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Summary

Tolerogenic dendritic cells (tolDCs) are a promising therapeutic tool to

restore immune tolerance in autoimmune diseases. The rationale of using

tolDCs is that they can specifically target the pathogenic T-cell response

while leaving other, protective, T-cell responses intact. Several ways of

generating therapeutic tolDCs have been described, but whether these

tolDCs should be loaded with autoantigen(s), and if so, with which

autoantigen(s), remains unclear. Autoimmune diseases, such as rheuma-

toid arthritis, are not commonly defined by a single, universal, autoanti-

gen. A possible solution is to use surrogate autoantigens for loading of

tolDCs. We propose that heat-shock proteins may be a relevant surrogate

antigen, as they are evolutionarily conserved between species, ubiquitously

expressed in inflamed tissues and have been shown to induce regulatory T

cells, ameliorating disease in various arthritis mouse models. In this

review, we provide an overview on how immune tolerance may be

restored by tolDCs, the problem of selecting relevant autoantigens for

loading of tolDCs, and why heat-shock proteins could be used as surro-

gate autoantigens.
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Restoring immune tolerance to ‘self’ in
autoimmune disease: a promising clinical
intervention

Immune tolerance is crucial for preventing destructive

immune responses to self tissues. In healthy individuals,

immune tolerance is maintained at different levels: in the

thymus, where T cells that strongly react to self-antigens

are deleted, and in the periphery, where self-reactive T

cells that escaped negative selection in the thymus are

kept in check by regulatory cells. A breach in immune

tolerance facilitates immune attacks on self-tissues that,

when becoming dysregulated, lead to chronic auto-

immune disorders.

Regulatory T (Treg) cells play a pivotal role in main-

taining immune tolerance in the periphery. They are a

heterogeneous population of cells that can be either

derived from the thymus (naturally occurring Treg cells)

or induced in the periphery from naive CD4+ T cells

(induced Treg cells). They exert their suppressive action

on immune effector cells through a number of distinct

mechanisms, including inhibition of antigen-presenting

cell function, killing of effector cells, secretion of

immunosuppressive cytokines and compounds, and inter-

ference with metabolic pathways (reviewed in refs 1,2).

Treg cells are critical to prevent autoimmune disease.

A total loss of functional Treg cells, as seen in patients

with IPEX (immunodysregulation polyendocrinopathy

enteropathy X-linked syndrome), leads to severe auto-

immunity affecting multiple organs.3 In specific auto-

immune diseases, however, it is thought that a more

subtle change in the function of Treg cells is involved in

the pathogenesis. For example, although patients with

type I diabetes have similar numbers of Treg cells to

healthy controls, their Treg cells display reduced suppres-

sive activity and defects in interleukin-2 (IL-2) sig-

nalling.4–6 In patients with rheumatoid arthritis (RA),

Treg cells have reduced ability to suppress inflammatory

cytokine production.7 Furthermore, enhanced numbers of

Treg cells co-expressing IL-17 were found in both the

peripheral blood and synovial fluid of patients with RA,

suggesting conversion of Treg cells into inflammatory

cytokine-producing effector cells.8

Restoration of Treg cell function is emerging as a

promising clinical intervention for autoimmune diseases.

One way of achieving this is by replenishing the Treg cell

pool in autoimmune patients with functional Treg cells,

either by treating patients with drugs that selectively

expand Treg cells in vivo, or by generating new Treg cells

ex vivo before injecting them into the patient (reviewed

in refs 2,9). However, a downside of this approach is that

expanding Treg cells ‘randomly’ may give rise to general

suppression of the immune response, thereby increasing

the risk of infection, and perhaps even cancer. A pre-

ferred approach would be to direct the Treg response to

defined and relevant antigens that are being expressed in

the target tissue. This would not only limit off-target

immunosuppression, but would most likely also increase

the efficacy of the Treg cell therapy, as was shown in

mouse models.10,11 An outstanding issue is, however, how

to achieve the expansion of antigen-specific Treg cells,

and how to choose the relevant antigen(s). Here, we pro-

pose to use tolerogenic DCs (tolDCs) to induce Treg cells

against heat-shock proteins that are ubiquitously

expressed in inflamed target tissues, as outlined below.

Tolerogenic dendritic cells as a therapeutic tool

Dendritic cells (DCs) are a heterogeneous family of pro-

fessional antigen-presenting cells that can be classified on

the basis of their ontogeny, surface marker expression

profile and anatomical location (reviewed in ref. 12). DCs

are as important for the induction of effective immunity

against invading pathogens as they are for the mainte-

nance of immune tolerance. Patients with primary

immunodeficiency with mutations in GATA2 have defec-

tive DC function, resulting in enhanced susceptibility not

only to infection and cancer, but also to autoimmune

conditions, most likely due to a reduction in Treg cells.13

The role of DCs in instigating immunity versus tolerance

is largely determined by their maturation status. Under

steady-state conditions, tissue DCs are immature, express-

ing low levels of MHC class II and co-stimulatory mole-

cules; their ‘default’ setting is to induce tolerance. These

immature DCs can become immunogenic when they sense

pathogen-associated molecular patterns and danger-asso-

ciated molecular patterns via pattern recognition receptors.

These include Toll-like receptors, retinoic-acid-inducible

gene I-like receptors, and nucleotide-binding oligomeriza-

tion domain-like receptors. Pattern recognition receptor-

mediated signalling plays a central role in the maturation

process that DCs need to undergo to acquire potent T-cell

stimulatory properties.14 Fully matured DCs express high

levels of MHC class II, co-stimulatory markers (e.g. CD86)

and pro-inflammatory cytokines (e.g. IL-12p70, IL-23,

tumour necrosis factor), all required for the efficient induc-

tion of T effector cell responses. Furthermore, during DC

maturation the expression of chemokine receptors is

modulated (e.g. CCR5 is down-regulated and CCR7 is

up-regulated) enabling DC migration towards lymphoid

tissues to present antigen to naive T cells. However, the

outcome of maturation of DCs is not always the generation

of DCs with immunogenic properties. Certain danger-asso-

ciated molecular patterns and immune suppressive com-

pounds have been shown to drive the maturation of DCs

with tolerogenic properties (i.e. tolDCs).15–18 These tolDCs

may be phenotypically mature (i.e. high levels of MHC

class II and co-stimulatory molecules), but may express co-

inhibitory molecules [e.g. programmed death ligand 1

(PD-L1), PD-L2, immunoglobulin-like transcript 3], lack
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expression of pro-inflammatory cytokines and instead pro-

duce immunosuppressive cytokines and compounds [e.g.

IL-10, transforming growth factor-b (TGF-b), indoleamine

2,3-dioxygenase (IDO)]. The maturation status of these

DCs has been referred to as ‘semi-mature’. Hence, there is

plasticity with regard to the functional maturation of DC,

and the environmental cues that DCs receive during the

maturation process determine whether they become

immunogenic or tolerogenic.

Dendritic cells are able to mediate tolerance through

several mechanisms. They can induce iTreg cells through,

for example, membrane-bound PD-L1, which blocks the

Akt/mTOR pathway to preferentially stimulate naive T

cells to become iTreg cells.19 Furthermore, PD-L1 and

PD-L2 provide inhibitory signals to both CD8+ and

CD4+ T cells, which drives the T cell into a state of toler-

ance.19 Secreted compounds such as IL-10, IL-27, TGF-b,
retinoic acid and IDO, can convert naive T cells into

iTreg cells. DCs can also promote T-cell tolerance

through T-cell killing, and the induction of T-cell hypo-

responsiveness (anergy).20,21

The importance of DCs in maintaining immune toler-

ance has led to exploring the therapeutic use of DCs.

Various ways have been described to create DCs with

stable tolerogenic properties (tolDCs). The tolerogenic

properties of these in vitro generated tolDCs depend on

the specific method used (reviewed in ref. 22). For exam-

ple, tolDCs generated with the immunosuppressive agents

dexamethasone and/or the active form of Vitamin D3

(1a,25-dihydroxyvitamin D3) are characterized by a semi-

mature phenotype, with high levels of MHC class II,

intermediate levels of co-stimulatory molecules, low levels

of pro-inflammatory cytokines and high levels of the

immunosuppressive cytokines IL-10 and TGF-b.23–27

TolDCs can also be genetically engineered, for example

through the transduction of immunosuppressive or pro-

apoptotic molecules (e.g. IL-10, CTLA-4, FASL) or silenc-

ing of immunostimulatory molecules (e.g. CD80/CD86,

IL-12) (reviewed in ref. 28). These different types of

tolDCs have been shown to reduce or prevent autoim-

mune diseases or transplant rejection in animal models,

providing important proof of principle evidence that

these cells can be applied therapeutically.27,29–33 Their

therapeutic benefit is associated with a reduction of pro-

inflammatory effector T cells and natural killer cells, and

the induction of Treg cells or IL-10-producing T

cells.27,29,34–36

Efforts have been made to translate these findings from

animal studies to the clinical setting. Good Manufactur-

ing Protocols to generate tolDCs from human donor cells

have been developed,26,37 and methods to preserve the

tolDCs and reduce the production costs are being

explored.29 As there are diverse methods of generating

tolDCs and other types of tolerogenic APC (tolAPCs), a

minimum information model for tolAPC (MITAP) was

generated. MITAP enables researchers to report their data

in a standardized and more transparent manner, facilitat-

ing data comparison and interpretation, ultimately paving

the way for the development of standardized protocols

for the production of tolDCs and other tolAPCs for ther-

apeutic application.38 A number of tolDCs have been

tested in phase I clinical trials, including for type I dia-

betes,30 Crohn’s disease39 and RA.40,41 Encouragingly,

tolDC therapy in all these studies was found to be feasible

and safe, providing rationale to conduct further studies

into their efficacy.

The problem of targeting autoantigen(s) – which
ones?

One of the main advantages of tolDC therapy is the

specific targeting of pathogenic immune responses. Many

of the drugs that are currently used to treat autoimmune

diseases are non-antigen-specific, leading to general

immunosuppression. With tolDCs, autoreactive T cells

can, theoretically, be exclusively targeted. But how to

achieve this is still a debate. A number of studies have

provided clear evidence that tolDCs need to be loaded

with a disease-relevant antigen to exert their beneficial

immune modulatory action. Loading of tolDCs with type

II collagen was required, for example, for antigen-specific

disease remission in the collagen-induced arthritis

model.27,42,43 More recent research shows that this is also

applicable in other autoimmune diseases.44 Furthermore,

when comparing the therapeutic action of unloaded

tolDCs and tolDCs loaded with a disease relevant peptide

(MOG40–55) in the experimental autoimmune

encephalomyelitis model, Mansilla et al.45 showed that

although the unloaded tolDCs inhibited disease symp-

toms, the MOG40–55-loaded tolDCs diminished disease

even more.

In contrast, other studies have shown that disease

remission can be established when administering

unloaded tolDCs.46,47 This may suggest that tolDCs are

able to take up the relevant antigen in vivo. It has been

hypothesized that unloaded tolDCs induce T-cell anergy

rather than promoting Treg cells. These anergic T cells

might be capable of suppressing excessive T helper type

17 and type 1 responses.48 Non-antigen-pulsed tolDCs

might also induce regulatory populations that do not

require an antigen. For instance, B cells can be con-

verted into regulatory B cells partly through the pro-

duction of retinoic acid by the tolDCs.49 However, if

these non-antigen-pulsed tolDCs are able to take up

antigen in vivo, one has to consider the safety of these

tolDCs, as it is possible that the non-antigen-pulsed

tolDCs also take up other antigens that should not be

targeted.

Nonetheless, if tolDCs need to be loaded with antigen

(s) before infusion, a remaining problem is the question
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of which antigen to use, and in what form. In many

autoimmune diseases, including RA, the knowledge about

the relevant autoantigen(s) involved is insufficient. More-

over, even if some of the relevant autoantigens are

known, as is the case for multiple sclerosis, the problem

of HLA diversity remains.44 Some peptides (e.g. prote-

olipid protein) that have been shown to be involved in

the pathogenesis of multiple sclerosis are restricted to a

specific HLA-class (e.g. HLA-DQB1*0602), making it

more difficult to standardize the peptides used for all

patients with multiple sclerosis.50

For RA, no universal autoantigen exists. Several candi-

date self-proteins have been described in relation to the

pathogenesis of this disease. Epitopes from joint-derived

antigens such as collagen type II and human cartilage-

derived glycoprotein HCgp39 are presented by DCs and

macrophages to T cells in inflamed joints of patients

with RA.51 Furthermore, the endoplasmic reticulum

(ER) stress-associated protein GRP78/BiP is described as

a potential autoantigen. The ER stress response is

increased in RA synovial tissue and fluid and the ER

chaperone, GRP78, is important for synoviocyte prolifer-

ation and angiogenesis, which are substantial indicators

of RA.52

Post-translational modifications may also be important

in generating novel epitopes that trigger autoimmunity.

Anti-citrullinated peptide antibodies (ACPAs) are found

in the sera of 70–80% of patients with RA.53 Immuno-

genetic studies have shown that more than 90% of

patients with RA share an HLA-II epitope in the DRB1

chain (HLA-DRB1 *0101, *0401, *0404). This so-called

shared epitope is also associated with ACPAs; shared

epitope-positive patients are predisposed to having

ACPAs.54,55 Feitsma et al. identified two HLA-DRB1-

restricted CD4+ T-cell clones that recognized citrulli-

nated vimentin and were also present in the inflamed

joints of patients with RA. This indicates that CD4+ T

cells can respond to naturally processed epitopes from

an autoantigen.54 The finding that ACPAs were present

in the inflamed joints of patients but not in the joints

of healthy individuals, together with the discovery that

citrullinated autoantigen-specific CD4+ T cells were only

found in the peripheral blood mononuclear cells from

patients with RA, suggests that both the ACPAs and

these CD4+ T cells play a significant role in the patho-

genesis of RA.55,56 Scally et al. (and others) provide

molecular evidence on how CD4+ T cells are able to

recognize citrullinated antigens.57–59 They also showed

that in the autoantigen recognizing CD4+ T-cell popula-

tion of HLA-DRB1*04:01+ RA patients, the percentage

Treg cells (both activated and resting) was reduced,

whereas the populations of naive and effector memory

CD4+ T cells were increased compared with healthy

subjects.57 This indicates that citrullinated peptides are

plausible autoantigens in RA.

To test if citrullinated antigens are good candidates for

an immunomodulatory therapy, a phase I clinical trial

was performed. In this study autologous in vitro gener-

ated tolDCs were exposed to citrullinated autoantigenic

epitopes and administered intradermally into patients.40

The trial showed that the DC vaccination was safe and

indicated an anti-inflammatory effect after DC adminis-

tration. However, using citrullinated peptides has the

consequence that therapy is limited to patients with

HLA-DRB1 (*0101, *0401, *0404) and it is unknown if

the reactivity in these patients is similar. We took a dif-

ferent approach in our recent phase I safety trial in

patients with rheumatoid and inflammatory arthritis.41

TolDCs were loaded with autologous synovial fluid; the

rationale being that this fluid contains relevant joint-asso-

ciated antigens. The downside of this approach is that it

is not always possible to obtain sufficient synovial fluid

from patients with RA for tolDC loading. Furthermore,

as the antigens are unknown, it is difficult to monitor

changes in the antigen-specifc T-cell response after tolDC

administration.

The use of surrogate autoantigens could be a preferred

option for the loading of tolDCs. Possible candidates are

heat-shock proteins (HSPs). HSPs are typically intracellu-

lar proteins with no peptide leader sequences that can

target secretion. However, there is evidence that HSPs

can have access to the extracellular milieu, either by pas-

sive or active mechanisms. Both the endogenous up-regu-

lation of HSPs with so-called HSP co-inducers and the

exogenous administration of (recombinant) HSPs have

led to immunomodulatory effects in various models of

experimental autoimmunity.60–62 Therefore, HSPs could

be used as surrogate autoantigens not only for RA but

also for other autoimmune diseases. This will be dis-

cussed in further detail in the next section (Figure 1).

HSPs as surrogate autoantigens for
autoimmunity

The main function of HSPs is to support folding and

transport of a large variety of (misfolded) proteins as

intracellular molecular chaperones. Their expression can

be significantly up-regulated under conditions of stress

like fever, viral infection, nutritional deficiency, cold and

exposure to the pro-inflammatory cytokines interferon-c
and tumour necrosis factor.63–65 Generally, HSPs can be

classified into different families based on their monomeric

molecular weight (HSP 10, HSP 20–30, HSP 40, HSP 60,

HSP 70, HSP 90 and HSP 100 families). Some HSP fam-

ily members (e.g. HSP 60 and HSP 70) are highly con-

served throughout evolution, resulting in immunological

cross-recognition of certain mammalian and microbial

HSP homologues.

Initial observations that ignited studies on the role of

HSPs in autoimmunity were made in the mycobacteria-
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induced adjuvant arthritis model in rats. Generated

mycobacteria-specific T-cell lines were shown to have

arthritogenic potential66 and it was later discovered that

HSP 60 was the antigen recognized by the mycobacteria-

specific T-cell lines.67 Further studies followed showing

that synovial fluid cells and peripheral blood mononu-

clear cells of patients with chronic inflammatory arthritis

could also respond to mycobacterial HSP 60. In contrast,

HSP 60 responses were absent in control subjects.68

Moreover, monoclonal antibodies recognizing mam-

malian HSP 60 were produced and it was found that

HSP 60 was expressed in the synovial membranes of

patients with chronic arthritis.69,70 Similar results were

found for the HSP family members HSP 40 and HSP 70.

Synovial fluid and peripheral blood T cells of patients

with RA could recognize a bacterial variant of HSP 40,

but those from healthy subjects or disease controls could

not.71 In addition, the human homologues of HSP 40

and HSP 70 were found to be over-expressed in the syn-

ovial lining of the joints of patients with RA.72,73

Interestingly, numerous experimental animal models

and even a few clinical trials have shown that treatment

with (myco)bacterial HSPs can induce HSP-specific anti-

inflammatory T-cell responses. Experimental autoim-

mune disease models in both rat and mouse showed sig-

nificantly reduced arthritis severity after prophylactic

immunization with mycobacterial HSP 60 or

HSP 70.74,75 Although the exact mechanism for disease

amelioration is still not completely understood, suppres-

sion of arthritis is probably induced by IL-10-producing

Syringe with

TGF-

Stressed

Unknown
autoantigen

Pathogenic

Inflammatory
response

cell
in joint

in joint

Teff

HSP-HSP

IL-10 IL-10

Bystander

suppression

specific

Treg
tolDC loaded

with HSP

HSP-loaded tolDC

β

Figure 1. Heat-shock protein (HSP) loaded tolerogenic dendritic cell (tolDC) vaccination in rheumatoid arthritis (RA). This figure depicts the

potential process that takes place in the patient’s joint after injection with HSP loaded tolDCs. TolDCs produce anti-inflammatory cytokines [e.g.

interleukin-10 (IL-10)] and present epitopes of HSP to naive CD4+ T cells. These CD4+ T cells differentiate into HSP-specific regulatory T (Treg)

cells and suppress stressed (HSP expressing) cells via immunomodulatory cytokines like IL-10 and transforming growth factor-b (TGF-b). Fur-
thermore, bystander suppression could lead to suppression of pathogenic effector T (Teff) cells recognizing the unknown autoantigen, thereby

inhibiting inflammatory symptoms. The presence of self HSP in the synovial fluid of RA patients might favour the selection of the generation of

Treg cells and their function.
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Treg cells.75–78 One possible explanation for the propa-

gation and/or induction of a regulatory phenotype in

HSP 60/70-specific T cells lies in the high homology

between the bacterial and mammalian variants of the

HSPs. Even though HSPs are considered immuno-

genic – microbial HSP 60, for example, was already

known as the so-called ‘common antigen of Gram nega-

tives’ before its molecular definition79 – the highly con-

served parts of the proteins could induce a tolerogenic

response as these can be recognized as self-antigens by

the body’s own immune system.80 Moreover, since bac-

terial HSPs are mostly encountered in the tolerizing gut

or lung mucosa, conserved and hence repeatedly

encountered HSP antigens are more likely to obtain a

regulatory phenotype. In addition to conservation and

microbial-self cross-recognition, HSP 70 family members

are directly involved with antigen processing and conse-

quently, HSP 70 fragments were found to be one of the

most frequent cytosolic MHC class II natural ligand

sources.81–83 Presentation of HSP 70 peptides may there-

fore be part of the earlier mentioned default tolerant

state of the immune system, where MHC class II pre-

sented HSP peptides are part of a continuous and credi-

ble target for Treg cells. It is, however, important to

keep in mind that in a dysregulated immune system, as

is seen in patients with autoimmune diseases, antigens

that would normally induce an anti-inflammatory

immune response could now potentially induce a pro-

inflammatory response.

As the HSPs used for these experiments are from bac-

terial origin and can potentially induce an unwanted

anti-inflammatory response towards these bacteria, a

safer form of the HSPs is needed. One way to accom-

plish this is to use bacterial HSP-derived peptides that

show high homology with the mammalian variant. The

high homology to the self-antigen will prevent unwanted

responses towards the bacteria and at the same time

ensure cross-reactivity with the mammalian HSPs pre-

sented in the inflamed joint. Indeed, two of the three

clinical trials using HSPs as therapy were performed

with HSP-derived peptides (Table 1). A pilot phase II

trial using an HSP 40-derived peptide, dnaJP1; which

also contains the ‘shared epitope’,84 was tested in

patients with juvenile idiopathic arthritis. After oral

administration of the dnaJP1, a change from a pro-

inflammatory to a tolerogenic T-cell response to dnaJP1

could be observed.85,86 In a second phase II trial, an

HSP 60-derived peptide, DiaPep277, was used to treat

patients with type I diabetes. It was found that Dia-

Pep277 was safe and showed a trend towards a greater

preservation of beta-cell function compared with con-

trols.87,88 In a third recent trial, a mammalian HSP 70

family member, BiP, was tested in patients with RA. In

this case, whole protein was administered intravenously.

The results of this phase I/II safety trial showed no seri-

ous adverse drug reactions. Moreover, at the higher

treatment doses disease remissions were seen in some

cases.89

As discussed earlier, one potential disadvantage of

using peptides is HLA diversity in patients. Consequently,

HSP peptides need to either (i) be able to bind multiple

HLA-DR molecules, including the RA-associated HLA-

DRB1 *0101, *0401, *0404 molecules, or (ii) a peptide

pool of several HSP peptides able to bind one or more of

the RA-associated HLA-DR molecules needs to be

administered. For HSP 60 and HSP 70 several pan-DR

peptides have been discovered. Kamphuis et al. used a

computer algorithm to identify both self and bacterial

HSP 60 peptides able to bind a number of distinct HLA-

DR haplotypes. They found several peptides that were

able to bind the major RA/juvenile idiopathic arthritis-

associated HLA-DR molecules and T cells from both

juvenile idiopathic arthritis and RA patients were able to

respond to five out of eight peptides.90,91 In addition, de

Wolf et al. showed that an HSP 70 peptide, B29, also

binds multiple HLA-DR molecules. They concluded that

more than 80% of human individuals can present B29 to

their T cells (and among patients with RA possibly even

more due to the high presence of HLA-DRB1 *0401). In
subsequent cultures they showed that 10 out of 14

healthy individuals could respond to the peptide.92 The

B29 peptide was earlier tested in a mouse model of

arthritis and it was found that prophylactic intranasal

administration of B29 could suppress disease. Moreover,

CD25+ CD4+ T cells from B29 immunized mice could

decrease disease severity in recipient arthritic mice, indi-

cating that B29-specific Treg cells are effective in dimin-

ishing autoimmune arthritis.83

Next to the Treg cell inducing potential of B29,

bone-marrow-derived DCs pulsed with Mycobacterium

tuberculosis or mouse HSP 70 induced IL-10 production

in antigen-specific T cells and suppressed arthritis, show-

ing that HSP 70 loading of DCs by itself is tolerizing.93

In order to make both tolDC therapy and HSP peptide

treatment in autoimmune diseases (e.g. RA) as potent as

possible, a combination therapy could be the solution.

Pulsing tolDCs with HSP peptides could (i) solve the

autoantigen problem and (ii) the HSP peptides will be

Table 1. Heat-shock proteins (HSPs) and peptides associated with

therapeutic interventions in chronic inflammatory diseases. dnaJP1

and DiaPep277 were tested in phase II clinical trials in juvenile RA

and diabetes (refs. 85,87). mB29a is now explored for the loading of

tolDCs in RA (refs. 83,92). The peptides are based on human Hsp

sequences

HSP Peptide Sequence

HSP 40 (dnaJB1) dnaJP1 QKRAAYDQYGHAAFE

HSP 60 (HspD1) DiaPep277 VLGGGVALLRVIPALDSLTPANED

HSP 70 (HspA9) mB29a VLRVINEPTAAALAY
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targeted to the HSP-specific T cells by DCs with stable

tolerogenic function, making sure a regulatory response

towards the antigen is induced.

Conclusion

The fundamental problem in autoimmune diseases is the

failure of the immune system to down-regulate its own

potentially dangerous cells, leading to destruction of tis-

sue expressing the autoantigen. In the case of RA, cur-

rently available immunosuppressive therapies offer relief

but fail to induce long-term physiological regulation

resulting in medication-free remission.

As argued here, to restore immune tolerance, autolo-

gous tolDCs loaded with an HSP-derived peptide antigen

could be used. Such a therapy could, potentially, both

tolerize arthritogenic T cells and induce disease-suppres-

sive regulatory T cells. Targeting the physiological mecha-

nism of re-establishing tolerance for self-antigens offers

the opportunity to inhibit joint-destroying immune

responses long-term.
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