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Background: Large-scale image sets acquired by automated microscopy of perturbed samples enable a detailed comparison
of cell states induced by each perturbation, such as a small molecule from a diverse library. Highly multiplexed
measurements of cellular morphology can be extracted from each image and subsequently mined for a number of
applications. Findings: This microscopy dataset includes 919 265 five-channel fields of view, representing 30 616 tested
compounds, available at “The Cell Image Library” (CIL) repository. It also includes data files containing morphological
features derived from each cell in each image, both at the single-cell level and population-averaged (i.e., per-well) level; the
image analysis workflows that generated the morphological features are also provided. Quality-control metrics are
provided as metadata, indicating fields of view that are out-of-focus or containing highly fluorescent material or debris.
Lastly, chemical annotations are supplied for the compound treatments applied. Conclusions: Because computational
algorithms and methods for handling single-cell morphological measurements are not yet routine, the dataset serves as a
useful resource for the wider scientific community applying morphological (image-based) profiling. The dataset can be
mined for many purposes, including small-molecule library enrichment and chemical mechanism-of-action studies, such
as target identification. Integration with genetically perturbed datasets could enable identification of small-molecule
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mimetics of particular disease- or gene-related phenotypes that could be useful as probes or potential starting points for

development of future therapeutics.
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High-throughput quantitative analysis of cellular image data
has led to critical insights across many fields in biology [1, 2].
While microscopy has enriched our understanding of biology
for centuries, only recently has robotic sample preparation and
microscopy equipment become widely available, together with
large libraries of chemical and genetic perturbations. Concur-
rently, the advent of high-throughput imaging has also become
an engine for pharmacological screening and basic research by
allowing multiparametric image-based interrogation of physio-
logical processes at a large scale [3, 4].

A typical imaging assay uses several fluorescent probes (or
fluorescently tagged proteins) simultaneously with stain cells,
each labeling distinct cellular components in each sample. In
this way, the morphological characteristics (or “phenotype”) of
cells, tissues, or even whole organisms can be examined, along
with the concomitant changes induced by the perturbants of
choice [5-7].

Phenotypic profiling has emerged as a powerful tool to dis-
cern subtle differences among treated samples in a relatively
unbiased manner. In contrast to a screening strategy, where
a usually limited number of features are quantified to select
for a known cellular phenotype, profiling relies on collecting
a large suite of per-cell morphological features and then us-
ing statistical analysis to uncover subtle morphological patterns
(“signatures”) by which the perturbations can be characterized.
The “Cell Painting” assay used for the dataset presented here
uses fluorescent markers to broadly stain a number of cellular
structures in high-throughput format, while automated soft-
ware extracts the single-cell image-based morphological fea-
tures. Further analysis then aggregates the data into multi-
variate profiles of these features to compare signatures among
sample treatments.

The applications of image-based profiling are many and di-
verse. A dataset comprising small-molecule perturbations, as
presented here, can be used for small-molecule library enrich-
ment (to create smaller libraries while retaining high diver-
sity of phenotypic impact) and small-molecule mechanism-of-
action studies, including target identification. Integration of this
dataset with datasets resulting from other types of perturba-
tions (e.g., patient cell samples or genetically perturbed sam-
ples) enables identification of small-molecule mimetics of par-
ticular disease- or gene-related phenotypes that could be useful
as probes or potential starting points for development of future
potential therapeutics.

To maximize the morphological information extracted from a
single assay, we sought to “paint the cell” with as many distinct
fluorescent morphological markers as possible simultaneously.
Balancing technical and cost considerations, we developed the
Cell Painting assay protocol, in which cells are stained for
8 major organelles and sub-compartments, using a mixture of

6 well-characterized fluorescent dyes suited for use in high
throughput (Fig. 1) [8, 9].

The protocols for staining and imaging have been described
in detail elsewhere [8, 9]. Briefly, U20S cells were plated in 384-
well plates, then treated with each of 30 616 compounds in qua-
druplicate. Of these compounds, 10 080 compounds came from
the Molecular Libraries Small Molecule Repository (MLSMR) [10],
2260 were drugs, natural products, and small-molecule probes
that are part of the Broad Institute known bioactive compound
collection, 269 were confirmed screening hits from the Molecu-
lar Libraries Program (MLP), and 18 051 were novel compounds
derived from diversity-oriented synthesis. Live cell staining was
first performed to stain the mitochondria. After incubation, the
cells were fixed with formaldehyde, permeabilized with Tri-
ton X-100, and stained with the remaining dyes to identify
the nucleus (Hoechst), nucleoli and cytoplasmic RNA (SYTO
14), endoplasmic reticulum (concanavalin A), Golgi and plasma
membrane (wheat germ agglutinin), and the actin cytoskeleton
(phalloidin). Each of the 406 multi-well plates was imaged us-
ing an ImageXpress Micro XLS automated microscope (Molecu-
lar Devices, Sunnyvale, CA, USA), with 5 fluorescent channels at
%20 magnification, and 6 fields of view (sites) imaged per well
(Table 1). Each image channel was then stored as a separate,
grayscale image file in 16-bit TIF format. All raw image data are
publicly available at “The Cell Image Library” (CIL) repository [11]
and the Image Data Resource [12, 13].

The dataset available at GigaDB consists of the processed
data derived from the acquired raw image data; the quantitative
analysis of the images used a 3-step pipeline workflow created
with the modular open-source software CellProfiler (Table 2; see
also the Additional File and the “Availability of supporting data”
section) [14]. First, an illumination pipeline estimated the het-
erogeneities in the spatial fluorescence distribution introduced
by the microscope optics. This approximation was calculated on
a per-plate basis for each channel and yielded a collection of il-
lumination correction functions (ICFs) for later use in intensity
correction; we have found that this approach not only aids in
cell identification but also improves accuracy in signature clas-
sification [15]. Second, a quality control pipeline identified and
labeled images with aberrations such as saturation artifacts and
focal blur, as described previously (see also the Additional file)
[16, 17]. Finally, a feature-extraction pipeline applied the ICFs to
correct each channel, identified the nuclei, cell body, and cyto-
plasm, and extracted the morphological features for each cell,
depositing the results into a database for downstream analysis
(see the Additional file for a description of the extracted fea-
tures). The extracted features include a broad array of cellular
shape and adjacency statistics, as well as intensity and texture
statistics that are measured in each channel. The pipelines, ICFs,
and extracted morphological data are provided as a static snap-
shot in GigaDB [18] and in a GigaScience GitHub repository [19].
We note that the pipelines are configured for the archived CIL
images; updates to the pipelines (and to the Cell Painting proto-
col in general) are provided online [20].

Many approaches exist to creating per-sample profiles based
on the per-cell data from each replicate; we have found that
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Figure 1: Sample images of U20S cells from the small-molecule Cell Painting experiment. Images are shown from a DMSO well (negative control, top row) and a
parbendazole well (bottom row). The columns display the 5 channels imaged in the Cell Painting assay protocol (see Table 1 for details about the stains and channels

imaged).

Table 1: Details of dyes, stained cellular sub-compartments, and channels imaged in the Cell Painting assay

Channel name

Dye Organelle or cellular component CellProfiler ImageXpress
Hoechst 33342 Nucleus DNA wil
Concanavalin A/Alexa Fluor 488 conjugate Endoplasmic reticulum ER w2

SYTO 14 green fluorescent nucleic acid stain Nucleoli, cytoplasmic RNA RNA w3
Phalloidin/Alexa Fluor 594 conjugate, wheat germ F-actin cytoskeleton, Golgi, AGP w4
agglutinin (WGA)/Alexa Fluor 594 conjugate plasma membrane

MitoTracker Deep Red Mitochondria Mito w5

The CellProfiler channel name refers to the name given by the software to each channel; this nomenclature also applies to the naming of the extracted morphological
features. The ImageXpress channel name refers to the text in the raw image file name identifying the acquired wavelength. Please note that this protocol was later
updated to use Phalloidin/Alexa Fluor 568 and WGA/Alexa Fluor 555, as described in [9].

producing profiles simply by averaging the cellular features
across all cells for each well yielded good results in character-
izing compounds [21]. These profiles are provided in GigaDB,
along with a list of chemical annotations for the compounds
applied. The downstream analysis of morphological profiling
data is a field very much in flux at present; our own laboratory
is developing an R package for this purpose [22] and has writ-
ten a paper describing current data analysis strategies in the
field [23].

Phenotypic profiling provides a powerful means for assessing
the biological impact of molecular or genetic perturbations, and
for grouping sample treatments based on similarity. The ap-
plications are diverse and powerful; we only briefly summa-
rize them here. The images and annotations provided in this
Data Note have already been used in two published analyses
from our own group: unsupervised clustering of a subset of 1601
bioactive compounds in a proof-of-principle study of compound
mechanism of action [24, 25] and small-molecule library enrich-
ment based on the full set of 30 616 small molecules, a study in
which morphological profiles successfully selected compound

subsets with higher-performance diversity than randomly se-
lected compounds [8]. Other profiling applications include com-
pound target identification, assessment of toxicity, and lead
hopping. Further detail on applications of profiling, including
those relevant to genetic perturbation datasets as opposed to
the small molecule dataset described here, is available in a re-
cent review [26].

This small-molecule dataset could also be used in more con-
ventional applications; for example, if any of the morphological
phenotypes in the experiment are of particular interest (e.g., mi-
tochondrial structure or nucleolar size), the images and profiles
can be re-mined, as in a conventional high-content screen, to
produce “hit lists” of compounds that perturb those morpholo-
gies. The images and data can also be used as a look-up-table
to identify morphological phenotypes produced by compounds
that are deemed of interest in any particular high-throughput
screen.

® Project name: Supporting pipelines, scripts, and metadata for
a Cell Painting dataset of 30000 compounds.



Table 2: Summary of the raw and intermediately processed data included in this Data Descriptor and nomenclature in the GigaDB and GitHub

repositories

Data item

Raw fluorescence
images

CellProfiler pipelines

Mlumination
correction functions

Quality control
metadata

Extracted
morphological
features

Morphological
profiles

Image curation
statistics

Chemical
annotations

Location

The Cell Image Library [11],
GitHub:
download-cil-images.sh

GitHub: pipelines folder,
GigaDB: pipelines.zip

GigaDB:
<plate_ID>/illumination_
correction_functions

GigaDB:
<plate_ID>/quality_control
GigaDB:

<plate_ID>/extracted_features

GigaDB: <plate_ID>/profiles

GigaDB, GitHub: im-
age_curation_statistics.csv

GigaDB, GitHub:
chemical_annotations.csv

Description

Five fluorescence channels, acquired at 6 fields of view per well at x20
magnification (0.656 nm/pixel). The experiment comprises 406 plates in
384-well format (plates 24 277-26 796). We include a bash shell script to
facilitate downloading the archives.

CellProfiler software was used to correct for uneven illumination, perform
quality control, and delineate cells into nuclei, cell body, and cytoplasmic
sub-compartments and measure morphological features for each
sub-compartment.

An ICF is an estimation of the spatial illumination distribution introduced by
the microscopy optics. There is 1 ICF per channel for each plate.

Each field of view is assessed for the presence of 2 artifacts (focal blur and
saturated objects), and assigned a label of 1 if present and 0 if not.

A SQLite database comprising 4 tables (a) 1 per-image cellular statistic (e.g., cell
count), (b) 3 per-cell cell tables, measuring size, shape, intensity, textural, and
adjacency statistics for the nuclei, cytoplasm, and cell body.

Per-well averages of each extracted morphological feature computed across the
cells.

A summary of image statistics, such as the number of images, wells, and sites
in the plates archived at The Cell Image Library, the number of sites with quality
measures, and the number of wells with morphological profiles.

Chemical annotations including the compound names, SMILES, and PubChem
identifiers (CID/SID)

<plate_ID> refers to the 5-digit plate ID assigned by the ImageXpress microscope system.

* Project home page: https:/github.com/gigascience/paper-
bray2017

Operating systems: Linux (for scripts), platform-independent
(for pipelines)

* Programming language: Bash (for scripts)

® Other requirements: Unix (for scripts), CellProfiler 2.2.0 or
later (for pipelines)

License: GNU GPL v3

* Any restrictions to use by non-academics: none

The raw image data described in this article are available at “The
Cell Image Library” repository as Plates 24277-26 795 (http://
www.cellimagelibrary.org/pages/project_20269, CIL: 24 277- CIL:
26 795) [11] as well as the Image Data Resource [13]. The re-
mainder of the dataset supporting the results of this article is
available in the GigaScience database, GigaDB (as a static snap-
shot), and GitHub repository [18, 19]. On GigaDB, all data re-
lating to a plate are contained in sub-folders under a parent
folder named with a unique 5-digit identifier for each plate.
This includes illumination correction functions, metadata re-
lated to sample treatment and image quality control, extracted
morphological features, and profiles (Table 2). Each of the plate
folders has been packed as tape archives (TAR, .tar) before be-
ing compressed using GNU Gzip (.gz) and can be downloaded
individually. Regrettably, not all the raw images could be re-
trieved from our archives, so not all plates have the full comple-
ment of 11 520 images; we have provided curation details listing
the completeness of the archived data for each plate (Table 2).
The GitHub repository also contains a bash shell script to fa-
cilitate downloading the entire CIL image set in batch, as well

as image analysis pipelines and associated chemical annotation
metadata. Updates to the pipelines (e.g., to accommodate up-
dated software versions or updated versions of the protocol) can
be found at our Cell Painting wiki [20]. An R package for the cre-
ation of well averages from single cell data can be found online
[22, 27].

CIL: Cell Image Library; ICF: illumination correction functions;
MLP: Molecular Libraries Program; MLSMR: Molecular Libraries
Small Molecule Repository; WGA: wheat germ agglutinin.
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