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Human intestinal epithelium in a dish: Current
models for research into gastrointestinal
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Abstract
Determining the exact pathogenesis of chronic gastrointestinal diseases remains difficult due to the complex in vivo

environment. In this review we give an overview of the available epithelial cell culture systems developed to investigate

pathophysiology of gastrointestinal diseases. Traditionally used two-dimensional (2D) immortalised (tumour) cell lines

survive long-term, but are not genetically stable nor represent any human in particular. In contrast, primary cultures

are patient unique, but short-lived. Three-dimensional (3D) organoid cultures resemble the crypt-villus domain and contain

all cell lineages, are long-lived and genetically stable. Unfortunately, manipulation of the 3D organoid system is more

challenging. Combining the 3D and 2D technologies may overcome limitations and offer the formation of monolayers on

permeable membranes or flow-chambers. Determining the right model to use will depend on the pathology of interest and

the focus of the research, defining which cell types need to be included in the model.
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Introduction

The upper lining of the gastrointestinal tract is covered
by a single layer of epithelial cells that primarily
function in nutrient absorption and secretion of
mucus, antimicrobial peptides, hormones, ions and
other factors. Moreover, the intestinal epithelium is
exposed to many commensal and potential pathogenic
microbes and microbial patterns, which brings the risk
of infections but also inappropriate immune responses
towards more prevalent commensal antigens. The intes-
tinal epithelium therefore needs to act as a physical
barrier against the antigen-rich lumen, separating it
from the immune cell containing lamina propria.1

Furthermore, the intestinal immune system has evolved
to allow a certain level of tolerance towards antigens of
commensal or dietary origin. Many diseases, such as
inflammatory bowel disease (IBD), coeliac disease,
and colitis-associated neoplasia, result from a
disruption of the gut immune homeostasis. The exact
pathophysiology of these diseases is not fully

understood and curative therapies are lacking. Much
effort is being made to uncover the underlying disease
pathways and in identifying therapeutic targets.
Unfortunately, results from animal studies do not
always match results obtained in clinical trials. Thus,
developing pre-clinical models which better reflect the
in vivo situation and efficiently predict the effect of an
experimental therapeutic compound in a patient-
specific manner is crucial.2
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The complexity of many chronic gastrointestinal
diseases makes them difficult to model. In this review
we focus on available human intestinal epithelial
models, their applications and future perspectives.

Two-dimensional (2D) models

The first used intestinal epithelial cell lines were culture-
adapted derivatives of cancer. Several intestinal
epithelial cell lines exist, such as the colonic adenocar-
cinoma cell line Caco-2, which can form differentiated
and polarised monolayers containing small intestinal
enterocyte-like cells. In contrast to Caco-2 cells, T84
and HT-29 cells can have a goblet cell-like phenotype
but they are also derived from malignant cells.3

Culturing these highly proliferative cell lines is
relatively easy and cheap, which makes them useful
for mechanistic studies or high-throughput screening
approaches. A major limitation is their reduced
complexity and low physiological relevance. This has
been partially overcome by growing these epithelial
monolayers on permeable membrane supports instead
of culture dishes. A confluent, polarised monolayer
will have a differentiated and distinguishable apical
and basolateral side that can be targeted independ-
ently by adding molecules or bacteria to a specific
side of the transwell-insert. Caco-2 cells are mainly
being used in this fashion for transport and permeabil-
ity studies,4,5 but also Caco-2/HT-29-methotrexate
co-cultures exist which contain both enterocytes and
goblet cells.6

Recently, alternative support structures have been
developed to better reflect the intestinal environment,
for example seeding the cells in the inside of a hollow
silk-based porous scaffold that has an intestine-like
topography and can be loaded with human intestinal
myofibroblasts.7 Such artificial scaffold structures are
also used in the gut-on-chip technique where cells are
grown on a porous membrane in a microfluidic flow
cell.8 This approach allows a continuous and modifi-
able flow of nutrients on both sides of the epithelial
layer mimicking apical flow forces. Furthermore,
cyclic contractions can be applied which resemble
gut peristalsis and result in altered gene expression
and cell function/morphology. A final layer of com-
plexity can be added in these in vitro approaches by
co-culturing epithelial cell lines with immune cells and
thereby mimicking the interactions that occur in the
intestinal mucosa.9 In this setting the epithelial cells
should be plated on the inverted transwell, in order
to achieve migration of immune cells from the baso-
lateral side.10

Nevertheless, findings might not always be physiolo-
gically relevant because of the tumour-like nature of
cell lines and their discrepancies (e.g. karyotype, gene/

protein expression) compared to epithelial tissue in/ex
vivo. Efforts have therefore been made to combine the
assets of the patient-specific and physiologically
relevant, three-dimensional (3D) model (organoids,
discussed later) with the practical (and financial) advan-
tages of 2D epithelial cell monolayers. Just like
organoids, growing patient-derived intestinal epithelial
cells as a monolayer has been proven to be challenging.
One of the major difficulties was to obtain enough
donor material in order to perform multiple experi-
ments on cells from a single patient. Perreault and
Beaulieu were able to isolate and grow epithelial cells
derived from whole small intestines from legally
aborted human foetuses.11 Likewise, whole and partial
organ resection tissue has been processed to isolate and
grow larger amounts of intestinal epithelial cells.12,13

Although larger amounts of cells can be acquired, the
requirement of bowel resection samples is a major limi-
tation as these samples represent only patients with
severe inflammation or disease-related complications.
Furthermore, growing foetal or resection tissue-derived
cells is of little use for personalised medicine
approaches. In contrast, an ideal tool for personalised
medicine and biomarker studies would be to culture
intestinal biopsy-derived epithelial cells as monolayers.
Pedersen and colleagues were able to isolate and grow
colonic epithelial cells from mucosal biopsies from
healthy individuals on collagen.14 Their reported viabil-
ity was only 24% after 48 hours, clearly limiting appli-
cations. Our group has recently developed and
characterised another biopsy-derived epithelial cell cul-
ture system with an improved proliferation/apoptosis
ratio. In a first attempt to use this system for patient
stratification, we showed that increasing number of
IBD-associated mutations in endoplasmic reticulum
(ER) stress and autophagy genes led to functionally
increased ER stress responses in the colonic
epithelium.15

3D models

The discovery of Leucin-rich repeat containing G-pro-
tein coupled receptor 5 (LGR5) as a robust intestinal
stem cell marker, and consequently the formation of the
3D organoid model, has led to a better understanding
of the intestinal epithelium.16–18 When isolated single
LGR5-positive intestinal stem cells (ISCs) or crypts
fractions are embedded in Matrigel (an extracellular
matrix-mimicking substance)17 and are overlaid with
a rich culture medium, cells undergo unlimited prolif-
eration while remaining genetically stable.19 The major-
ity of them form 3D structures with a clear crypt-villus
domain that maintain polarisation towards a lumen,
and can differentiate into all downstream epithelial
cell lineages. Others will be more spherical. Two ways
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to form organoids currently exist: either from adult
mucosal tissue,17 or by differentiation of induced pluri-
potent stem cells (iPSC).20 In contrast to the first type,
iPSC-derived organoids have a more foetal phenotype
and do contain a mesenchymal cell compartment as a
result from differentiation procedures.20,21 Despite ini-
tiatives to name organoids according to the tissues from
which they were generated (enteroids, colonoids), the
term organoid is still used in a broad and unspecific
manner. Here we refer to organoids as those from a
purely epithelial origin.17 This purity is both a strength
and a weakness of the model: It allows the pinpointing
of epithelial causality, but does not mimic the complex-
ity of the in vivo situation since organoids lack for
example an immune system compartment, a nerve
system, or nutrients providing mesenchymal niche.
This has recently been overcome by co-culture systems,
e.g. with intraepithelial lymphoid cells (IELs).22 The
most recent advance in making the organoid model
more representative was the addition of a functional
enteric nervous system.23

The organoid model has already been used to study
an extensive range of diseases but can also be used to
perform mechanistic studies in normal human tissue.
While we focus on human disease modelling, some stu-
dies referred to here were performed in organoids from
mice. Yet, these studies are great proof of principles
and are highly likely to be recapitulated in the human
condition.

Organoids retain basic physiological principles of
the intestinal epithelium: Zietek and colleagues
showed that organoids derived from mice lacking
specific nutrient transporters (SGLT1, GLUT5) have
impaired transport of glucose and fructose respectively,
and consequently there was also a decrease in hormone
release in these organoids.24 Validation of intestinal
organoids as an efficient ion transport-model was
performed by Foulke-Abel and colleagues, who demon-
strated that organoids have, among others, steady Naþ/
Hþ exchanger 3 activity which can be modulated by
inhibitors, as well as bacterial enterotoxins.25

Furthermore, dietary fat absorption and the synthesis
of chylomicron may be linked to the pathophysiology
of cardiovascular risk factors, as shown by apoC-III
overexpression leading to smaller chylomicrons with
less dietary triacylglycerol.26

Disease modelling with organoids

Many diseases are being modelled with organoids. Here
we discuss the most applicable and promising
possibilities.

In the cystic fibrosis (CF) field, patient-derived
organoids are being used to screen therapeutic com-
pounds using the forskolin swelling assay to determine

their potential to rescue cystic fibrosis transmembrane
conductance regulator (CFTR) function in a persona-
lised manner.27 Moreover, using CRISPR/Cas9 gene
editing, CFTR function was restored in organoids
from patients with CF.28

Salas’ group was the first to use organoids investi-
gating IL-1R2 in ulcerative colitis (UC), confirming the
observation from biopsy data that differentiation leads
to IL1R2 expression.29 They, as well as our group, have
also used the organoid system to study stem cells from
patients with IBD, and found differentially expressed
genes in organoids from patients with UC, compared
to controls, indicating a genetic imprinting which is
recapitulated in vitro.30,31

Hackam’s group used the organoid system to dissect
the molecular basis of necrotising enterocolitis (NEC)
and showed that Toll-like receptor 4 activation in ISCs
led to ER stress-mediated apoptosis in crypts.32

Microvillus inclusion disease (MVID) has also been
modelled in organoids from patients, showing many
of the typical epithelial defects observed in vivo.33

Mechanisms behind colon cancer were investigated by
both the groups of Toshiro Sato and Hans Clevers.
After consecutive induction of mutations in genes
involved in tumour suppression or oncogenesis (APC,
SMAD4, TP53, KRAS, PIK3CA), mutated organoids
became independent of proliferative niche factors and
also showed to be able to proliferate in vivo.34,35 Lastly,
differentiation of ISCs can be easily manipulated ex
vivo, which for instance allowed the induction and
study of M cells, which are normally very scarce
in vivo.36

Dissecting the effect of microbes on the
intestinal epithelium

Luminal exposure studies require micro-injection of
agents or microbes into the lumen of the organoid,
which is technically challenging. This technique is put
forward to study host-microbe interactions. Indeed,
many studies have already showed the potency of this
model.

One such study showed an interplay of epithelial
cells with Salmonella enterica, and the effect of genetics:
Micro-injection into the lumen of murine ileal orga-
noids showed that infection is limited by a-defensins,
and interestingly this was impaired in MMP7–/–, but
not in NOD2–/– organoids.37

Other novel studies showed the culture of viruses,
such as rotavirus.38,39 Bacteria have been micro-
injected into the lumen of organoids, such as
Helicobacter pylori in gastric organoids, which induced
a strong inflammatory reaction in gastric gland cells,
but not in gastric pit cells.40 H. pylori is a capnophile,
and some strains grow best in microaerobic conditions
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such as in the stomach. Many other bacterial species
are strictly anaerobe, thus limiting experiments in
which cells are kept under normoxic conditions.
Furthermore, many bacteria are unculturable, although
this is still improving.41 Advanced technical setups will
be required to overcome these limitations.

Peck and colleagues demonstrated a direct effect of
microbiota on the expression of miRNA in murine
ISCs, and upon knockdown of miR-375, organoids
showed increased proliferation.42 Moreover, bacterial
components also have (long-lasting) effects on orga-
noids, as Hibiya and colleagues found decreased
differentiation and increased NFkB signalling in orga-
noids at 11 weeks after a 60-week exposure to a cocktail
of cytokines and bacterial cell wall components.43

These advancements illustrate how organoid cultures
are an excellent model for studying many diseases:
homing of immune cells towards the epithelium,
pathologies linked to the enteric nervous system, bar-
rier defects, and the genetic causality in these disease
phenotypes, and like in CF, test compounds on their
therapeutic potential. Organoids can now be formed
from all parts of the gastrointestinal tract, and add-
itionally from liver,44 pancreas,45 and many other
non-intestinal tissues. While these organoids have
many growth factors in common, they retain their lin-
eage and location specificity.46,47 For organoids formed
from LGR5þ ISCs this is less well described.
Interestingly, organoids established from murine
foetal small intestine can engraft on colon, attaining
corresponding colonic expression patterns.48

Explants

Whole mucosal biopsies may also be used ex vivo to
recapitulate a more realistic situation as these biopsies
contain both epithelial and immune cells. For example,
whole biopsies can be placed in culture medium and
exposed to cytokines.49 Alternatively they can be
mounted in Ussing chambers for mucosal barrier stu-
dies.50,51 In short, barrier function is assessed by moni-
toring the passage of fluorescent molecules or by
measuring the transepithelial electrical resistance
(TEER).

Investigators have also used surgically removed
parts of intestine to study intestinal pathophysiology.52

In this model, tissue was placed in a cylinder and
exposed to Salmonella typhimurium with or without
Lactobacillus paracasei supernatant. The authors
demonstrated a protective effect of L. paracasei, as
determined by tumour necrosis factor (TNF) and inter-
leukin (IL)-10 secretion whereas L. paracasei exposure
to tissues from IBD patients showed negative effects,
indicating that even anti-inflammatory microbes have
detrimental effects in predisposed individuals. More

recently, an elegant study showed a more advanced
model of a murine colon explant system in which the
colon was excised and placed into a chamber where
flow of medium was controlled, as well as the luminal
flow.53 The enteric nervous system was involved in pro-
or anti-inflammatory responses by modulating induc-
tion of RORgþ T-regulatory cells, proving that this
model allows a far more detailed investigation than
was previously possible. Unfortunately, explant tissues’
viability is in the range of days, with most experiments
being performed within 24 hours.

Comparison of models

Organoids are without doubt an excellent model to
study intestinal epithelium and its proliferative cap-
acity. Due to the 3D nature, however, luminal exposure
or transport studies require organoid injection, which is
a challenging technique. Immune cells can be easily
added to the Matrigel or medium for migration and
interaction studies, same as in 2D models, as long as
the cells are seeded on an inverted transwell. Cost is a
drawback of organoid experiments: Matrigel is expen-
sive, especially in high-throughput approaches, making
fast-dividing cancer cell lines a more economical but a
less realistic model. Explant also require some invest-
ment in materials, while their advantage is the multi-
cellular composition. Most assays are feasible for all
discussed models, with limitations for some (Table 1).
The main limitations are because of cell numbers in the
case of western blotting of organoids. In general, 2D
models are accessible, while organoids and more
advanced explant models require training and more
work, for usage as well as downstream procedures.

It is well known that 2D models are easy to manipu-
late and cost friendly, though their biological relevance
is often disputed. Modifications towards chip-based
microfluidics systems increases biological relevance
but also cost, while decreasing ease of use and decreas-
ing cell numbers, thereby limiting analyses. The next
step will be to apply the aforementioned improvements
of 2D cell lines to patient-derived epithelial monolayers
combined with the proliferative advantage of the 3D
models. A crucial leap forward in science originating
from organoids was the ability to finally culture noro-
virus in a 2D layer formed from organoids.54

VanDussen et al. demonstrated how biopsy-derived
epithelial cells from different regions of the intestine
can be grown as confluent monolayers on membrane
supports after enriching the number through initial
expansion as organoids.55 This adaptation allows
patient-specific assessment of the epithelial barrier
function and possibly, in the future, also co-cultures
with (patient-derived) immune or neuronal cells.
Patient-derived epithelial monolayers can thus be
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generated from intestinal organoids allowing storage of
isolated cells from a specific patient as a long-term
organoid culture and even the performance of comple-
mentary experiments in both models in parallel. To
achieve co-culture with patients’ own cells, and given
the time and effort it takes to establish organoids, stor-
ing additional patient material such as immune cells
and faecal samples will allow the recreation of the
patient-specific microenvironment.

Conclusions and future perspectives

It is clear that many valid models for the intestinal
epithelium exist, choosing the right model for a specific
research question is essential as each model has its spe-
cific benefits and limitations as discussed earlier
(Table 1).

Models that better mimic the complexity of the intes-
tinal tissue, combining all the different cells types that
may influence the response of these tissues, are still
lacking. But the recent advances with organoids and
2D co-cultures brings hope that more intricate systems
will be generated in the near future (also see Figure 1).
In fact, the organoid model is continuously being
adapted, and can now be extended to include other

cellular components that we find in vivo, such as
nerve, muscle, and immune cells.22,23 Adding immune
cells may be difficult, but using iPSCs to create immune
cells from the same individual may overcome this issue.
The interaction of the epithelium with bacteria is one of
the most interesting aspects to study. In the last decade,
interest in microbiota has increased tremendously.56

Still, it is unclear what exactly a healthy microbiota
is, and how it is related to homeostasis, inflammation
and disasese.57

The systems discussed here may prove invaluable
models to further our understanding of disease pro-
cesses, such as the importance of microbiota in intes-
tinal cancer and IBD.58 Indeed, the future is looking
bright for the advancement through human cell culture
models, which are directly linked to the patient from
whom the tissue was derived, also allowing personalised
medicine approaches.
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