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ABSTRACT Lactobacillus plantarum 10CH is a bacteriocin-producing potential probi-
otic lactic acid bacterium (LAB) strain isolated from cheese. Its complete nucleotide
sequence shows a single circular chromosome of 3.3 Mb, with a G�C content of
44.51%, a 25-gene plantaricin bacteriocin gene cluster, and the absence of recog-
nized virulence factors.

Lactobacillus plantarum is an inhabitant of the human gastrointestinal tract (1) and is
used as a probiotic, since it is generally regarded as safe, confers beneficial health

effects in humans, and exhibits antimicrobial activity against microbial pathogens (2, 3).
From 50 novel lactic acid bacterium (LAB) isolates, the extracellular products of L. plan-
tarum 10CH (isolated from cheese) gave the highest antimicrobial activities against a
panel of 13 indicator strains, including Listeria monocytogenes, Staphylococcus aureus,
Enterococcus faecium, Enterococcus faecalis, and Salmonella enterica, characteristic of
bacteriocin production.

Genomic DNA of L. plantarum 10CH was isolated using a GeneJET purification kit
and assessed using a NanoDrop ND-1000 spectrophotometer and by electrophor-
esis. Genome sequencing was performed by Microbes NG (University of Birmingham,
UK) using MiSeq and HiSeq 2500 platforms (Illumina, UK). The genome sequencing
yielded 968,127 reads, with a median insert size of 489 bases and 123-fold coverage of
the genome. The reads were trimmed using Trimmomatic (4) by identification of
adapter sequences, and the quality of the trimmed reads was assessed using in-house
scripts combined with the bwa-mem software (5). These reads were de novo assembled
with SPAdes software version 3.7.0 (6), yielding 48 large contigs (�1,000 bp). The
quality of the genome assemblies was assessed using the Quality Assessment Tool for
Genome Assemblies (QUAST) (7). The draft genome was mapped against the published
reference genome of L. plantarum WCSF1 (GenBank accession number AL935263),
which was found to be the closest neighbor by the NCBI server using the CONTIGuator
mapping tool (8). Based on the Artemis Comparison Tool view, contigs were arranged,
and the intrascaffold gaps were then determined. Thirty-two pairs of PCR primers were
designed to fill the putative gaps between the contigs, and the PCRs were carried out
using high-fidelity CloneAmp HiFi PCR premix (TaKaRa, Japan). The resulting amplicons
were analyzed by gel electrophoresis and sequenced by Eurofins Genomics. The sizes
of the amplified gaps ranged from 900 bp to ~5.5 kb. SeqBuilder (Lasergene) was used
to fill the gaps using the resulting sequences of the amplified PCR products.

The sequencing results were consistent with the presence of a single circular replicon of
3,311,056 bp (no plasmids were found). The complete genome was annotated using the
NCBI Prokaryotic Genome Annotation Pipeline (PGAP) and the Pathosystems Resources
Integration Center (PATRIC) Web server (9, 10). This revealed a total of 3,192 protein-
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coding genes, along with 6, 5, and 5 5S, 16S, and 23S rRNA genes, respectively, 67
tRNA genes, and 100 pseudogenes. Four prophage loci ranging in size from 26 to
51 kb were also identified in the chromosome using the PHAST Web server (11). Five
adjacent plantaricin gene clusters were predicted (plnRLKJ, plnMNOP, plnABCD, plnIFE,
and plnGHTUVW) using Vector NTI Express (Invitrogen) and are responsible for the
production of plantaricins A, EF, and JK. Similar bacteriocin clusters are found in
L. plantarum ST-III (GenBank accession number CP002222), C11 (X94434), and V90
(FJ809773). No classical virulence genes were identified in the L. plantarum 10CH
genome, which, together with its strong and broad-spectrum antimicrobial activity,
indicates its potential suitability as a probiotic strain.

Accession number(s). The complete genome sequence of L. plantarum 10CH has

been deposited at GenBank with the accession number CP023728.
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