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Abstract

Considered is the construction of transition paths of conformational changes for proteins and other 

macromolecules, using methods that do not require the generation of dynamics trajectories. 

Special attention is given to the use of a reduced set of collective variables for describing such 

paths. A favored way to define transition paths is to seek channels through the transition state 

having cross sections with a high reactive flux (density of last hitting points of reactive 

trajectories). Given here is a formula for reactive flux that is independent of the parameterization 

of “collective variable space.” This formula is needed for the principal curve of the reactive flux 

(as in the revised finite temperature string method) and for the maximum flux transition 

(MaxFlux) path. Additionally, a resistance functional is derived for narrow tubes, which when 

minimized yields a MaxFlux path. A strategy for minimization is outlined in the spirit of the string 

method. Finally, alternative approaches based on determining trajectories of high probability are 

considered, and it is observed that they yield paths that depend on the parameterization of 

collective variable space, except in the case of zero temperature, where such a path coincides with 

a MaxFlux path.
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1. Introduction

The calculation of transition paths of conformational change for proteins and other 

biomolecules is a subject of great interest, given the difficulty of experimental 

characterization of paths and their functional importance. Protein function often requires 

transitioning from one stable state to another. Experiment characterizes the structure of these 

stable states, but the structural changes required for going between the states are generally 

unknown. This article concerns the question of how to define and characterize the objects 

Phone +1-765-494-9025, rskeel@purdue.edu. 

HHS Public Access
Author manuscript
Theor Chem Acc. Author manuscript; available in PMC 2017 December 08.

Published in final edited form as:
Theor Chem Acc. 2017 January ; 136: . doi:10.1007/s00214-016-2041-3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that are to be computed. Informally, the goal is to compute representative paths from one 

stable state A to another stable state B. A representative path is the “center” of an isolated 

cluster of trajectories. The aim of this article is to identify sound formulations of such paths 

together with some consideration on how to compute them.

Transition paths might not cluster adequately—in full configuration space. Moreover, 

reduction to a small number of variables is needed for comprehending the result. Therefore, 

assume there is a smaller set of collective variables, functions of the configuration x,

abbreviated as ζ = ξ(x), such that in ζ-space, reactive trajectories cluster into one or several 

distinct isolated channels connecting two separated subsets Aξ and Bξ of collective variable 

space corresponding to A, B. As an example, one might use ϕ and ψ torsion angles.

There are several general approaches to this problem. One approach is to generate an 

ensemble of reactive trajectories, using (say) transition path sampling [2], and then cluster 

them. A different approach is to directly construct a representative path, by optimizing a 

functional that measures its quality or by some similar process. (For this approach, there 

remains the question of finding a multiplicity or network of transition paths.) Hybrid 

approaches, e.g., milestoning [25] and Markov state models [22], generate shorter 

trajectories to build discrete models, which can then be processed to find transition paths.

Considered in this article is the direct construction of transition paths. There are several 

ways of defining such paths:

1. Centers of channels of high reactive flux, i.e., channels with high concentrations 

of distinct reactive trajectories. It is natural [16] to construct such channels with 

cross sections that are isocommittors (see Sect. 3). A maximum flux transition 

(MaxFlux) path uses a point of maximum flux on each [10, 27]. The principal 

curve, suggested for the finite temperature string (FTS) method [10], uses the 

mean on each cross section.

2. Centers of channels of high reactive probability density. The original FTS 

method [16] employs the principal curve.

3. Trajectories of greatest probability, based on minimizing the Onsager– Machlup 

action [19], also called the Friedlin–Wentzell action [6].

4. Reaction paths based on mean first-passage times [21].

The second of these approaches has been supplanted by the first. The third one is shown in 

Sect. 6 to be flawed, except in the special case of zero temperature, where it coincides with 

the first.

The focus of this article is the MaxFlux path, which can be described as the center of a 

narrow tube of uniform cross section that maximizes the flux of reactive trajectories. A main 

result of this article is the derivation of a (correct) formulation of this concept for collective 
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variables. It is beyond the scope of this article to specify how to choose collective variables 

or, for the most part, how to compute MaxFlux paths.

The principal contributions of this article are as follows: First, several existing formulations 

for defining transition paths are shown to be unphysical in the sense that they depend on the 

coordinates chosen to represent the degrees of freedom in the system. As an example, it 

should not matter whether distances or their squares are chosen as coordinates. Second, a 

formula is given for the flux intensity in collective variables thus providing a generalization 

of the revised string method [10] to collective variables. Third, the MaxFlux path in 
collective variables is formulated as a minimization principle, making it easier to design 

quality numerical methods for computing the path. With a functional to minimize, it is 

possible to check whether an update is in a direction of descent. Also, functionals are 

relatively straightforward to discretize accurately, compared to differential equations. The 

latter often requires “fixes”, such as upwind differencing.

1.1. Prior work

The seminal article by Berkowitz, Morgan, McCammon, and Northrup [1] introduces the 

MaxFlux path as a minimum resistance path for Brownian dynamics trajectories, suggesting 

an analogy with electrical circuits. The path is defined as the minimum of a generalized 

resistance functional, and Euler–Lagrange equations are derived using the calculus of 

variations. However, the suggested generalization to collective variables is not invariant 

under a change of variables in collective variable space, see Sect. 4.2. Later a “MaxFlux” 

algorithm based on minimizing a discretization of this functional is proposed [13]. A yet 

later article [14] contrasts the MaxFlux path with the minimum free energy path (MFEP), 

which is its zero-temperature limit: Fig. 2 of that article illustrates for alanine dipeptide how 

the MFEP can develop a cusp at an intermediate local minimum, and Fig. 6a shows the 

density of dynamical trajectories obtained from transition path sampling and how they agree 

much better with the MaxFlux path.

The committor concept is an attractive tool for defining transition paths. The seminal article 

on the finite temperature string method [16] constructs the path from the point on each 

committor that is the arithmetic mean of hitting points from reactive trajectories. The 

method is later revised [10] to use last hitting points (reactive flux) instead, building on an 

expression derived for last hitting point density [9, 23]. It is noted in Ref. [10], Eq. (48), that, 

for cartesian coordinates, if the point of maximum reactive flux is used for the center instead 

of the arithmetic mean, this results in a MaxFlux path.

Based on the maximum reactive flux criterion, Ref. [27] derives a differential equation (but 

no minimization principle) for the MaxFlux path in collective variables, which differs from 

that of Ref. [1]. It is noted that the proposed path is independent of how collective variable 

space is parameterized, unlike that of Ref. [1]. Specifically, if one uses instead variables η, 

where ζ = χ(η), the two paths that are determined also satisfy this relation. A numerical 

algorithm is constructed, tested, and later applied [12] to a double basin Gō model of CDK2 

kinase, involving 813 DOFs reduced to 7 collective variables, obtaining the same final 

results for 3 different initial paths.
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Ref. [4], Sect. 2.1, gives a formula for the “MaxFlux functional”, which is an improvement 

over the integral of Ref. [1], However, the revised formula is still not invariant under a 

change of variables in collective variable space, see Sect. 4.2. That same article also gives, in 

Fig. 6b, a vivid visualization of the flux for phi/psi angles for alanine dipeptide. Finally, an 

intriguing method for finding globally optimal MaxFlux paths is presented, further described 

in Sect. 4.4.

There is a large literature on computational methods, which is not surveyed here except for 

mention of continuous path dynamics [5] as a strategy for determining transition paths.

Olender and Elber [19] propose defining as a transition path a Brownian dynamics trajectory 

of maximum probability, which under some assumptions is a path of steepest descent, often 

called a minimum energy path. Credit for this idea is attributed [3] to Wolynes [26]. This has 

been generalized to a minimum free energy path [16]. A more recent article [11] proposes an 

alternative functional (involving the Laplacian of the free energy) to represent relative 

probabilities of different trajectories.

1.2. Outline

Section 2 presents a Brownian dynamics model for the dynamics of the collective variables. 

It shows how the inverse of the diffusion tensor defines a natural metric for collective 

variable space.

Section 3 derives the reactive flux (last hitting point density) for collective variables. This is 

useful not only as one way of deriving the MaxFlux path but also for obtaining the collective 

variable formulation of the principal curve of reactive flux, which is the arithmetic mean of 

the reactive flux on each isocommittor (used by the revised finite temperature string 

method).

Section 4 obtains a formula for the flow rate of distinct reactive trajectories through a narrow 

tube of uniform cross section. The flow rate is the reciprocal of the “resistance”

1

where ζ = Z(s), 0 ≤ s ≤ 1, is the path, Zs(s) = (d/ds)Z(s), β is inverse temperature, F(ζ) is the 

free energy function (potential of mean force), G(ζ) is the metric tensor, |Zs(s)|Z(s)ds = 

(Zs(s)⊤G(Z(s))Zs(s))1/2ds is arc length, and the prefactor Cξ/(d0a) is a constant independent 

of Z. The flow rate given by this formula is independent of how collective variable space is 
parameterized. It is shown that the flow rate is maximized by a MaxFlux path. The 

variational characterization of the MaxFlux path enables a global optimum to be determined 

via the Hamilton–Jacobi equation.

Section 5 suggests an approach to minimizing the integral by embedding in dynamics. The 

computational advantage is explained, and the mathematical soundness is confirmed.
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Section 6 demonstrates that the maximum probability criterion based on the Onsager–

Machlup action is flawed except in the zero-temperature limit. Only in this case is the path 

independent of the parameterization of collective variable space.

1.3. Discussion and conclusions

A main contention of this article is that the reactive flux concept, because it is a geometric 

concept, is currently the best approach to constructing representative transition paths without 

actually generating dynamics trajectories. In particular, the idea of instead selecting a path of 

maximum probability based on the Onsager–Machlup action is problematic. For finite 

temperature, such a path is not a geometric construct (since it depends on the 

parameterization of collective variable space). Also, the most probable path depends on the 

duration T of the trajectories, and it is not meaningful to compare probabilities for different 

durations. For zero temperature and infinite duration, the most probable path coincides with 

the MaxFlux path. Less importantly, the functional that is to be minimized to determine a 

most probable path contains the gradient of the free energy function, which is 

computationally inconvenient for minimization.

The principal curve of reactive flux is an attractive object for representing a cluster of 

reactive trajectories. Nonetheless, a MaxFlux path is simpler and less costly to compute. In 

any case, the latter can serve as a starting point for more ambitious calculations. The flow 

rate expression (1) enables comparison of flow rates among several isolated channels of 

comparable widths. Moreover, this expression can be interpreted as a distance measure of 

the path. Therefore, the MaxFlux path can be viewed as a geodesic, enabling the use of the 

Hamilton–Jacobi equation to find a globally optimal path—for a modest number of 

collective variables. Additionally, a minimization principle can contribute to the construction 

of a robust computational method by providing a search direction that points downhill.

Another contention of this article is that the temperature used to construct a path in 

collective variable space should be the same as that used to define the free energy function. 

And it happens that finite temperature paths are easier to compute, due to the smoothing 

property of the second derivative term in the Euler–Lagrange equation.

Existing formulations have undoubtedly produced useful results and have been instrumental 

for more recent developments. Nonetheless, going forward, it is attractive to use more 

rigorous formulations that have less cause for concern.

Two computational issues are addressed here. The first is difficulties that might arise from 

arbitrariness in the curve parameterization. For this, the use of constraints is more 

straightforward than the selection of an appropriate penalty term in the objective function. 

The second is difficulties encountered in the use of standard accelerated continuous 

optimization techniques to minimize an integral of an exponential function. This can be 

circumvented by building an artificial dynamical system that pushes the path in a direction 

of descent for the functional, though generally not the direction of steepest descent. 

Additionally, this requires only values of derivatives of the free energy function, which can 

be obtained in the typical way by approximating a Dirac delta function by a highly peaked 

Gaussian and then sampling by (restrained) molecular dynamics.
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2. Brownian dynamics model

Assume the molecular system obeys Newtonian dynamics with potential energy function 

U(x) and diagonal matrix M of atomic masses. Then positions x and momenta p satisfy x = 

X(t), p = P(t) where (d/dt)X(t) = M−1P(t) and (d/dt)P(t) = −∇U(X(t)). Initial values are 

drawn from a Boltzmann–Gibbs distribution ρ(x,p): positions x from probability density ∝ 
e−βu(x) and momenta p from a Gaussian distribution.

The probability density function for ξ(x) is

where 〈O(x)〉 = ∫∫O(x)ρ(x,p)dxdp and δ(ζ) = δ(ζ1)δ(ζ2) ⋯ δ(ζν). An “effective energy” 

function F(ζ), sometimes called a free energy function, is defined by

2

where Cξ is an unspecified constant.

Assume the collective variables relax more slowly than other DOFs and momenta, so that 

paths are well approximated by Brownian dynamics trajectories ζ = ζ̂(τ) defined by (Ref. 

[16], Eq. (17))

where W(τ) is a standard Wiener process and D(ζ) is a diffusion tensor given by

3

Here, mtot is the sum of the masses, d0 is an unknown scaling factor, and 〈O(x)〉ξ=ζ is the 

expectation for the conditional probability density ρ(x,p|ξ(x) = ζ):

An alternative to this analytical formulation of Brownian dynamics is a first-principles 

empirical construction employing “swarms of trajectories” [15, 17, 20].
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It is useful to have a metric

4

with metric tensor G(ζ), to measure distance from ζ to ζ + δζ, in collective variable space. 

(The subscript ζ is to be understood as a value that provides the argument of G.) The use of 

a tensor ensures that a change of variables within collective variable space, ζ = x(η), leaves 

distances (and angles) unchanged.

The choice

5

proves to be convenient. This has a useful geometric interpretation. Each point ζ of 

collective variable space represents a manifold ℳ : ξ(x) = ζ, of dimension 3N – ν in 

cartesian configuration space. Let x be a point on ℳ and let x + δx be the nearest point to x 
on the manifold ℳ′ : ξ(x′) = ζ + δζ. The natural metric for cartesian space is the mass-

weighted RMS norm ‖δx‖ = (δx⊤Mδx/mtot)1/2. It can be shown that ‖δx‖ = (δζ⊤ Γ(x)δζ)1/2 

where

That is, (δζ⊤ Γ(x)δζ)1/2 is the distance between the two infinitesimally close manifolds at 

the point x. The tensor  is a Boltzmann-weighted harmonic average of 

Γ(x) over all x on ℳ. Thus does the distance |δζ|ζ measure cartesian RMSD between two 

infinitesimally close manifolds in configuration space.

3. Centers of high reactive flux

Given metastable states Aξ and Bξ, the problem is to find a path in collective variable space 

through the center of a channel with a high flow rate of distinct reactive trajectories.

To measure the progress of a transition, there is a natural reaction coordinate, known as the 

committor: The committor q(ζ) is the probability that a trajectory starting from ζ reaches Bξ 
before Aξ. It is known (Ref. [16], Eq. (15)) that f = q minimizes I(f) subject to f(ζ) = 0 on 

the boundary of Aξ and f(ζ) = 1 on the boundary of Bξ where

6
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3.1. Reactive flux

The flow rate (for last hitting points) across an arbitrary surface Σ is given by (Ref. [18], Eq. 

(A12))

7

where n̂(ζ) is the unit outward normal at ζ and

is the probability current density (Ref. [18], Eqs. (A13), (A14), (14), (A1)). Flux is flow rate 

per unit surface area, and a formula for surface area for collective variables is shown in 

Appendix “Area metric” to be

8

Applying Eqs. (7) and (8) to an infinitesimal surface δΣ gives the reactive flux

9

Assume the bulk of reactive trajectories cluster into isolated channels. For any such channel, 

define the path to intersect each isocommittor at a center of the reactive flux j(ξ). The center 

might be defined to be (i) a local maximum of the reactive flux or (ii) its centroid. The first 

characterization, adopted in Ref. [27], is from a lecture by Vanden-Eijnden building on Ref. 

[18], Sec. III.C, and published in Ref. [10], Eq. (48), for cartesian coordinates. For the 

centroid to be meaningful, its calculation should be restricted to some subset of the 

isocommittor. It could be a tube T of constant radius around an initial approximation or 

around the current approximation—provided the radius of T is not too small. Let ζ = Z(s) be 

a path along which the committor increases, and let Σ(s) be the isocommittor passing 

through ζ = Z(s), Each point Z(s) on the principal curve minimizes ∫T(s) dist(ζ, 

Z(s))2j(ζ)dSζ where T(s) is the intersection of T with Σ(s). The centroid of the reactive flux, 

in the case of cartesian coordinates, is used by the revised FTS method (Ref. [10], Sec. 3.6).

The original finite temperature string method (Ref. [7], Sec. II.B) uses instead the reactive 

probability (for all hitting points) q(ζ)(1 – q(ζ))ρξ(ζ)dζ. With a volume element 

(detG(ζ)1/2dζ, this gives a reactive probability density proportional to e−βF(ζ)(detG(ζ)−1/2 on 

an isocommittor q(ζ) = constant.
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3.2. Channels of restricted width

Assume that the channel is narrow enough to justify the following simplification:

Assumption 1 Each isocommittor is planar within the channel.

In particular, it is assumed that these planes do not intersect within the channel. Assume a 

trial path ζ = Z(s) is given for which q(Z(s)) is strictly increasing. Then the isocommittor 

through Z(s) is a plane

10

where n̂(s) is a unit outward normal. This assumption has the dramatic effect of converting 

the high-dimensional problem of minimizing I(f) over all f(ζ), ζ ∈ Ω, to the one-dimensional 

problem of solving for n̂(s) and Z(s), 1 ≤ s ≤ 1.

It is common to make one further simplification:

Assumption 2 The flux J(Z) is parallel to the direction Zs of the path.

The result of these two assumptions is shown in Appendix “Path of maximum reactive flux” 

to be the set of ordinary differential equations

11

for ζ = Z(s) where

12

(Eq. (11) above is the same as Eq. (11) of Ref. [27].) Note that P(Z,Zs) is a projector, making 

the equations underdetermined. This is due to the arbitrariness of the parameterization.

The β → ∞ limit of Eq. (11) for Z, but with β held fixed in F(Z;β) and D(Z;β), is (I – 

P(Z,Zs))∇F = 0, which is equivalent to the condition Zs ‖ G(Z)−1∇F(Z) for the minimum free 

energy path given in Sect. 6.

4. Variational principle for MaxFlux paths

Given here is a derivation from a variational principle of the MaxFlux path given by Eq. 

(11). Equivalence is confirmed at the end of this section.
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The problem considered here is to find a narrow tube in collective variable space from Aξ to 

Bξ with a circular cross section of specified hyperarea a for which the flow rate of distinct 

reactive trajectories is maximized under the assumption that all dynamics is confined to the 

tube. This is different from generating a (huge) ensemble of trajectories and finding a tube 

that will contain the largest number of them. Rather, the goal is to find a set of points visited 

by the largest number of reactive trajectories.

Define the tube in terms of an enclosed trial path ζ = Z(s), 0 ≤ s ≤ 1, connecting Aξ and Bξ. 

It is desirable to define a cross section of the tube as an intersection of the tube with an 

isocommittor. With this definition the ends of the tube will be surfaces of Aξ and Bξ, since 

they are isocommittors. Use of the metric |dζ|ζ to measure cross-sectional area ensures that 

the flow rate is invariant under a change of coordinates.

4.1. Flow rate through a narrow tube

Consider first the general case with no restriction on dynamics. Assume a path ζ = Z(s) for 

which q(Z(s)) is strictly increasing, and define q̂(s) and σ(ζ) by

13

Appendix “Narrow tube flow rate formula” derives the formula

14

where

15

Let T(s) be the intersection of the tube with Σ(s). For a sufficiently narrow tube, ∇σ(ζ), 

G(ζ), and F(ζ) are nearly constant on ζ ∈ T(s). Hence, the formula (15) for Q(s) simplifies 

to

Also, formula (8) gives the area of a cross section of the tube as
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Therefore, using n̂(Z) ‖ ∇σ(Z), one gets

Because the flux J(ζ) is assumed to be constant across T(s), it must be parallel to Zs(s), so 

G(Z)−1∇σ(Z) ‖ Zs. Together with (∇σ(Z))⊤Zs = 1, this implies that 

, so

16

Using Eqs. (14) and (16), one obtains 1 / R[Z], with R[Z] given by Eq. (1), for the narrow 

tube flow rate in the case of a single path. If there are several isolated tubes, the flow rate is 

the sum of the individual contributions, and 1 / R[Z] gives the relative rate for each tube.

4.2. MaxFlux path

The MaxFlux path ζ = Z(s), 0 ≤ s ≤ 1, minimizes the resistance R[Z] of the enclosing tube, 

given by Eq. (1), with Z(0) on the boundary of Aξ and Z(1) on that of Bξ.

For simplicity, one might shrink Aξ and Bξ to points. Normally, Aξ and Bξ each contain 

local minima of F(ζ), and it would be natural to use the local minima for such points, which 

is conveniently obtained with boundary conditions ∇F(Z(1)) = ∇F(Z(0)) = 0. Nonetheless, 

for β < +∞, arbitrary Dirichlet boundary conditions can be imposed.

In addition to ζ = Z(s), one should define a reference path x = X(s) in cartesian coordinates. 

If one simply chooses X(s) = argminξ(x)=Z(s)U(x), the path could have jumps in it. Instead, 

one might ask that X(s) be a MaxFlux path subject to the constraint ξ(X(s)) = Z(s).

4.3. The geometric property

The form of the integral for R[Z]—and hence the path—does not depends on how collective 

variable space is parameterized.

This is to be contrasted with the minimum resistance path of Ref. [1], which minimizes

where |dζ| = (dζ⊤dζ)1/2, and does depend on how collective variable space is parameterized. 

The two integrals are identical for G(ζ) = I, however.

Ref. [4], Sec. 2.1, offers instead the formula
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with a proof given for the special case ξ(x) = G1/2x where G is constant. As a check, with 

the change of variables ζ = x(η),

where Z(s) = χ(Z ̃(s)), F̄(η) = F(χ(η)), and Ḡ(η) = ((∂χ/∂η)(η))⊤ G(x(η))(∂x/∂η)(η). This is 

formally correct, except that F(χ(η)) – (1/β)log |det((∂χ/∂η)(η))| is the free energy function, 

not simply F(χ(η)) (cf, Ref. [15], Eq. (9)).

4.4. Using the Hamilton–Jacobi equation to find global minimum

The resistance is the length of a path with metric tensor G× = e2βF(det G)G, so the MaxFlux 

path is a geodesic from Aξ to Bξ. Let g(ζ) be the distance from a point ζ to Aξ. Then g(ζ) 

can be shown [4] to satisfy the first order partial differential equation

A level set of g(ζ) is a wavefront of points equally distant from Aξ. As g increases, the front 

moves away from Aξ. Where it first reaches Bξ is the end of the global MaxFlux path. To 

construct the path, follow the gradient back to Aξ.

Figure 4a of Ref. [4] illustrates the level curves advancing to state Bξ for phi-psi collective 

variables for alanine dipeptide. That article acknowledges that the method is practical only 

in low dimensions.

4.5. Parameterizing the path

It is convenient to remove the arbitrariness in parameterizing the optimal path ζ = Z(s). A 

convenient normalization is to choose s to be relative arclength so that |Zs(s)|Z(s) is constant 

(length of entire path) and (d/ds)|Zs(s)|Z(s) = 0.

For reliably computing a minimizing path ζ = Z(s), it is necessary to enforce the 

parameterization. There are two principal ways (Ref. [8], Sec. III) to do this: (i) use of a 

constraint, as in the string method, and (ii) addition of a term to the objective function that 

penalizes deviation from the constraint, as in the nudged elastic band method. It is difficult 

to properly weight a penalty function, so the use of a constraint is considered here.

There is a drawback to the imposition of a constraint and that is that the path is then required 

to have second derivatives that are square integrable. This is a serious matter in the limiting 

case β → ∞ of zero temperature, for which case the following conditions must be imposed: 
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(i) ζA and ζB must be free energy local minima, and (ii) the constraint must be omitted at 

intermediate local minima.

4.6. The Euler–Lagrange Equation

With the concise notation of Eq. (12), the variational principle for the MaxFlux path is to 

choose Z(s) to minimize

17

where γ(ζ) and c(ζ, ω) are defined by Eq. (12), subject to given boundary values for Z(0) 

and Z(1) and normalization constraint c(Z,Zs)s = 0. The Lagrangian is

18

Notation for the remainder of this section omits function arguments Z, Zs, and Zss.

As an intermediate step, the following expression is derived for the first variation for 

functional (18):

19

where

To see this, first integrate by parts and apply boundary conditions to get

Then note that

20

whence b = (I – P)b.
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To get the Euler–Lagrange equations, consider all possible perturbations δZ. The 

perturbation δZ can be defined to force λ∇ωc to vanish at s = 0, 1, implying that λ(0) = λ(1) 

= 0. Also, one has

so, using Eq. (20),

Therefore, λss = 0 and λ = 0. In conclusion, the Euler-Lagrange equations of the variational 

principle are

with Z(0), Z(1) given.

Note that without the constraint, the equation is simply h = 0, with Z(0) and Z(1) given, 

which is the same as Eq. (11), showing the equivalence of the two characterizations of a 

MaxFlux path. The alternative characterization introduced here is that the path is the center 

of a narrow tube of uniform cross-sectional area that maximizes the reactive flow rate if the 

free energy function is set to +∞ outside the tube. Equivalence is dependent on the 

intersections of the tube with isocommittors having uniform area using the appropriate area 

metric.

The terms c∇ζγ and γb of h(Z, Zs, Zss) expand to

21

and

22

5. Continuous path dynamics

Though it can be helpful to have the Euler–Lagrange equations, the equations themselves do 

not distinguish between minima and maxima, so it is also good to stay close to the 

minimization formulation. Also, spatial discretization of the unknown path can be effected 
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in a more principled way if applied to the original functional. Unfortunately, accelerated 

optimization methods achieve their speed by assuming locally quadratic behavior, which is 

inappropriate for the resistance functional (1)/(18). This argues for minimization based on 

gradient descent dynamics. Indeed, dynamics in (continuum) path space is proposed for the 

string method [5], yielding a partial differential equation to be integrated until (stable) 

stationarity is attained. It is worth examining the specifics of this approach even if one 

chooses instead to apply dynamics to a discrete path.

Consider a path evolving in time:

The goal is to define a partial differential equation

with Z(0, t), Z(1, t) given, so that

and integrate until the path attains a stable stationary state. The constraint requires that 

(f⊤∇ζc + fs
⊤∇ωc)s = 0, where again arguments Z, Zs, and Zss are omitted. This can be 

rewritten as

23

From Eq. (19) with λ = 0, it follows that

24

One might choose for f the direction of steepest descent,

25

which is derived in Appendix “Direction of steepest descent”. Choosing the direction of 

steepest descent f has two drawbacks:
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i. the range of f is very great due to the presence of the factor eβF in its first term, 

and,

ii. less importantly, the constraint terms in f are complicated.

Therefore, instead, it is proposed to use

where S(Z, Zs) is a positive scale factor. (The constraint remains Eq. (23) as before.) From 

Eqs. (21) and (22), it seems that a good choice is S = cβeβF(detG)1/2, for which f = −G−1((I 
– P)(∇F + ···) + λZs). In any case, Eq. (24) becomes

since . The constraint, Eq. (23), gives

for the Lagrange multiplier λ. (As a check, note that in the infinite-time limit as h → 0, the 

constraint becomes λss = 0.)

Note. The requirement that f = 0 at s = 0,1 is achieved by Zss attaining suitable point values 

at s = 0,1|. For the limiting case β → ∞, Zss is not present in f, so this condition must be 

met by having ∇F = 0 at s = 0, 1.

6. Paths of greatest probability

For a given duration T of a Brownian dynamics trajectory, there is a measure of the relative 

probability [16] of different trajectories ζ = ζ̂(τ), 0 ≤ τ ≤ T, namely the action functional

26

where definitions (4)/(5) are used in defining the metric |dζ|ζ. Olender and Elber [19] 

propose defining a reaction path, in the case of cartesian coordinates, as a path that 

minimizes this. An obvious drawback is its dependence on duration T; it is not sensible to 

compare S[ζ̂] for different durations T.

In Appendix “Most probable path”, it is shown that by optimizing the kinetics for a given 

path ζ = Z(s), 0 ≤ s ≤ 1, the problem reduces to minimizing
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27

where

and C satisfies

28

The functional S̄[Z] is not a geometric quantity. Appendix “Most probable path” shows that 

the path depends not only on the choice of collective variable space but also on how this 

space is parameterized.

The functional S̄ [Z] (scaled by 1/β) is, however, a geometric quantity in the zero-

temperature limit β → ∞. In addition, if the end points are specified, the functional 

simplifies to

For the limiting case β → ∞, it is reasonable to select T = +∞, which, from Eq. (28), can 

be attained for a path of finite length only if C = 0. Hence, the problem simplifies to that of 

minimizing

Invariably such a path passes through a critical point of F(ζ) giving a duration T = +∞. This 

result is obtained for cartesian coordinates in Refs. [19, 24] and is employed to show that the 

minimizer of this functional is the minimum energy path, for which Zs‖D(Z)∇F(Z). For 

collective variables, the minimizer is a minimum free energy path (Ref. [16], Appendix 

“Area metric”). The generalization to free energy, however, is subject to an inconsistency, in 

that, in the limit β → ∞, β is held fixed in F(ζ; β) and D(ζ; β).
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7. Appendix

7.1. Area metric

A formula is derived for measuring surface area with a metric tensor G(ζ). An infinitesimal 

surface δΣ enclosing a point ζ0 can be expressed as the intersection of an infinitesimal 

region δΩ surrounding ζ0 and the plane n̂ · (ζ – ζ0) = 0. To determine the area of δΣ, 

introduce variables ζ′ = G1/2(ζ – ζ0), for which distances and angles are locally Euclidean. 

In the new coordinates, the surface becomes the intersection of some transformed region δΩ′ 
and the plane n̂′ · ζ′ = 0 where n̂′ = G−1/2 n̂/|G−1/2n(x0302)| and |δζ| = (δζ⊤δζ)1/2. Its 

surface area is

where the first and last equality follow by applying the coarea formula This result is restated 

in Eq. (8) using the collective variable metric.

7.2. Path of maximum reactive flux

Define q̂(s) = q(Z(s)), and define σ(ζ) implicitly by q(ζ) = q̂(σ(ζ)). The assumption Eq. (10) 

that isocommittors are planar implies that σ(ζ) satisfies

so on each isocommittor Π(s),

29

It is convenient to use Eq. (12) to write Eq. (9) as

30

Using Eq. (29) and q(ζ) = q̂(σ(ζ), Eq. (30) becomes
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Maximizing j(ζ) over ζ subject to n̂(s)⊤(ζ – Z(s)) = 0 gives the condition

31

for the value Z(s) that maximizes j(ζ). (See Ref. [27], Sec. 3.4.)

The assumption that the flux J(Z) is parallel to the direction Zs of the path implies | G(Z)−1n̂ 
‖ Zs. Noting that ∇ωc(ζ, ω) = G(ζ)ω/c(ζ, ω), condition (31) becomes

(See Ref. [27], Eq. (10).) This can be written as an equation by expressing the left-hand side 

as an undetermined scalar times the right-hand side and then solving for the scalar after 

premultiplying this equation by . The result is Eq. (11).

7.3. Narrow tube flow rate formula

Using Eq. (6) and Eq. (18) of Ref. [18], the flow rate can be expressed as a volume integral:

32

Foliating Ω in Eq. (6) gives

where the decomposition q̂(σ(ζ) = q(ζ) is defined by Eq. (13). Using the coarea formula 

gives

Using ∇q(ζ) = q̂s(s)∇σ(ζ) gives
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where n̂(ζ) = ∇σ(ζ)/|∇σ(ζ)| is the outer normal at ζ on Σ(s) and Q(s) is given by Eq. (15). 

Minimizing over q̂ for fixed σ gives the Euler–Lagrange equation −(2q̂sQ(s))s = 0, whose 

solution is given by

Therefore,

33

From Eqs. (33) and (32), one obtains Eq. (14).

7.4. Direction of steepest descent

Let (∫0
1 δZ(s)⊤G(Z(s))δZ(s)ds)1/2 measure the size of a deviation δZ(s) from a path Z(s). 

For the direction of steepest descent f for the functional (17) subject to the constraint (23) 

the Lagrangian is

Its first variation is

The Euler-Lagrange equations give λ(0) = λ(1) = 0 and f = −(2μG)−1(h − λsb + λss∇ωc), in 

addition to the two original constraints. The value of const can be chosen to make 

giving Eq. (25). With this choice, Eq. (23) becomes

where b⊤G−1 ∇ωc = 0 follows from Eq. (20). Also, using Eq. (20), one has for s = 0,1 that
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thus obtaining two more boundary conditions for λ, namely λss(0) = λss(1) = 0.

7.5. Most probable path

As a first step in maximizing the action, given by Eq. (26), separate the path of the trajectory 

from its kinetics by a reparameterization t = t(s), 0 ≤ s ≤ 1, and define the path by

(For example, choose τ(s) so that s is relative arclength, meaning that |Zs(s)| = L where L is 

the length of the path.) With this change of variables, the action becomes

The schedule t = τ(s) that minimizes the action subject to τ(0) = 0 and τ(1) = T is 

determined using the calculation of variations. The result is that 

where C satisfies Eq. (28). With this choice, the action becomes S̄[Z], given in Eq. (27).

Consider now the effect of a change of variables on the functional. In particular, if one use 

instead variables η, where

one has Z = χ(Z̄) and F̄(η), D̄(η) given by

where the last two equations are derived from definitions given by Eqs. (2) and (3). 

Therefore, Z̄
s = ((∂χ/∂η)(Z̄))−1Zs and s̄[Z̄] = S̄[Z] provided f̄ = (∂χ/∂η)−1f(χ) where

Differentiating the expression for F̄ gives
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whence

and

One has

where tensor notation is used, with subscripts for differentiation. Differentiating | Dij(χ) 

gives

whence

where  is element ij of (∂χ/∂η)−1, so

Therefore,
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The extra term g changes the form of the functional to be minimized, so if one minimizes 

the integral using instead variables η, the resulting path η = Z̄(s) does not satisfy Z(s) = 

χ(Z̄(s)).
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