.

In summary, our study reveals that clinical features, prog-
nostic factors, and outcomes of pediatric ACT with or without
germline TP53 mutations are overlapping. However, some genetic
alterations contributing to tumorigenesis are likely diverse between
both groups, with CTNNB1 mutations occurring almost exclu-
sively in patients without germline TP53mutations. On the basis of
this study and other previous findings, constitutional 11p15 ab-
normalities should be considered in all children with ACTs irre-
spective of the absence of features of BWS or other growth
disorders. We also recommend that Ki-67 LI be included in his-
tologic characterization to improve the pathologic classification of
pediatric ACT.
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Table A3. Characteristics of Patients With ACTs Harboring Mutations or No
Mutations in TP53

Characteristic

No. (%)

P

Wild-Type
TP53

(n = 60)

Mutant
TP53*
(n = 54)

Sex
Female 42 (70) 38 (70)
Male 18 (30) 16 (30)

Age at presentation, years .05
Median 3.3 2.31
Range 0.25-21.7 0.56-15.81

Endocrine signs < .001
Virilization alone 23 (38) 32 (59)
Virilization plus cushing 10 (17) 17 (31)
Cushing alone 12 (20) 0 (0)
No clinical signs 12 (20) 3 (6)
Aldosterone-producing tumor 3 (5) 1 (2)
Aldosterone plus cushing 0 (0) 1 (2)

Tumor histology .02
Adenoma 10 (17) 8 (15)
Carcinoma 43 (72) 44 (82)
Undefined 7 (12) 2 (4)
Ki-67 LI $ 15% 27 (48) of 56 21 (84) of 25

Disease stage < .001
I 18 (30) 19 (38) of 50
II 14 (23) 8 (16) of 50
III 13 (22) 21 (42) of 50
IV 15 (25) 2 (4) of 50

Tumor weight, g .44
, 200 39 (68) of 57 26 (55) of 47
$ 200 18 (32) of 57 21 (45) of 47

Treatment .19
Surgery alone 36 (60) 38 (73) of 52
Surgery followed by
chemotherapy

23 (38) 14 (27) of 52

Chemotherapy alone 1 (2) 0 (0)
Molecular markers
Somatic 11p15 LOH 31 (86) of 36 32 (97) of 33
Somatic CTNNB1 mutations 22 (42) of 53 0
Somatic TP53 mutations 9 (17) of 54 0

NOTE. Bold font indicates significance.
Abbreviations: ACT, adrenocortical tumor; LI, labeling index; LOH, loss of
heterozygosity.
*Patients registered in the International Pediatric Adrenocortical Tumor
Registry.

Table A2. Cox RegressionModeling Showing Association of PFSWith Disease
Stage, Tumor Weight, Age, and Ki-67 LI Status

Risk Predictor Hazard Ratio 95% CI P

Stage IV disease 3.905 0.772 to 19.748 .0995
Tumor weight (100-g units) 1.001 1.000 to 1.002 .1929
Age (years) 1.243 1.065 to 1.4511 .0057
Ki-67 LI $ 15% 41.822 3.514 to 497.779 .0031

NOTE. Bold font indicates significance.
Abbreviations: LI, labeling index; PFS, progression-free survival.
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Table A4. Characteristics of Patients With ACTs and Chromosome 11
Abnormalities

Patient Phenotype

11p Status

Germline Tumor

WT001 BWS UPD ND
WT002 UPD mosaic mLOH
WT003 Hemihypertrophy IC2 hypomethylation LOH
WT005 ci–HHV-6 mLOH
WT009 IC2 hypomethylation LOH
WT023 IC2 hypomethylation LOH
WT030 IC2 hypomethylation/ci–HHV-6 mLOH
WT031 UPD ND
WT043 UPD ND
WT049 BWS UPD ND

Abbreviations: ACT, adrenocortical tumor; BWS, Beckwith-Wiedemann syn-
drome; ci–HHV-6, human herpesvirus 6 chromosomal integration; IC2, im-
printing control region 2 (controls maternally expressed genes CDKN1C and
KCNQ1); LOH, loss of heterozygosity; mLOH, loss of maternal chromosome
11p15; ND, not determined; UPD, uniparental disomy.
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Fig A1. Chromosome11p15 abnormalities as visualizedbymethylation-specificmultiplex ligation-dependent probe amplification (MS-MLPA) andmicrosatellite analysis inDNA
from pediatric patients with adrenocortical tumors (ACTs) without TP53mutations. (A) MS-MLPA analysis of WT031 blood DNA showing (upper panel) normal copy number of
chromosome 11p15 and (lower panel) gain of methylation at imprinting control region 1 (IC1) with loss of methylation at imprinting control region 2 (IC2) indicating uniparental
disomy. (B) WT002 blood DNA showing partial gain of methylation at IC1 and partial loss of methylation at IC2. (C) MS-MLPA analysis of WT023 blood (continued on next page)
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Fig A1. (continued) DNA showing loss ofmethylation at IC2. (D) Representativemicrosatellitemarker analysis of parents (blood) and patient (blood and tumor) DNA. The father (F)
is homozygous (185/185) and themother (M) heterozygous (192/194) for theD11S4046marker. Patient bloodDNAshows inheritance of alleles 185 from father and194 frommother;
(bottompanel) allele 194 (maternal origin) is selected against in the tumor. (E)Western blot analysis performedwith 50mg of proteinwith goat polyclonal antihuman antibody directed
against insulin-like growth factor 2 (IGF2; 1:500 dilution; Sigma-Aldrich, St Louis, MO) as previously reported.23 b-actin (1:2,000; Sigma-Aldrich) was used as the loading control. This
analysis included patients with 11p15 abnormalities on germline (n = 6) and with germline-mutated TP53, as indicated. Levels of IGF2were higher in samples than in control (two
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undetermined [Und]). ACA, adrenocortical adenoma; ACC, adrenocortical carcinoma; al, allele; CNV, copy number variation; ht, height.
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Fig A2. Association of PTTG1, BUB1B, AURKB, HLA-DPA1, and MKI67 mRNA expression with progression-free survival (PFS). mRNA expression was obtained from
Gene Expression Omnibus databases GSE76019 and GSE76021. Plots represent mRNA expression according to each probe set for those selected genes. Higher
expression of AURKB, BUB1B, PTTG1, and MKI67 was significantly associated with worse PFS.
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Fig A3. Correlations of mRNA expression of selected cell-cycle genes within the (A) Children’s Oncology Group (GSE76019) and International Pediatric Adrenocortical
Tumor Registry cohorts (GSE76021). The panels provide the Spearman correlation and P value for each pair of cell-cycle gene probe sets in both cohorts. Each entry in the
upper triangle gives the Spearman correlation of the expression of the pair of genes indicated by the row and column labels. Each entry in the lower triangle gives the
P value for the association of the pair of genes indicated by the row and column labels. NA, not applicable.
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Fig A4. Representative plots of mRNA expression ofMKI67, AURKB, BUB1B, and PTTG1 according to TP53 status from adrenocortical tumor (ACT) samples in available
public databases (Gene Expression Omnibus databases GSE76019 and GSE7602). Expression levels of PTTG1, BUB1B, and AURKBwere significantly higher in ACTs with
TP53 mutations than in those without. Expression of IGF2 and MKI67 was not significantly different,according to TP53 status. Expression levels are represented on the
positive quantile transformation (PQT) scale.
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