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ABSTRACT
Cell outgrowth is a hallmark of some non-migratory developing cells during morphogenesis.
Understanding the mechanisms that control cell outgrowth not only increases our knowledge of
tissue and organ development, but can also shed light on disease pathologies that exhibit
outgrowth-like behavior. C. elegans is a highly useful model for the analysis of genes and the
function of their respective proteins. In addition, C. elegans also has several cells and tissues that
undergo outgrowth during development. Here we discuss the outgrowth mechanisms of nine
different C. elegans cells and tissues. We specifically focus on how these cells and tissues grow
outward and the interactions they make with their environment. Through our own identification,
and a meta-analysis, we also identify gene families involved in multiple cell outgrowth processes,
which defined potential C. elegans core components of cell outgrowth, as well as identify a
potential stepwise cell behavioral cascade used by cells undergoing outgrowth.
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Introduction

During cell morphogenesis, when cells change their
shape during development, the process of cell out-
growth, during which a non-migratory cell expands
outward in a projection-like path as it changes shape,
is also a common event. Examples of normal cell out-
growth during morphogenesis include outgrowth in
the mouse facial primodia, outgrowth of regenerating
fins in Zebrafish, dramatic outgrowth in Drosophila
cardioblast cells, and the development of human neu-
rons.1–4 Cell outgrowth-like behavior is also character-
istic of certain diseases such as endometriosis, the
outgrowth of endometrium cells outside of the uterus,
and in metastatic cancer during the spreading of
tumors from one tissue to another.5,6 Therefore,
understanding the mechanisms that control cell out-
growth not only sheds light on the genetic inputs that
control development, but also provides information
on the pathologies of certain diseases.

C. elegans is a small free-living nematode whose cell
lineage is stereotypic and well-characterized.7–11 This
model organism is also transparent, making it a

powerful tool to study cell morphology. Though much
of C. elegans development consists of cells dividing and
taking on different fates, certain cell types undergo out-
growth during morphogenesis. In this review, we
describe the mechanisms used during outgrowth for
nine non-neuronal cell types. We specifically focus on
non-neuronal cells as numerous neuronal cells that
undergo outgrowth have already been well discussed,12–
18 and addressing each neuronal cell type would result
in content that would encompass its own review.

We will describe and compare the cell outgrowth
processes in the uterine seam cell (utse), the anchor
cell (AC), the vulval sex muscles, the muscle arms, the
male tail, the excretory cell, the head mesodermal cells,
and during two events of embryonic development,
dorsal intercalation and ventral enclosure.

The utse and vulval sex muscles

The C. elegans utse attaches the uterus to the lateral
epithelial seam cells of the body wall.18 The utse forms
from the fusion of eight cells, that require the expres-
sion of the Notch family receptor LIN-12 and its Delta
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family ligand LAG-2, as well as the fusogen AFF-1.19–27

After fusion, the outgrowth process of the utse occurs
over an eight hour period as the utse cell body grows
bi-directionally along the anterior-posterior axis, and
the utse nuclei segregate into two groups migrating
along the anterior-posterior axis and settling at the
anterior/posterior edges of the utse cell body
(Fig. 1).19,26 The utse cell body extends ahead of its
nuclei during outgrowth, indicating that separate
mechanisms control the movement of the cell body
and the nuclei.26

During outgrowth, the utse requires the presence of
several cells within the C. elegans uterus. Four uterine
toroids line the lumen of the uterus, denoted uterine
toroid 1 to uterine toroid 4, with numbers increasing
for cells that are more distal to the vulva.19 The pres-
ence of uterine toroid 1 and uterine toroid 2 is essen-
tial for proper utse outgrowth as ablation of these cells
leads to defects in utse outgrowth.26 In addition, the
vulval sex muscles, which lie proximal and distal to
the utse on either side of the body wall, are also neces-
sary for utse outgrowth; ablation of the vulval sex
muscle precursors, and knockdown of genes expressed
in the vulval sex muscles, lead to defects in utse out-
growth development. During egg-laying, vulval sex
muscles contract to open the vulva and allow eggs to
be laid. Vulval sex muscles develop from the M cell
that divides to create precursors for body wall muscles,
coelomocytes, and two sex myoblasts. Through the
function of egl-15, the sex myoblasts migrate, divide,
and arrange into four sections within the uterine/vul-
val area, during the L3 stage. The two sections that lie
proximal to the vulva become vulval sex muscles, vm1
and vm2, and the two sections distal to the vulva
become uterine muscles. The vulval sex muscles

undergo outgrowth when they extend processes ven-
trally to attach the vulva to the hypodermis, as well as
longitudinally towards the seam cells (Fig. 2).9,17 The
function of unc-53 has been shown to be necessary for
generating these longitudinal processes,17 as unc-53
mutants do not form these processes and result in the
muscles attaching to myofilaments and developing a
rounded shape.

Similar to the sex muscles, cells and tissues sur-
rounding the utse express several gene families that
have also been shown to be involved in utse develop-
ment. The uterine toroids express genes encoding a
guanine nucleotide exchange factor (unc-73) and its
interacting factors (let-502, rho-1, unc-13, and unc-
64), and genes encoding Rab-like and RabGTPases
(rab-1, rab-5, rab-6.1, rab-10, rab-11.1, and rsef-1).
The vulval sex muscles express genes that encode
migration-signaling proteins (unc-53 and egl-15). In
addition, genes expressed by the anchor cell that medi-
ate its invasion (aff-1, cdh-3, egl-43, fos-1, him-4, ina-1,
lag-2, mig-10, pat-3, and zif-1) also act on the utse.

Furthermore, through an RNAi screen (S. Ghosh
et al., in preparation) we identified 52 additional genes
that influenced utse cell outgrowth. These genes encode
proteins involved in gene expression and regulation
(DAF-16, EGL-13, F11A10.5, IMA-1, IMA2, IMA-3,
IMB-2, IMB-3, LIN-11, LIN-31, LIN-39, PQN-85,
RAN-2, RAN-3, TTX-3, VAB-3, ZAG-1, ZFH-2, ZFP-
1), signal transduction (CWN-1, GIPC-1, GIPC-2,
GLB-12, GLP-1, ITR-1, MIG-15, RCC-1, SAX-1), cellu-
lar vesicle transport (AMPH-1, DH11.5, SEC-15), cyto-
skeleton dynamics and binding (ANC-1, ARX-2, ARX-
3, DEB-1, FRM-2, GEX-1/WVE-1, GEX-2, LIM-9,
NUD-2, TOCA-1, UNC-70, UNC-83, UNC-84, UNC-
97), extracellular matrix proteins (FBL-1, LMN-1), and

Figure 1. utse outgrowth over time. Schematic of utse outgrowth over time (A) Early L4 vulva and uterus. The utse has just formed at
this stage after the fusion of eight r cells and the anchor cell. The cell has an ellipsoidal shape. Outlines indicate positions of vulva and
uterus. utse is indicated in red. Blue dashed arrows indicate direction of outgrowth. (B) Mid L4 vulva and uterus. utse has begun elon-
gating along the anterior-posterior axis. Outlines indicate positions of vulva and uterus. utse is indicated in red. (C) L4 lethargus vulva
and uterus. utse has completed its outgrowth, and has taken on an elongated shape with the edges of its arms extending along the dor-
sal/ventral axis. Outlines indicate positions of vulva and uterus. utse is indicated in red.
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cellular adhesion and migration (NCAM-1, PXL-1,
SAX-7, SRSX-18, UNC-33). Taken together, it appears
that the utse is highly sensitive to perturbations of a
broad range of cell biological functions.

The anchor cell

The AC undergoes cell outgrowth when it invades
the underlying basement membrane to interact
with vulval epithelial cells and establish vulval cell
fates.28 During the L3 larval stage, the AC extends
a process ventrally to mediate a connection with
the descendants of the 1� vulval precursor cell P6.p
(Fig. 3).28,30 Once P6.p reaches the two-cell stage
(mid L3) (Fig. 3A), the basement membrane under-
neath the AC is interrupted, and the basolateral
portion of the AC crosses the membrane (Fig. 3C).
When P6.p reaches the four-cell stage (mid to late
L3), the AC extends a fine cellular process that
reaches ventrally between the P6.pap and P6.ppa
cells (Fig. 3D). This invasive structure remains in
place as the P6.p granddaughter cells continue to
divide and the vulva invaginates. By the L3 lethar-
gus/early L4 stage, the AC positions itself in the
dorsal apex of the vulva and has completed its out-
growth process. The AC then induces the sur-
rounding ventral uterine cells to generate the utse
cell body.24,26,27

The presence of the 1� vulval cells are required
for the initiation of AC outgrowth.28 The 1� vulval
cells are specified via LIN-3 signaling from the AC
in late L2 to early L3 larval stage.29 Without the
AC, all vulval precursor cells take on the 3� fate
and become external epithelial cells.30–33 lin-3
mutants, which have 3� vulval cells instead of 1�

vulval cells, do not exhibit AC outgrowth.28 Also,
when the P8.p is ectopically induced by ablating all
other vulval precursor cells in the L2 stage, the AC
directs its projections to the distal P8.p cells which
indicates that a long-range cue from the 1� vulval
cells induces outgrowth.

Several genes are involved in inducing AC out-
growth and removing the basement membrane
underlying the AC. A key pathway necessary for
AC outgrowth involves the expression of the gene
fos-1 (C-FOS transcription factor), and five genes
that encode the downstream effectors of FOS-1:
zmp-1 (zinc metalloprotease), cdh-3 (protocad-
herin), egl-43 (zinc finger protein), him-4 (hemi-
centin), and mig-10 (lamellopodin).34–37 Other
genes encoding proteins involved in genetic inter-
actions that promote outgrowth include: zif-1 and
cdc-42, which promote the interaction between E3
ubiquitin ligase substrate-recognition subunit; unc-
6 and unc-40, which promotes outgrowth through
enrichment of the actin regulators, F-actin, and
phosphatidylinositol 4, 5-bisphosphate (PtdIns (4,
5) P2) with netrin (UNC-6) in the basement mem-
brane and corresponding netrin receptor (UNC-40)
in the AC plasma membrane; ina-1 and pat-3,
which targets the netrin receptor to the plasma
membrane of the AC; hlh-2, which regulates levels
of protocadherin and hemicentin in a separate
pathway from fos-1; vrk-1, which regulates polarity
of protrusions; aff-1, which encodes a fusogen that
allows the AC to fuse with the utse syncytium, and
madd-2, which prevents ectopic invasive structures
from emanating from the AC.38–47

Muscle arms

The plasma membrane of body wall muscles extend
protrusions to motor neurons, called muscle arms,
in order to make neuromuscular junctions
(Fig. 4).48–50 Muscle arms contain a thin stalk from
the body wall muscle and have bifurcated ends.49

Actin is required to generate the outgrowth

Figure 2. Vulval sex muscle outgrowth. Schematic of a sex myo-
blast at the L3 larval stage. A cross section of an L3 vulva shows
that a sex myoblast daughter cell (in red) is in between the vulval
epithelium and the seam cells of the hypodermis. Sex myoblasts
extend protrusions ventrally towards the vulva and laterally
towards the seam cells.
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extensions of the muscle arms, as knockdown of
actin genes, act-1,act-2, act-3, reduces their forma-
tion. Of the 95 body wall muscles, 79 create muscle
arms, of which 16 outgrow from the neck to the
nerve ring, and the remaining 63 outgrow towards
the nearest motor neuron on the nerve cord. When
motor neurons take on aberrant paths, muscle arm
outgrowth follows the path of those aberrant neu-
rons, indicating that muscle arms respond to che-
moattractant cues from motor neurons.51 Muscle
arms are also thought to direct their outgrowth in
relation to areas containing dense core vesicles, as
seen in unc-104 mutants, in which muscle arms
extend towards areas with increased localization of
dense core vesicles.50,52

A screen performed by Alexander et al.53 identi-
fied ten genes necessary for muscle arm outgrowth:
gex-2, madd-2, unc-33, unc-40, unc-51, unc-54,
unc-60, unc-73, unc-93, and unc-95. Knockdown of
these genes cause a muscle arm extension defect,
known as a MAD defect. The cofilin UNC-60 spe-
cifically affects muscle arm extension by regulating
actin-severing activity.49 Tropomyosin is known to
antagonize cofilin activity, and C. elegans tropomy-
osin, LEV-11, acts to stabilize actin in muscle
arms.49,54–57 The ADAM ortholog MADD-4 and
netrin signaling (eva-1, unc-6, unc-40,) work
together to form and guide muscle arm out-
growth.58,59 Netrin signaling also mediates the gene
expression of lin-12 and madd-2 to affect muscle
arm development.60,61

Other genes involved in muscle arm outgrowth
include pat-2, pat-4, pat-6, unc-52, lam-1, lam-2,
and epi-1.62 The dense body components (unc-97
and unc-98), as well as components of the WAVE
complex (gex-1/wve-1 and wsp-1) also regulate
muscle arm extension. Myosin heavy chain B,
UNC-54, is also necessary for muscle arm forma-
tion, as loss-of-function unc-54 mutants contain
fewer muscle arms and changes in arm width.49,60

The fibroblast growth factor (FGF) pathway is also
involved in regulating muscle arm formation; when
let-756 (FGF), egl-15 (FGF receptor), or sem-5
(adaptor protein GRB2) genes are knocked down,
ectopic muscle membrane extensions form.62 Loss-
of-function of other FGF signaling components
such as, egl-17, let-60, ptp-2, soc-1, soc-2 and sos-1
also result in ectopic muscle extensions. The body
wall muscle-expressed tyrosine phosphatase

Figure 3. Anchor cell invasion. Schematic anchor cell invasion.
Anchor cell shown in red, vulva shown in gray. Basement mem-
brane shown in thick line. Adapted from Ihara et al., 2011 and
Hagedorn and Sherwood, 2011. (A) Anchor cell at P6.p two cell
stage during mid L3. Basement membrane (shown in thick line)
is intact. Anchor cell is dorsal to the P6.p 1� VPC daughters (two
circles below). (B) Anchor cell at P6.p four cell stage during mid
to late L3. Anchor cell has generated a gap in the basement
membrane (see separation between thick lines). Edges of the
anchor cell are still in contact with the basement membrane. (C)
Anchor cell at P6.p late four-cell stage (late L3). The anchor cell
has begun forming protrusions that will invade the vulva (dashed
purple arrow). (D) Anchor cell at P6.p late four-cell stage (late L3).
The anchor cell has completely invaded the vulva, specifically
invading between the 1� VPC granddaughters. (E) Anchor cell at
early L4 stage. The 1◦ VPCs have divided and proximal cells are
shown. Vulval invagination has occurred and anchor cell will
soon fuse with the r cells to form the utse.
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receptor CLR-1 inhibits EGL-15 activity, suppresses
the EME phenotype from egl-15 knockdown, and
causes the MAD phenotype when knocked down
on its own.62,63

The male tail

The male tail consists of the fan, the rays, the spi-
cules, the proctodeum, the gubernaculum, and the
hook (Fig. 5).64,65 Cell outgrowth occurs during fan
and ray formation, therefore we characterized the
development and molecular inputs for these two
processes.66

The male rays and fan originate from the lateral
epidermal seam cells, of which the three most poste-
rior give rise to the ray precursor cells, or Rn.p cells.64

These Rn.p cells eventually generate nine pairs of sen-
sory rays.67 During the late L4 stage, the tip of the tail
becomes rounded and retracts anteriorly by losing
adhesion with the cuticle, leaving behind a clear fluid
in the extracellular space (Fig. 5B).64,68 The ray cells
form papillae on the edge of the tail cell body (Fig. 5C
and D), and these papillae eventually become the dis-
tal edges of the rays, which attach to the fan cuticle
through an adherens junction (Fig. 5E).67,69 As the fan
extends from the cell body, it pulls the papillae with it,
allowing the rays to extend outward.

The expression of several genes is required for
the formation of the rays. mab-21 is necessary for
maintaining cell shape in ray 6. In wild-type males,
ray 6 is thicker and more conical than other rays,
whereas in mab-21 mutants, ray 6 takes on the
morphology of other rays, and also, exhibit an
ectopic tenth papillae between rays 5 and 7. The
Smad genes sma-2, sma-3 and smad-4 are necessary
for preventing rays 5 and 7 from taking on ray 6
morphology. Similarly, mutants for daf-4, mab-20,

mab-21, mab-26, sma-2, sma-3, and sma-4 can
have rays that are fused together, caused by dis-
placement of papillae prior to retraction.66–71 The
ram genes ram-1, ram-2 and ram-4, affect collagen
within the male tail, as mutants of these genes
exhibit rays with an expanded, lumpy shape.65–72

Other genes that affect ray shape include dpy-11,
which encodes the thioredoxin-like protein, and
dpy-18, which encodes a collagen hydroxylase.73–75

In addition, mab-7 and ram-5 transcription gene
expression mediates communication between the
ray cells and the hypodermis.65–76

A variety of molecular inputs have also been char-
acterized for male tail retraction. The expression of
tlp-1, which encodes a C2H2 Zn-finger presumptive
transcription factor, promotes hyp8–11 anterior
retraction.77 The doublesex-related DM gene dmd-3 is
necessary to trigger retraction during the L4 stage.78

When defects in retraction are present, ray formation
is often also affected. The RBCC (Ring finger-B box-
Coiled coil) protein LIN-41 functions with LET-7 to
regulate male tail retraction.79 Reduction-of-function
lin-41 mutants begin retraction in the L3 stage, and
either form disrupted fans or rays, or no fans or rays
at all. The hox gene egl-5 mediates the retraction of
cells other than hyp8–11, and in egl-5 mutants, rays
and the fan do not form.80 The gene let-765, encoding
the strawberry notch 1 receptor is also necessary for
retraction and ray formation as let-765 mutants with
reduced function do not form rays or fans.81 RME-8,
which is necessary for receptor-mediated endocytosis,
also plays a role in both retraction and ray and fan
morphogenesis. RNAi against rme-8 causes defects in
the disruption of these behaviors.82 Furthermore, Nel-
son et al. identified 25 other genes that are involved in
male tail retraction.82 These genes encode proteins
involved in cellular transport (abcx-1, arl-1, wht-5),

Figure 4. Muscle arm extension. Schematic of muscle arm extension. Adapted from Dixon and Roy, 2005. Example of muscle arms
throughout the C. elegans body (light blue arrows). Muscle arms have formed from the dorsal body wall muscles (end of dark blue
arrow) towards the dorsal nerve cord.
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cellular organization (inx-12, inx-13, nmy-2, ptl-1),
nuclear transport (expo-2, nnp-3, nnp-6), signal trans-
duction (bub-1, cdc-42, nhr-25, pkl-1, rcn-1) and gen-
eral gene expression and regulation (blmp-1, cdt-1,
egl-18, mix-1, nob-1, php-3, pri-2, ran-3, rpa-1, smc-4).

Excretory cell

The excretory cell is the largest mono-nuclear cell in
C. elegans.83 As this review focuses on cell outgrowth,
the lumen formation of the excretory cell will not be

discussed. The excretory cell originates from the AB
blastomere within the embryo, specifically AB plpap-
paap.11 During the three-fold embryonic stage, this
cell grows outward dorsolaterally toward the lateral
midline (Fig. 6A–C).83,84 The proximal and distal
edges of the cell, known as canals, initially grow out-
ward dorsally (Fig. 5C), then branch out and extend
anteriorly and posteriorly (Fig. 6D). By the time the
worm hatches, the posterior canal has extended out-
ward measuring half the length of the organism.
Extension is completed within the L1 stage 12–
14 hours after hatch, when the canal spans the entire
worm body from the anterior tip to the tip of the tail
(Fig. 6E).85 The canal connects to the hypodermis
through gap junctions, and once the canal extension is
completed, the canal grows as the body of the worm
grows, expanding from approximately 300 mm at the
L1 stage to 1 mm as an adult size.84

The tail hypodermis acts in mediating excretory
cell outgrowth.83,86 Mutations in genes that control
tail hypodermis integrity, lin-17 and bli-6, result in
exaggerated posterior canal growth.87 Several base-
ment membrane proteins are also necessary for
proper excretory canal outgrowth. These include
both a integrins INA-1 and PAT-2 and their corre-
sponding b integrin PAT-3; perlecan UNC-52, and
laminins EPI-1 and LAM-1.88–92 In pat-3 mutants,
canals grow approximately 30% slower than in
wild type animals during the L1 stage and do not
reach the ends of the animal. Canals continue to
grow with the rest of the animal throughout the
later larval stages, but they do not extend further
along the hypodermis, indicating that separate
mechanisms control initial canal outgrowth, and
later, passive canal growth as the worm develops.
The seam cells may also affect excretory cell out-
growth, since knockdown of cdh-3, which is
expressed in the seam, leads to outgrowth defects.92

Other genes that are involved in promoting excre-
tory cell outgrowth are mig-10, mig-15, unc-34, unc-
53, unc-71, unc-73, unc-104, unc-116, and vab-
8.12,14,17,93–100 The kinesin motor proteins UNC-104
and VAB-8 act with ROBO signaling proteins, SAX-3,
SLT-1, and EVA-1, in the excretory cell to mediate
cell migration and transport.95 Another gene that acts
in multiple pathways in excretory cell outgrowth is
abi-1.84 ABI-1 acts with both MIG-10 and UNC-53 to
promote outgrowth of the excretory cell by inducing
branched actin accumulation through activation of

Figure 5. Male tail cell shape change and outgrowth. Schematic
of male tail retraction and ray formation from L3 to adulthood.
Adapted from Nguyen et al., 1999. (A) Male tail at L3 stage,
retraction and ray formation have not occurred and entire cell is
composed of tail epithelium. (B) Beginning of tail retraction in L4.
Light red indicates fluid-filled extracellular space previously
inhabited by tail epithelium. (C) L4 stage. Continuation of retrac-
tion in male tail, start of ray formation. (D) L4 stage, male tail has
finished retracting and rays have all formed. (E) Adult male tail.
Rays have reached their final shape. Fluid-filled extracellular
space has taken peloderan shape.
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the Arp2/3 complex.84,99 Lastly, expression of unc-5
and unc-6 provides netrin signaling that mediates dor-
sal guidance cues for the canals.51,101,102 Many of the
genes discussed, as well as lin-17 and bli-6, also affect
guidance of neurons, indicating that they could be
serving as diffusible cues from the basal surface to
affect outgrowth of multiple tissues.83

Head mesodermal cells

Head mesodermal cells are branched cells that lie
dorsal to the terminal bulb of the pharynx
(Fig. 7).11,103 These cells, which originate from
hmcR and hmcL (head mesodermal cell right and
head mesodermal cell left), migrate circumferen-
tially to the dorsal midline.103 Once they reach the
dorsal midline, the hmcR undergoes programmed
cell death and the hmcL extends processes anteri-
orly and posteriorly along the dorsal and ventral
margins of the body wall.103 These two branches
split at the pharynx and grow adjacent to the ter-
minal bulb of the pharynx. The ventral process
grows along the anterior loop of the right excretory
gland and adjacent to the ventral hypodermal ridge.
This process also runs adjacent to the body wall

muscle and makes gap junctions with the body
wall muscle.104 The dorsal process grows adjacent
to the dorsal hypodermal ridge and also makes gap
junctions with dorsal muscle arms.

UNC-39, the homolog of human myotonic dystro-
phy-associated homeodomain protein SIX5, is
involved in regulating the outgrowth of the processes
formed by head mesodermal cells.105 When unc-39 is
knocked down, ectopic processes form around the
nerve ring, and posteriorly directed processes become
shorter. In addition, netrin and its receptors (unc-5,
unc-6, and unc-40) affect hmcL cell body positioning
but not arm projections.51

Outgrowth processes during embryonic
development

The epidermal cells of C. elegans are generated during
the 9th round of embryonic cell divisions, at which
point the embryo comprises 365 cells.106–108 Epider-
mal cells originate from four lineages, ABarp, ABpla,
ABpra, and C. These cells undergo several rounds of
division, with the majority of epidermal cells localizing
to the dorsal region of the embryo. Once terminal
divisions are complete, three groups of major

Figure 6. Excretory cell outgrowth. Schematic of excretory cell outgrowth. Excretory cell in red, outline of worm in black. Adapted from
Buechner et al., 2002. (A-D) Excretory cell outgrowth during three-fold embryonic stage. (A) Excretory cell at birth, cell has a spherical
shape. (B) Cell takes on an ellipsoidal shape as it begins to grow laterally from left to right over the ventral muscle quadrants. (C) Apical
and basal edges of the excretory cell begin migrating dorsally. (D) Edges of dorsal protrusions bifurcate and begin to grow outward lat-
erally along the anterior posterior axis. (E) Completed excretory cell outgrowth (L1). Cell has extended laterally along the anterior-poste-
rior axis to span the entire length of the worm.
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epidermal cells are generated: the dorsal epidermal
cells, seam epidermal cells, and ventral epidermal cells.
The dorsal and ventral epidermal cells take on a sheet-
like shape and undergo morphogenetic movements to
encase the remaining cells of the embryo. Before the
embryo can undergo elongation, two morphogenetic
movements must occur, dorsal intercalation and ven-
tral enclosure.109 Both dorsal intercalation and ventral
enclosure require changes in cell shape and outgrowth,
and we discuss them here.

Dorsal intercalation

Dorsal intercalation is the process by which dorsal
epidermal cells form a single row across the dor-
sal midline.11,109,110 During this process, dorsal
epidermal cells arrange themselves into six rows

and change their morphology from a round shape
to a wedge shape (Fig. 8A).109 These cells then
begin intercalating, with the anterior cells inter-
digitating first, followed by the remaining cells
along the anterior-posterior axis (Fig. 8A–B). The
interdigitating cells intercalate by forming basolat-
eral protrusions (Fig. 8B), which touch neighbor-
ing cells and help them move towards one
another.106,109–112

Molecular inputs controlling the change in cell
morphology, from round to wedge shape, have been
characterized. The T-box transcription factors TBX-8
and TBX-9 are inputs for this process, as animals with
RNAi knockdown of tbx-8 and tbx-9 do not form
wedge shaped cells and intercalation arrests prema-
turely.113 Another gene that affects cell shape of dorsal
epidermal cells is sax-3, which encodes a ROBO

Figure 7. Head mesodermal cell. Schematic of head mesodermal cell. Positioning of head mesodermal cell in adult worm. Head meso-
dermal cell lies dorsomedial to the terminal bulb of the pharynx. It extends processes that split at the pharynx and extend anteriorly
and posteriorly along the dorsal and ventral margins of the body wall. These processes also lie adjacent to the intestine as well as the
excretory gland cell. Adapted from Altun and Hall, 2009.

Figure 8. Dorsal intercalation. Schematic of dorsal intercalation. Adapted from Chisholm and Hardin, 2005. (A) Dorsal view of embryo
undergoing intercalation. Intercalating epidermal cells shown in red. Dashed lines indicate cells that have already intercalated. Cells
that are intercalating are changing from a rounded shape to a more wedge/protrusion-like shape. (B) Expanded view of intercalating
cells. Basolateral protrusions that also touch neighboring cells, and help the intercalating cells move towards one another.
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receptor protein that functions cell autonomously
within the dorsal epidermal cells.114

Additional genes that promote dorsal intercala-
tion include genes that encode cytoskeleton struc-
ture proteins (arx-2, gex-1/wve-1), GTPases (gex-2,
gex-3, ced-10), and signaling proteins (apr-1, frk-1,
mig-5, rib-1, and ten-1).115–123 Though all of these
genes are necessary for induction of dorsal interca-
lation, none have been characterized to promote
protrusion formation. Dorsal intercalation and pro-
trusion formation may be uncoupled behaviors, for
in die-1 mutants protrusions form normally, but
intercalation does not occur.112 Therefore, it may
be useful to further analyze genes that have been
implicated in dorsal intercalation for roles in dorsal
protrusion formation.

Ventral enclosure

During ventral enclosure, ventral epidermal cells
move towards the ventral midline to encase under-
lying cells in an epithelial sheath.106 Specifically,
the epidermal sheet migrates laterally and ventrally
to encase the embryo (Fig. 9A–B).124 This process
commences when two anterior leading cells, known
as ventral marginal cells (Fig. 9A), extend large
protrusions towards the ventral midline and form
epithelial junctions.106,124 Once these cells reach the
midline, the remaining cells, known as ventral
pocket cells (Fig. 9A), move towards the midline
by extending protrusions and encase the embryo.
The presence of ventral marginal cells is necessary
to mediate the rest of the ventral enclosure, for if
the marginal cells are ablated, ventral enclosure
cannot occur.124 Marginal and pocket cell protru-
sions consist of actin filaments at the apical

domain, which constrict as the ventral pocket
closes.

The formation of marginal and pocket cell protru-
sions is modulated by several molecular cues. The
WAVE complex (GEX-2, GEX-3, WSP-1), WASP
(WIP-1), and Ena/VASP (UNC-34) activate the Arp2/
3 complex (ARX-1, ARX-2, ARX-3, ARX-4, ARX-5,
ARX-6. ARX-7), which enables actin polymerization
at the leading edge of ventral marginal cells.116,119,125

Knock down of components of each of these com-
plexes results in defects in ventral enclosure. The
1,4,5-inositol trisphosphate (IP3) receptor ITR-1 is
also necessary for generating filopodia and organizing
actin at the leading edge of marginal cells.126 The cad-
herin-catenin complex (CCC), consisting of cadherin
(HMR-1), a-catenin (HMP-1) and b-catenin (HMP-
2), is also necessary for enabling protrusions to make
adhesive contacts with the ventral midline.127–129

Other proteins that affect protrusion formation
include the receptor tyrosine kinase VAB-1 and its
ligands VAB-2, EFN-2 and EFN-3, which properly
direct protrusions in both marginal and pocket
cells.130–133 The semaphorin MAB-20 is necessary for
preventing the formation of ectopic protrusions in the
ventral pocket cells.134,135 The Plexin PLX-2 binds
with MAB-20, but acts redundantly with MAB-20 and
VAB-1 to generate protrusions in the pocket
cells.133,136 DPY-18, the catalytic subunit of collagen
prolyl 4-hydroxylase, acts with TEN-1 (tenurin) to
prevent ectopic protrusion formation in dpy-18:ten-1
double mutant animals, in which ventral protrusions
were present after ventral enclosure had completed.137

Dishevelled (DSH-2) is necessary for mediating the
length of the protrusions formed by marginal cells, for
dsh-2 mutants have marginal cells with longer

Figure 9. Ventral Enclosure. Schematic of ventral enclosure. Adapted from Chisholm and Hardin, 2005. Ventral epidermal cells shown in
red, neuroblasts shown in gray spheres. (A) Outgrowth of epidermal cells during ventral enclosure. Ventral marginal cells are indicated
with blue arrow and pocket cells are indicated with green arrow. (B) Expanded view of ventral epidermal cells moving along the neuro-
blast substratum.
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protrusions than normal.138 Likewise, dsh-2 mutant
marginal cell protrusive activity also lags behind
pocket cell protrusion formation, which prevents ven-
tral enclosure from occurring.

Genes that affect ventral enclosure but not protru-
sion formation have also been characterized. The
expression of these genes affect migration of epider-
mal cells and include the APC-related gene apr-1, as
well as rib-1 and rib-2, which are involved in heparan
sulfate biosynthesis.115,139 Expression of kal-1 (kalli-
krein) with efn-4 (ephrin-B2) mediate ventral epider-
mal cell migration.140 The expression of wip-1
activates WASP and affects ventral epidermal cell
migration, but since WSP-1 affects protrusion forma-
tion, WIP-1 may also act in the protrusion formation
pathway.141 The Fer-related kinase-1 FRK-1 also
affects enclosure.121 Actin distribution is normal in
mutants of the polymerase-associated factor 1 com-
plex (PAF1C) member ctr-9; however, defects in clo-
sure are present.142 The anilin ANI-1 is necessary for
aligning cells as they come together during enclo-
sure.143 Lastly, the GTPase Arl2 homolog EVL-20 is
necessary for mediating integrity of the hypodermis
during ventral enclosure.144

Analysis of pathways

In this review we have discussed 205 genes involved in
nine different examples of cell outgrowth (Table 1).
To determine which genes might act as key regulators
of non-neuronal cell outgrowth in C. elegans, we iden-
tified genes that control cell outgrowth in multiple tis-
sues, as well as examined those genes affecting
multiple different tissues, and found that 44 genes
were involved in affecting outgrowth in more than
one tissue (Table 1). This analysis demonstrated that
two genes, gex-2 and unc-6, controlled outgrowth in
four different tissues. Interestingly, these two genes
belong to families that are also involved in neuronal
cell outgrowth.

GEX-2 is a member of the WAVE/SCAR complex
necessary for actin initiation, and many components
of the WAVE/SCAR complex are involved in multiple
tissues characterized in this work (as described below).
Expression of gex-1/wve-1 is involved in the utse, dor-
sal intercalation and muscle arms.26,53,116 Expression
of gex-3 is involved in dorsal intercalation, ventral
enclosure, and muscle arm extension.49,116,117 Expres-
sion of netrin (unc-6) is well-characterized to provide

signaling guidance cues. The netrin receptor unc-40 is
involved in regulating outgrowth in the anchor cell,
ventral enclosure, muscle arm extension, and head
mesodermal cell positioning.40,53,58,59,99 Taken
together we believe that these two master cell out-
growth regulators function in multiple tissues and are
differentially activated through interaction with other
pathways.

Based on all available information, ten genes are
shared by at least three cell types or tissues. These
genes encoded proteins involved in cytoskeletal
dynamics (ARX-2, PAT-3), signal transduction
(EGL-15, GEX-1/WVE-1, UNC-40, UNC-53, UNC-
73), and adhesion (CDH-3, INA-1, MIG-10). Inter-
estingly, of these genes, cdh-3, ina-1, pat-3, and
mig-10, were all commonly expressed in the utse,
AC, and excretory cell, suggesting that connections
to the cytoskeleton and ECM networks are vital for
outgrowth.

Behaviors undertaken by outgrowing cells

The core components gex-2 and unc-6 affect different
aspects of cell behavior. gex-2 is involved in branched
actin initiation and modulating cell outgrowth in sys-
tems that generate actin-like protrusions during out-
growth,116 while UNC-6 serves as a guidance cue.51,96

In addition, attachment and connections to the sur-
rounding cytoskeletal and ECM structures were
equally important for outgrowth processes, therefore
we wanted to see if these broader mechanisms are
used for cell outgrowth by other genes in the nine tis-
sues we described (Table 2). Specifically, we deter-
mined if each of these tissues had protrusions that
contained actin/branched actin, used guidance cues or
made direct contact with their environment, and mod-
ulated levels of basement membrane proteins and
adhesion complexes. Of the nine examples of non-
neuronal cell outgrowth, we observed that aside from
early elongation and the vulval sex muscles (whose
protrusive mechanisms have not been well character-
ized), each cell type uses two or more of these mecha-
nisms for outgrowth. Strikingly, the excretory cell uses
all five of these mechanisms as determined from our
initial core component gene set.

Our meta-analysis indicates that non-neuronal cells
in C. elegans rely on more than one mechanism for
cell outgrowth. We show that not only is outgrowth
not confined to one pathway or family of genes, but
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requires multiple players. When cells form a protru-
sion, they must guide the protrusion in the proper
direction, while maintaining adhesive contacts with
the extracellular matrix.

This stepwise set of behaviors is also characteristic
of cell outgrowth in other organisms. For instance,
branch formation in mammary tissues requires regu-
lation of actin polymerization, manipulation of levels
of ECM and adhesion molecules, and contact with
surrounding cells and guidance cues.145–149 Mouse
mammary gland branch formation occurs during ado-
lescence and involves a two-step process.147 The duct
cells first elongate through the fat pad (fatty tissue in
the mammary gland) to form a primary duct, then
branches form from the initial primary ducts through-
out the mammary tissue through terminal end bud
bifurcation and lateral side branching. The mammary
duct cells are composed of many layers (from internal
to external), which are two layers of epithelial cells, a
sheath of basement membrane, an outer ring of
fibrous interstitial ECM, and lastly, a layer of loose
connective tissue. During branch formation, consider-
able change is observed in the composition of the
basement membrane and the interstitial ECM, indicat-
ing that the proteins in these layers play roles in cell
outgrowth. For instance, a2 integrin negatively con-
trols branching, as a2 integrin knockouts exhibit
diminished branching.148 Other adhesion complexes
required include P-cadherin, which is expressed in the
monolayer of epithelial cap cells at the end buds and
is necessary for the maintenance of mammary tissue
integrity.149 Mammary branch morphogenesis also
requires proper arrangement of the actin cytoskeleton
for disruption of genes that regulate actin dynamics
and polymerization, such as gelsolin and ROR-2
which prevent branch formation.145,146 As these ducts
are branching out they make contacts with surround-
ing adipose tissues.147 Hormonal guidance cues are

also necessary for inducing branch development in
adolescence.150 In order for branching morphogenesis
to take place estrogen hormone (GH), estrogen recep-
tor a (ERa), progesterone, and its receptor (PR) need
to be present.151,152 The neural guidance cue netrin-1
is also necessary for mammary branch formation, for
it maintains connections between the preluminal cells
to the cap cells in the terminal end buds of the mam-
mary branches.153,154 Therefore, the four cell out-
growth behaviors we have identified due to the
presence of common genes between C. elegans out-
growth systems, are also behaviors used by outgrowth
in other organisms.

Conclusions

We have discussed both the process and mechanisms
used during outgrowth by nine non-neuronal cell
types in C. elegans. We discussed the lineages from
which these tissues emerge, and characterized in detail
how these non-migratory tissues and cells grow out-
ward as they change their shape during morphogene-
sis, and also described the genes and proteins that are
necessary for mediating this outgrowth (Table S1).
While we have shown that several gene families/types
regulate outgrowth in multiple tissues, such as
WAVE/SCAR proteins, integrins, and netrin signaling
proteins, we must remember that expression levels of
these genes will vary amongst each cell type and tissue.
Equally, although we have shown that the behaviors
regulated by C. elegans core components are hallmarks
of cell behavior in other tissues, the importance of
each gene’s function can easily be impacted by the
expression or inhibition of others, and therefore we
must be cautious when determining the exact role
each gene plays within each cell or tissue.

We hope that this work can be used as a resource
not only for better understanding cell outgrowth, but

Table 2. Characteristics used by different outgrowth systems.

Actin filament
branching

Actin filament
generation

Requirement of
guidance cues

Involvement or adhesion
to the extracellular membrane

Contacts to
surrounding tissues

utse X X X X
anchor cell X X X X
vulval sex muscles X
muscle arms X X X X X
male tail X X
excretory cell X X X X X
head mesodermal cells X X
dorsal intercalation X X X
ventral enclosure X X X X
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also for presenting a broad set of models that can be
used for studying cell outgrowth. In our previous
work studying the mechanisms involved in utse devel-
opment, we were able to glean more information
about utse outgrowth by testing genes involved in out-
growth in other tissues. Cell outgrowth is a process
that is present in a plethora of developing systems,
and studying multiple cell outgrowth systems can
shed light on the specific ways cells change their
shape.
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