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Summary

The T-cell receptor (TCR)–CD3 complex, expressed on T cells, determines

the outcome of a T-cell response. It consists of the TCR-ab heterodimer

and the non-covalently associated signalling dimers of CD3ec, CD3ed and

CD3ff. TCR-ab binds specifically to a cognate peptide antigen bound to

an MHC molecule, whereas the CD3 subunits transmit the signal into the

cytosol to activate signalling events. Recruitment of proteins to specialized

localizations is one mechanism to regulate activation and termination of

signalling. In the last 25 years a large number of signalling molecules

recruited to the TCR–CD3 complex upon antigen binding to TCR-ab

have been described. Here, we review knowledge about five of those inter-

action partners: Lck, ZAP-70, Nck, WASP and Numb. Some of these pro-

teins have been targeted in the development of immunomodulatory drugs

aiming to treat patients with autoimmune diseases and organ transplants.

Keywords: protein–protein interaction; signal transduction; T-cell

activation; T-cell receptor–CD3 complex.

Introduction

Immune responses to infectious pathogens serve to main-

tain body homeostasis. Among various immune cells, T

cells play an important role to fulfil this critical function.

A T-cell response to foreign antigen is initiated by the

binding of the T-cell receptor (TCR)–CD3 complex to a

foreign peptide bound to an MHC molecule presented on

an antigen-presenting cell. Information of this binding is

transmitted into the cytosol to activate many signalling

proteins.1,2 The final targets are transcription factors, to

alter the gene expression profile, metabolic enzymes, to

change metabolic activity,3 and cytoskeletal rearrange-

ment. Together this leads to cell proliferation and effector

Abbreviations: CAR, chimeric antigen receptor; ERK, extracellular signal-regulated kinase; ITAMs, immunoreceptor tyrosine-
based activation motifs; LAT, linker for the activation of T cells; Lck, lymphocyte-specific protein tyrosine kinase; Nck, non-cata-
lytic region of tyrosine kinase; PRS, proline-rich sequence; SH, Src-homology; SLP-76, SH2-domain-containing leucocyte protein
of 76 000 MW; TCR, T-cell receptor; TSAd, T-cell specific adaptor protein; VCA, verprolin homology domain-cofilin homology
domain-acidic region; WASP, Wiskott–Aldrich syndrome protein; WAS, Wiskott–Aldrich syndrome; ZAP-70, f chain-associated
protein kinase of 70 000 MW
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molecule production and secretion, which are crucial for

T-cell-mediated immune responses.4

The TCR–CD3 complex is a multisubunit protein com-

plex. It is composed of an antigen-binding TCRab het-

erodimer non-covalently associated with the non-variable

signal transduction subunits; the CD3 heterodimers

CD3ec and CD3ed as well as the CD3ff homodimers.5–7

The cytoplasmic tails of CD3e, CDd, and CD3c each con-

tain one immunoreceptor tyrosine-based activation motif

(ITAM) and that of CD3f contains three ITAMs, hence

one TCR–CD3 complex comprises 10 ITAMs. The con-

served amino acid sequence of the ITAMs is D/ExYxxLx

(6–8)YxxL. Antigen binding to TCR-ab results in phos-

phorylation of the ITAM residues, leading to recruitment

and activation of multiple downstream signalling mole-

cules including enzymes and adaptor proteins.1,4 As there

is a myriad of signalling molecules, regulated protein–
protein interactions are one of the critical mechanisms

for regulating specificity in signal transduction. Over the

past decades a large number of proteins have been

reported to be recruited to the TCR–CD3 complex. Here,

we review recent data on five (direct or indirect) interac-

tion partners of the TCR–CD3 complex, including the

lymphocyte-specific protein tyrosine kinase (Lck), CD3f-
associated protein kinase of 70 000 MW (ZAP-70), non-

catalytic region of tyrosine kinase (Nck), Wiskott–Aldrich
syndrome protein (WASP), and the inhibitor of Notch-1

signalling Numb (Table 1). Other proteins associated

with the TCR–CD3 complex have been discussed else-

where and they are not covered in this review.8–13 The

effects of some mutations of these proteins on TCR sig-

nalling is shown in Table 2.

T cells develop in the thymus where self-reactive T cells

are deleted by a process called negative selection, which is

based on a strong signal elicited by high-affinity binding

to the self-peptide MHC.14,15 A lack of, or mutation in,

the critical proteins involved in TCR–CD3 signalling,

such as ZAP-70 and WASP, causes a reduction of the

TCR–CD3 signalling strength that allows autoreactive T

cells to escape from negative selection and reach periph-

eral tissues.16–20 These autoreactive T cells can be acti-

vated in response to self-peptide, which consequently

leads to tissue injury known as autoimmune disease.15,21

Hence, chemical agents blocking specifically the T-cell

activation process are promising therapeutic interventions

for the treatment of T-cell-driven diseases. Here, we cover

the information on some inhibitors that target the sig-

nalling proteins at the TCR–CD3 as they may have a

potential to be used for the treatment of autoimmune

disorders and in organ transplantations.

Lck

Members of the Src family of protein tyrosine kinases

modulate signal transduction downstream of transmem-

brane receptors in most, if not all, cell types. In T cells,

Lck is a member of the Src family of 56 000 MW. TCR–
CD3 engagement with an antigenic peptide MHC triggers

the phosphorylation of the ITAM tyrosines by Lck.22

Phosphorylated ITAMs then become a docking site for

ZAP-70, which is also activated by Lck upon binding to

the ITAMs.23 Subsequently, ZAP-70, together with Lck,

phosphorylates downstream signalling molecules, to acti-

vate TCR–CD3-controlled signalling cascades.

Lck contains an N-terminal membrane anchor region

(SH4 domain), a unique domain, an Src-homology 3

(SH3) domain, an SH2 domain, a catalytic kinase domain

and a short C-terminal tail (Fig. 1a). The SH4 domain is

post-translationally modified by the addition of lipids,

including myristoylation and palmitoylation, which allows

the attachment of Lck to the plasma membrane. A serine

59 residue in a unique domain of Lck can be phosphory-

lated by the extracellular signal-regulated kinase (ERK)24

and phosphorylation of this residue inhibits Lck activ-

ity.25 In addition, Lck activity is tightly regulated by a

conformational state mainly depending on the phospho-

rylation and dephosphorylation of two tyrosine residues

(Y394 and Y505) on the catalytic kinase domain and the

C-terminal tail, respectively.26 Phosphorylation of Y505

by the C-terminal Src kinase mediates an intramolecular

interaction with the SH2 domain, resulting in an inactive

or closed conformation of Lck. When Y505 is dephospho-

rylated by the phosphatase CD45 or SHP-1, the SH2

domain detaches from Y505, so promoting an opened

Table 1. Selected proteins interacting with the T-cell receptor (TCR) –CD3 complex

Proteins associated

with TCR–CD3

Binding domain of the

associated protein Binding motif of the TCR–CD3

Effect on TCR

signalling References

Lck SH2 Phospho-ITAM Enhancement 38

ZAP-70 SH2 Phospho-ITAM Enhancement 86

Nck SH3.1 and SH2 Proline-rich sequence (PRS)

and Phospho-ITAM within CD3e
Enhancement 40, 65

WASP SH3 domain bind to Nck Indirect via Nck Unknown 79

Numb Phosphotyrosine binding

(PTB) domain

NPDY motif within CD3e Decrease 84

ª 2017 John Wiley & Sons Ltd, Immunology, 153, 42–50 43

Signalling proteins at TCR-CD3 complex



conformation. The opened conformation allows phospho-

rylation of Y394 by Lck trans-autophosphorylation.26,27

However, doubly phosphorylated tyrosines Y394 and

Y505 might also exist and confer a dominant effect of

kinase activity over the inhibitory Y505.28

Different pools of Lck have been identified, including

Lck in the cytoplasm, Lck anchored to the plasma mem-

brane and Lck associated with the co-receptors CD4 and

CD8.29 Approximately 40% of Lck is already active

(phosphorylated at Y394) in resting T cells and upon

TCR engagement the amount of active Lck increases, as

seen by Forster resonance energy transfer.30–32 In addi-

tion, the distribution of Lck to its correct destination

may regulate the function of Lck in phosphorylating its

substrates.26 Several lines of evidence have also suggested

that initial phosphorylation of the CD3’s ITAMs is medi-

ated by free Lck, whereas the co-receptor-associated Lck

acts as an adaptor molecule to bring the CD4 or CD8

molecule to the phosphorylated TCR–CD3 complex in a

later step.33,34 Furthermore, it has been suggested that the

conformation of Lck determines its distribution. Lck in

the opened conformation might allow clusters of Lck,

whereas the closed conformation inhibits the clustering.

TCR triggering induces the clustering of Lck with the

phosphorylated TCR–CD3, suggesting that conformation-

driven Lck clustering may determine its localization to

perform its activity.35 These findings suggest that Lck

recruitment to the TCR–CD3 complex induces the phos-

phorylation of the ITAMs.

Lck can be co-immunoprecipitated with the TCR–CD3
complex upon TCR–CD3 ligation, suggesting that these

two proteins can interact directly or indirectly with each

other.36 An indirect interaction might be mediated by

RhoH, a haematopoietic-specific Rho GTPase.37 The

direct interaction might be mediated by the SH2 domain

of Lck and phosphorylated ITAMs.38,39 In addition, the

SH2 domain of Lck can also interact with lipid within the

plasma membrane upon TCR activation. This binding

might be crucial for a lateral diffusion of Lck to interact

with the triggered TCR–CD3 complex.39 These data indi-

cate that localization of Lck to TCR–CD3s that are phos-

phorylated on few tyrosines facilitates the phosphorylation

of the other ITAM tyrosines within CD3.

Our own data have suggested that the resting TCR–
CD3 is in a closed conformation, in which the ITAM

tyrosines are not exposed, but hidden within the quarte-

nary structure of the TCR–CD3 complex.40,41 Upon pep-

tide–MHC binding to TCR-ab an open CD3

Table 2. Mutations of T-cell receptor (TCR) -CD3 binding proteins with their effects on TCR signalling

TCR–CD3

binding proteins Mutations Effects on TCR signalling References

Lck R154K (SH2 mutant) Inhibits Lck association with ZAP-70 and CD3f 38

Y192F Inhibits Lck association with TSAd, Itk, Pyk2 and SHP-1 and

enhances tyrosine-phosphorylated proteins

87

Y394F Closed conformation with decreased kinase activity 35,88

Y505F Open conformation with increased enzymatic activity 35,88

Y505F, K273R Open conformation but lacking kinase activity 35

ZAP70 Y315F Inhibition of Vav–ZAP-70 interaction and reduction of tyrosine

phosphorylation

89

Y319F Impairment of Ca2+ mobilization, Ras activation and activation

of phospholipase Cc1
54

W131A Increases kinase activity of ZAP-70 90

Y315, 319A Open conformation with increased kinase activity of ZAP-70 51

Y315, 319F Closed conformation with ZAP-70 kinase inactive 51

D461N Inactivates the kinase domain known as ‘kinase dead’ 50

Y493F Inactivates ZAP-70 catalytic activity 91

Nck Nck1(W38K) (SH3.1 mutant) Impairs the binding of Nck1 to CD3e and decreases ERK activation 65

Nck1(W143K) (SH3.2 mutant) Impairs the binding of Nck1 to Cbl 92

Nck1(W229K) (SH3.3 mutant) Impairs the expression of CD69 expression and ERK phosphorylation 63

Nck1(R308K) (SH2 mutant) Impairs the binding of Nck1 to CD3e
Abrogates the binding of Nck1 to ADAP

65,93

WASP WASPDC (deletion of amino

acids 444–502 at C terminus)

Inhibits actin polymerization but enhances the activation of NFAT

transcription factor and ERK phosphorylation in human T cells

94

L46P (WH1 mutant) Impairs the chemotactic migration of human T cells and actin

cytoskeleton reorganization

95

A47D (WH1 mutant) Impairs the chemotactic migration of human T cells and actin

cytoskeleton reorganization

95

Numb DNumb (condition

deletion of Numb)

Normal CD3f phosphorylation in murine T cells 96
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conformation is stabilized, that allows access of Lck to

the ITAM tyrosine.42 This might be one explanation of

how peptide–MHC binding to the TCR–CD3 complex

causes CD3 phosphorylation by Lck.

As Lck expression is found only in T cells and natural

killer cells, selective inhibitors that target Lck would

potentially provide a safe treatment of diseases mediated

by over-activation of T cells such as rheumatoid arthritis,

inflammatory bowel disease, psoriasis and organ graft

rejection.43 A large number of compounds have been

reported that selectively inhibit Lck activity by binding to

the ATP pocket of Lck’s kinase domain.44 Some of those

inhibitors prevent the allograft rejection in mouse mod-

els,45,46 and one inhibits the hind paw swelling in an

adjuvant-induced rat arthritis model.47

ZAP-70

ZAP-70 is a cytoplasmic tyrosine kinase expressed predomi-

nantly in T and natural killer cells. The importance of

ZAP-70 in humans has been demonstrated as a lack of

ZAP-70 causes a profound combined immunodeficiency,

which is characterized by an absence of CD8 T cells and a

defective function of CD4 T cells.17,18 Combined mutations

of R192W and R360P in ZAP-70 cause an autoimmune

syndrome. The former mutation results in decreased bind-

ing to phospho-CD3, whereas the latter mutation reduces

an autoinhibitory mechanism.48 These mutations that alter

TCR signalling thresholds cause autoimmune diseases as

phenotypically demonstrated by uncontrollable bullous

pemphigoid, colitis and proteinuria.48

ZAP-70 is structurally composed of two SH2 domains

separated by a so-called interdomain A. Following the tan-

dem SH2 domains is the interdomain B and the kinase

domain49 (Fig. 1b). There are several tyrosine residues on

the interdomain B and kinase domain that can be phos-

phorylated after TCR stimulation. These tyrosines have

various functions including regulation of the catalytic

activity of ZAP-70 and interaction with other signalling

molecules. Tyrosine 292 (Y292), Y315 and Y319 are

located within the interdomain B, whereas Y492 and Y493

are located in the kinase domain. In resting T cells, ZAP-

N C
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Figure 1. Modular composition of proteins associated with the T-cell receptor (TCR) –CD3 complex. (a) Lck consists of an Src homology 4

(SH4) domain, a unique domain, an SH3 and SH2 domain, the catalytic domain and a C-terminal region. The serine (S) and tyrosines (Y)

depicted can be phosphorylated upon TCR–CD3 ligation. (b) ZAP-70 contains an N-terminal SH2 domain, an interdomain A (IA), a C-terminal

SH2 domain, an interdomain B (IB) and the kinase domain. The tyrosine residues indicated can be phosphorylated upon TCR–CD3 triggering.

(c) The Nck family has two members, Nck1 and Nck2, both being composed of three SH3 domains and a C-terminal SH2 domain. (d) WASP

consists of a WH1 (WASP homology 1) and basic domain, followed by a GTPase-binding domain (GBD), a proline-rich sequence (PRS) and ver-

prolin homology domain–cofilin homology domain-acidic region domains (VCA). (e) Numb contains a phospho-tyrosine binding (PTB)

domain, two PRSs and DPF (Asp-Pro-Phe) and NPF (Asn-Pro-Phe) tri-peptide motifs at the C-terminus.
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70 is in an autoinhibited conformation mediated by the

intramolecular interaction of Y315 and Y319 with the

kinase domain.50 Upon TCR engagement, the tandem

SH2 domains of ZAP-70 are recruited to doubly phospho-

rylated ITAMs of the CD3 subunits. Binding to the CD3

subunits changes ZAP-70 conformation to an opened con-

formation with the release of Y315 and Y319 from the

kinase domain. This facilitates the phosphorylation of

Y315 and Y319 by either Lck51,52 or by trans-autopho-

sphorylation.53 Likewise, the conformational change also

gives rise to a more flexible kinase domain, resulting in

phosphorylation of Y493, which is located within the acti-

vation loop of the kinase domain, by either Lck or by

trans-autophosphorylation.51 Phosphorylation of Y493

allows ZAP-70 to be catalytically active. Lck can bind with

its SH2 domain to phospho-Y319 of ZAP-70 and is

required to mediate the phosphorylation of various tyro-

sine residues on ZAP-70.54 Mutation of ZAP-70’s Y31953

or Lck’s SH2 domain54 abrogates the Lck–ZAP-70 interac-

tion and consequently impairs downstream signalling.

Taken together, the activation of ZAP-70 relies on two

steps: first binding of the tandem SH2 domains of ZAP-70

to doubly phosphorylated tyrosines within the ITAMs of

CD3, causing a conformational change, and second the

Lck- and ZAP-70-mediated phosphorylation of Y315,

Y319 and Y493 resulting in full ZAP-70 activation.49–51

By comparing the different ITAMs among the CD3

subunits (CD3f, CD3d, CD3e and CD3c), it is likely that

ZAP-70 preferentially binds to fully phosphorylated

CD3f.9 Recently, a ‘catch-and-release’ model for ZAP-70

activation has been proposed by Katz et al.55 After

recruitment of ZAP-70 to the phosphorylated TCR–CD3
complexes and ZAP-70 phosphorylation by Lck, activated

ZAP-70 is released from the TCR–CD3 complexes into

the plane of the plasma membrane. The association of

ZAP-70 with the membrane might be mediated by the

binding of the SH2 domains to lipids or of phosphoty-

rosines to other membrane-associated proteins. Conse-

quently, empty phospho-TCR–CD3 complexes allow the

recruitment of additional ZAP-70 molecules to the TCR–
CD3 for activation of additional ZAP-70. The released

ZAP-70 translocates within the membrane into adjacent

protein islands to mediate phosphorylation of its sub-

strates including the linker for the activation of T cells

(LAT) and the SH2-domain-containing leucocyte protein

of 76 000 MW (SLP-76).55 Phosphorylated LAT and SLP-

76 adaptor proteins have various interacting partners such

as the phospholipase C-c1, which is recruited to these

two proteins to form the LAT/SLP-76 signalosome.56

Forming of this signalosome results in T-cell activation,

proliferation and differentiation.

As ZAP-70 is required to initiate T-cell activation, inhi-

bition of ZAP-70 from interacting with the TCR–CD3 by

small molecules may be used to treat patients with autoim-

mune diseases and organ transplants. High-throughput

screening of a library of 132 842 compounds has been con-

ducted to find inhibitors that would disrupt the interaction

of ZAP-70 with CD3f.57 A series of pyrimidine derivatives

that can inhibit ZAP-70 activity have been identified and

patented by researchers and Novartis companies.58

In recent years, chimeric antigen receptor (CAR)-

expressing T cells have been used for tumour immunother-

apy. CARs consist of an extracellular anti-tumour antigen

single Fv fragment, a transmembrane region and the

cytoplasmic tail of CD3f. CAR signalling relies on tumour

antigen-binding-induced CD3f tail phosphorylation. An in

silico model has suggested that the sensitivity of TCR

signalling is modulated by the differential affinities of

ZAP-70 to the ITAMs of CD3f, and sequential phosphory-

lation of these ITAMs leading to a ‘switch-like’ response of

TCR signalling.59 Cytokine production by T cells could

occur without phosphorylation of the CD3f, CD3d, CD3c
chains when there are intact CD3e chains.60 It has been

suggested that no matter which ITAMs are phosphorylated,

the number of ITAMs to be phosphorylated would

determine the outcome of the T-cell response.61 Hence, to

obtain effective CAR-T cells with a strong anti-tumoral

cytotoxic function but without producing too much

cytokine, preventing the so-called cytokine storm, one

may optimize CD3f signalling by titrating the number of

ITAMs to be phosphorylated and by using other CD3

chains than CD3f.

Nck

Nck is a 47 000 MW cytosolic adapter protein that is

composed of three SH3 domains (SH3.1, SH3.2 and

SH3.3) and one SH2 domain (Fig. 1c). In humans, two

Nck isoforms exist; Nck1/Ncka and Nck2/Nckb, which

share 68% amino acid sequence similarity.62 Although

redundant roles of Nck1 and Nck2 have been reported,

our previous work has shown that Nck1 and Nck2 mole-

cules are functionally non-redundant in T-cell activa-

tion.63 In response to TCR triggering, Nck is recruited to

SLP-76 to mediate actin rearrangement, which is essential

for immunological synapse formation, T-cell activation

and cell movement.64 Nck is doing so by binding to

WASP.

In addition, inducible direct association of Nck to

the TCR–CD3 complex occurs when the latter is trig-

gered. For this association, Nck simultaneously uses its

SH3.1 and SH2 domains.65 The SH3.1 domain directly

interacts with the PxxPxxDY sequence located within

the proline-rich sequence (PRS) of the CD3e.40 For this

association to occur the TCR needs to be in its Active

CD3 conformation and the tyrosine needs to be in the

non-phosphorylated state.40,66 The SH2 domain interacts

with the second tyrosine of the CD3e ITAM, when this

tyrosine is phosphorylated.65 The functions of Nck–CD3
interaction is not well understood. A knock-in mouse
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strain was generated in which the CD3e PRS was

replaced with another sequence, abolishing the binding

to the SH3.1 domain of Nck, but most likely also to

Numb (see below).67 The fact that Nck is a positive

and Numb a negative regulator of signalling, might

explain why the phenotype of the mutant T cells was

mild. To only block the Nck–CD3 interaction, another

knock-in mouse line with point mutations of the two

central prolines of the PxxP motif of CD3e PRS to ala-

nine has been generated.68 Indeed, T cells from these

knock-in mice do not recruit Nck to the TCR upon

stimulation. In addition, this mutation is accompanied

with impaired CD3f phosphorylation and decreased

ZAP-70 recruitment to the TCR–CD3 complex, as well

as impaired ZAP-70 phosphorylation.68 Moreover, the

SH3.2 domain of Nck can bind to a proline motif in

the unique domain of Lck.69 Recently, another adaptor

protein called the T-cell specific adaptor protein (TSAd)

was identified that interacts with the Src family of pro-

teins including Lck and promotes actin polymerization

via interaction with Nck.70 Nck and Lck contain multi-

ple binding sites on TSAd. The Nck SH2 interacts with

phospho-TSAd whereas the Nck SH3.1 and SH3.3 inter-

act with TSAd PRS. The SH2 Lck binds to phospho-

TSAd and the Lck SH3 binds to the TSAd PRS. Taken

together, Nck recruitment to the TCR–CD3 complex

may also bring Lck to TCR.

Interestingly, the importance of the Nck–CD3 interac-

tion might depend on the antigen quality, as this interac-

tion was critical for stimulation of T cells with weak

(low-affinity) antigens, but not with strong (high-affinity)

antigens.71 Foreign antigens are often of high affinity and

self antigen of low affinity.72 Hence, the requirement of

Nck recruitment for T-cell activation only by low (and

not by high) affinity antigens has raised the possibility for

inhibition of the Nck–CD3 interaction as a target for

treatment of autoimmune diseases caused by self-reactive

T cells. Borroto et al.73 have chemically generated a low-

molecular-weight inhibitor targeting a non-canonical

pocket within the Nck SH3.1 domain. As expected, this

inhibitor prevented the binding of Nck to the TCR–CD3
complex. T-cell activation in response to low-affinity anti-

gens was strongly inhibited by this inhibitor, as seen in

mouse models for psoriasis, asthma and multiple sclero-

sis. Interestingly, the T-cell response to a mouse pathogen

acting as a strong high-affinity peptide was normal after

treatment with this inhibitor. Altogether, these results

indicate that this synthetic inhibitor could be a candidate

to be evaluated in clinical trials to treat various T-cell-

mediated autoimmune diseases.73

WASP

WASP belongs to the WASP family of proteins consisting

of WASP, N-WASP and WAVE/SCAR molecules.74

Mutation of WASP or lack of WASP expression causes

the Wiskott–Aldrich syndrome (WAS), which is charac-

terized by thrombocytopenia, eczema, increased suscepti-

bility to infection and increased risk to develop

autoimmune disease.20,75 WASP contains a WASP homol-

ogy 1 domain, a basic domain, a PRS, a GTPase-binding

domain and a verprolin homology domain–cofilin
homology domain-acidic region (VCA) domain (Fig. 1d).

These domains are required for binding to different

cytoskeleton-regulating proteins. For instance, the

GTPase-binding domain binds CDC42,76 whereas the

PRS acts as a binding site for various SH3-containing

proteins such as Nck.77 The function of WASP at the

SLP-76 signalosome in regulating actin skeleton dynamics

is well described.78

As WASP is the binding partner of Nck,77 we tested

whether recruitment of Nck to the TCR–CD3 complex

may also bring WASP to the TCR–CD3. We found that

WASP is co-immunoprecipitated with the TCR–CD3
complex after T-cell activation.79 However, whether this

was mediated by Nck is not known. Although the func-

tion of WASP recruitment to the TCR–CD3 complex has

not been investigated, these results suggest that there

would be an alternative pathway of WASP (besides the

SLP-76 signalosome) to regulate actin reorganization in

the vicinity of the TCR–CD3 complex.

Numb

Numb is an adaptor protein that regulates receptor inter-

nalization. Numb is up-regulated in the active phase of

multiple sclerosis80 and type 1 diabetes.81 Two homo-

logues of Numb including Numb and Numb-like have

been identified in mammals.82 Numb is composed of a

phosphotyrosine binding domain, several proline-rich

regions at the centre of the molecule and two tri-peptide

motifs (Fig 1e).82 Numb is involved in the development

of murine thymocytes by regulating pre-TCR signalling.83

In addition, Numb may control TCR signalling in

mature T cells. Constitutive expression of CD69 and

interferon-c, as well as constitutively phosphorylated

ERK, are found in the CD4+ T cells from dominant neg-

ative Numb transgenic mice. Upon stimulation, CD4+ T

cells from these mice exhibit higher ERK, ZAP-70 and

Akt phosphorylation than those of the wild-type mice,

indicating that Numb may be required for a negative

control of TCR-mediated signal transduction.84 It was

suggested that Numb plays a role in TCR degradation by

simultaneously binding to both Cbl and a site within

CD3e that overlaps with the Nck binding site, thus

mediating TCR degradation.84

Numb can bind with its phosphotyrosine binding

domain to the cytoplasmic tail of CD3e within the PRS

to the sequence NPDY.84 Indeed, an endocytosis motif in

CD3e in this region has been identified,85 suggesting that

ª 2017 John Wiley & Sons Ltd, Immunology, 153, 42–50 47

Signalling proteins at TCR-CD3 complex



Numb might be involved in TCR–CD3 endocytosis.

Interestingly, Numb was suggested to constitutively asso-

ciate with CD3e. So far, not much is known about the

order of binding of the TCR–CD3 binding partners.

Here, we propose that in resting T cells, CD3e is occu-

pied with Numb that impedes TCR signalling. Upon

TCR ligation, a conformational change of the CD3e may

result in the release of Numb and exposure of the CD3e
PRS, which is the site that interacts with Nck. Recruit-

ment of Nck to the TCR also brings Lck to the TCR to

facilitate ITAM phosphorylation. Full ITAM phosphoryla-

tion then releases Nck so that ZAP-70 can bind. Once

the TCR signal is transmitted, ZAP-70 is replaced by

Numb to mediate TCR degradation and these cause a

deviation of T-cell activation. However, further studies

are required to elucidate the mechanism underlying

Numb-regulated TCR signalling and the related TCR

degradation pathways.

Conclusion

TCR–CD3 complex is the key molecule to initiate bio-

chemical events in T-cell activation and differentiation

that can lead to different outcomes, depending on the

quantity and quality of the stimulus. Nevertheless, how

stimulation of the TCR–CD3 complex can give rise to

distinct outcomes still remains unclear. Based on the

recent findings, we propose that distinct outcomes may

be due to the different interaction partners to be

recruited to the TCR–CD3 complex upon TCR–CD3
engagement (Fig. 2). These protein partners are involved

in both enhance and decrease of TCR signalling and in

different downstream signalling pathways. Lck can inter-

act directly or indirectly with the TCR–CD3 complex and

phosphorylate the ITAMs to initiate signal transduction.

ZAP-70 directly interacts with the TCR–CD3 complex

upon CD3 phosphorylation and activates downstream

Lck

WASP
Nck

ZAP-70

Lck

ε δ

α

ε

ζ ζ

γ

Numb

β

?

Actin cytoskeletal 
rearrangement

Phosphorylation of 
LAT, SLP-76

TCR degradation

Phosphorylation of 
ITAMs and ZAP-70

PRS

Figure 2. Selected signalling proteins at TCR–CD3 complex. TCR–CD3 ligation induces a conformational change of CD3e, leading to the expo-

sure of its proline-rich sequence (PRS). Nck is then recruited to the PRS within the cytoplasmic tail of the CD3e. Subsequently, Lck is associated

with Nck upon TCR activation. Hence, Nck recruitment to TCR may also bring Lck to TCR–CD3 complex to mediate phosphorylation of the

ITAM motif. In addition, Lck can directly interact with phospho-ITAM. When the second tyrosine of the CD3e ITAM is phosphorylated, Nck

can bind with CD3e using its SH3.1 and SH2 domains in a co-operative manner. In proximity to the TCR–CD3 complex, Lck phosphorylates

tyrosines in each ITAM of the CD3 chains. ZAP-70 is then recruited to bind to the phospho-ITAMs, where ZAP-70 itself is phosphorylated by

Lck. WASP can be associated with Nck upon TCR activation to regulate actin polymerization. Numb can be associated with the CD3e to regulate

in TCR degradation leading to a decrease in TCR signalling.
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signalling cascades. Nck is recruited to CD3e and might

co-recruit Lck and WASP to the TCR–CD3 complex.

TCR–CD3-recruited WASP might control actin reorgani-

zation at TCR–CD3. Numb is a new binding partner of

the TCR–CD3 complex and participates in TCR degrada-

tion to lessen TCR signalling after T-cell stimulation.

However, the exact molecular mechanisms underlying the

dynamic distributions of these proteins into and out of

the TCR–CD3 complex still need further clarification.
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