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Abstract

Population studies of brain function with resting-state functional magnetic resonance imaging (rs-

fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically 

achieved through registration of the corresponding T1-weighted MR images with more structural 

details. However, accumulating evidence has suggested that such strategy cannot well-align 

functional regions which are not necessarily confined by the anatomical boundaries defined by the 

T1-weighted MR images. To mitigate this problem, various registration algorithms based directly 

on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as 

features for registration. However, most of the FC-based registration methods usually extract the 

functional features only from the thin and highly curved cortical grey matter (GM), posing a great 

challenge in accurately estimating the whole-brain deformation field. In this paper, we 

demonstrate that the additional useful functional features can be extracted from brain regions 

beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall 

functional registration. Specifically, we quantify the local anisotropic correlation patterns of the 

blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors 

(FCTs), in both GM and WM. Functional registration is then performed based on multiple 

components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic 

Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method 

achieves superior functional registration performance, compared with other conventional 

registration methods.
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1 Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) is an effective noninvasive 

brain functional imaging technique for characterizing spontaneous neural activities and their 

structured interactions [1]. Brain functional networks can further be constructed by 

measuring the temporal correlation of the blood oxygenation level-dependent (BOLD) 

signals among different brain regions. Then, the changes in the brain networks between 

healthy subjects and patients can be regarded as potential imaging biomarkers for various 

brain diseases [2]. Note that, in all these applications, it is important to have accurate inter-

subject registration of rs-fMRI data for helping to improve both group comparison statistical 

power and the biomarker detection sensitivity.

Typically, rs-fMRI inter-subject registration is achieved through the alignment of their 

corresponding T1-weighted MR images since the latter have better structural details [3–5]. 

However, structural alignment does not necessarily ensure functional alignment, since 

functional regions are not always confined by anatomical boundaries [6]. In other words, 

even after reasonable structural alignment, the brain's functional regions may be still not 

well-aligned across subjects [7].

A few attempts have been made to directly employ fMRI data for the functional registration 

based on functional connectivity (FC) features. However, most existing FC-based 

registration methods often use just part of the functional features extracted from thin and 

highly-convoluted cortical grey matter (GM) for guiding the registration [6, 8]. This type of 

strategies has posed a great challenge in estimating accurate whole-brain deformation field 

that is essential for registration. For example, FC information from the GM was used to 

estimate cortical deformation field which is then interpolated to estimate the whole-brain 

deformation field [6]. This may cause large registration error in the deep-buried white matter 

(WM) structure and could, in turn, deteriorate the registration of the cortical GM. A more 

reasonable solution is to consider functional information not only on the cortical GM layers, 

but also on the sub-cortical WM tissue. In this way, more information can be utilized from 

the whole brain for estimating final deformation field; this should achieve better alignment 

of the functional regions. However, almost all previous studies ignored functional signals in 

WM, and thus their respective information is not used for functional registration.

Motivated by the feasibility of using fMRI to detect WM activations [9] and connectivities 

not only over a long distance [10] but also in a local range [11], we propose a novel 

functional registration algorithm by incorporating functional information in both GM and 

WM to guide the subsequent registration. There are at least three aspects of contribution in 

our proposed method. First, a robust method for calculating FC anisotropic information is 

developed with patch-based functional correlation tensors (PFCTs). Second, the PFCTs are 

calculated on both WM and GM to cover the entire brain for better whole-brain functional 

registration. Third, a multi-channel Large Deformation Diffeomorphic Metric Mapping 

algorithm (mLDDMM) [12] is employed for utilizing the complementary information 

contained by the multiple components (i.e., channels) of the PFCTs to guide more accurate 

functional registration.
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2 Method

There are two major steps in our proposed functional registration method, as briefly 

summarized below and illustrated in Fig. 1.

2.1 Functional Correlation Tensors (FCTs)

FCTs are used to describe the directional biases of local FC pattern, which can provide more 

functional synchrony information across different subjects to help guide more accurate 

functional registration. Two steps of FCTs construction are described as follows:

Local FC pattern—The FC between a center voxel and each of its neighboring voxels can 

vary, which create a non-uniform local FC pattern. Figure 2a shows an example, the local 

FCs from a voxel q to the eight neighboring voxels (1–8) are different from each other. We 

can define a directional vector pointing from q to each of its neighboring positions, e.g., 

position 1 (see the directed arrow from q to 1 in Fig. 2a). The length of this directional 

vector can be defined as the FC strength between voxels q and 1, by measuring the Pearson's 

correlation between the corresponding rs-fMRI BOLD signal (Fig. 2b). In above manner, we 

can calculate pair-wise FCs between the rs-fMRI signal in voxel q and those in its eight 

neighboring voxels one by one (Fig. 2b), with the highly correlated rs-fMRI time series 

corresponding to longer directional vectors, and vice versa. In this way, as shown in Fig. 2a, 

eight directional vectors may have their respective lengths, which could generate a specific 

local FC pattern.

Local FC pattern modeled by tensors—To model such a pattern, a tensor can be 

adopted, in a 2-by-2 covariance matrix, i.e.,τ2×2, with three free parameters due to the 

symmetry of matrix (Fig. 2c). The shape of this tensor can be further modeled by the two 

major axes λ1 and λ2. Note that, for easy understanding, we use this 2D example of the 

tensor, which is specifically called as functional correlation tensor (FCT) in this paper. For 

real fMRI data, the neighboring voxels are modeled by a 3D tensor, i.e., τ3×3.

The structured BOLD signal correlations exist in WM and follow the main direction of the 

fiber bundles, which are the foundation of using FCT to characterize the underlying 

functional organization patterns in WM. However, the biological mechanism of WM-fMRI 

signals is under investigation. The most promising hypothesis is as follows: the supportive 

micro blood vasculature and capillary vessels in WM follow the main direction of the fiber 

bundles due to the space constraint. Other supportive cells such as astrocytes could also be 

spatially confined by the main direction of the fibers and require blood oxygen. BOLD 

signal from fMRI has close relationship with the blood flow/volume/oxygen. Therefore, 

WM could have structured BOLD signal correlations.

2.2 PFCTs Construction

In real applications, rs-fMRI can be noisy. Various imaging noise and physiological artifacts 

may pose a great problem during pair-wise FC calculation. This will, in turn, affect 

following FCT estimation and result in noisy FCT maps. Using such noise contaminated 
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FCTs as the functional features for registration could be problematic and lead to 

suboptimum inter-subject alignment.

In order to improve the signal-to-noise ratio (SNR) in FCT calculation, we construct PFCTs, 

in a patch-based manner, to capture the inherent local FC anisotropic patterns in the whole 

brain for each subject. In this method, rather than using single voxel's rs-fMRI signal to 

conduct pair-wise FC, a 3D patch containing multiple voxels is used to conduct FC analysis 

to its neighboring 3D patch to generate a robust FC value. Specially, the patch-based FC is 

calculated by averaging all FC values across the voxel pairs consisting of corresponding 

voxels of two patches (e.g., the upper left corner voxel in patch A with other upper left 

corner voxel in the neighboring patch B). In this way, FCTs can be more robustly estimated. 

We call this method patch-based FCT (PFCT).

Figure 3 shows an example of the PFCT-based “FA”, “MD” and three axial diffusivity maps 

based on a randomly selected subject's real rs-fMRI data. It can be observed that, PFCTs on 

WM tend to be anisotropic with small magnitudes, while PFCTs on GM tend to be isotropic 

with large magnitudes. Specifically, as shown by the “FA” map, most WM structures have 

greater anisotropic PFCTs; while in the “MD” map, GM has generally larger mean 

“diffusivity”. These results suggest that the PFCTs provide both magnitude and directional 

information of the local FC, characterizing complementary and biological meaningful 

functional information in GM and WM.

Of note, instead of using spatial smoothing in the rs-fMRI preprocessing, we use PFCTs to 

obtain good functional features while preventing from excessively blurring those feature 

maps.

2.3 Multi-channel LDDMM

We then use the PFCT maps to conduct functional registration. Both feature maps, like FA, 

MD, and six elements of the upper triangle of the symmetric tensor τ3×3 can represent the 

PFCTs. Here, for simplification, we only adopt six elements of PFCTs for fMRI registration. 

Previous algorithms are often useful for single feature map for de-formation filed estimation. 

In this study, to fully take advantage of the six feature maps, we sought to use another 

strategy. Multi-channel LDDMM is an algorithm that works on multimodal imaging-based 

registration. In this study, the six PFCT component maps are regarded as different 

“modalities”; and the mLDDMM is used to estimate diffeomorphisms.

3 Experimental Results

The rs-fMRI data of 20 healthy subjects were obtained from the New York dataset B in the 

1000 Functional Connectomes Project, shared by International Neuroimaging Data-Sharing 

Initiative (http://fcon_1000.projects.nitrc.org). Each rs-fMRI image consists of 175 frames 

with a temporal resolution of 2 s. The data were preprocessed based on the conventional 

pipeline in SPM8 (https://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Specifically, the 

preprocessing steps included slice-timing correction, head-motion correction, band-pass 

filtering with 0.01–0.1 Hz, and resampling to 3 × 3 × 3 mm3. For accurate feature extraction, 

head motion profiles (i.e., the Friston's 24-parameter model) were regressed out from the 
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preprocessed rs-fMRI data. There is no WM-mean-signal regression, as we intend to exploit 

the information contained in the WM; removal of the mean WM signal could introduce 

artifacts. No spatial smoothing is conducted as it will blur the functional signals [8].

To show the superiority of our method, we compared it with three well-adopted registration 

techniques that are implemented in the SPM8 toolkit: (1) Registration based on the mean rs-

fMRI image to an EPI template (SPM_EPI) [3]; (2) Registration based on T1 MR images to 

an T1 template (SPM_T1) [4]; (3) Registration based on Tissue Probability Maps derived 

from T1 image segmentation (SPM_TPM) [5]. We also include a recently proposed 

functional registration method [8], which represents the state of the art, for comparison.

We adopt the same evaluation metrics as used in [8], including (1) the peak value of the 

group-level t maps by voxel-wise one sample t-tests on a brain functional network, (2) 

spatial overlap between individual functional networks and the group-level network, and (3) 

inter-subject correlation between individual functional networks. A previous extensively 

investigated functional network, i.e., the default mode network (DMN), is used to evaluate 

the performance of functional registration. We apply two popular DMN-detection methods: 

(1) group independent component analysis (ICA) [13] and (2) seed-based correlation 

analysis, for comprehensively evaluate the functional registration algorithms. For seed-based 

correlation, the seed voxel is placed at the posterior cingulate cortex (PCC) with the MNI 

coordinates of [0, −53, 26] as in [16].

Our results indicate that direct structural registration is unable to align functional regions 

satisfactorily, and that PFCT is significantly more robust to noise than FCT.

3.1 Group-Level Performance

The inter-subject functional consistency of DMN can be measured by one sample t-test. 

Under the same FC level, a higher t-value indicates greater inter-subject consistency. Figure 

4 shows the group-level t-maps of DMN using two network extraction methods. For the 

DMN derived from ICA, the peak t-values for SPM_EPI, SPM_T1, SPM_TPM, and our 

proposed methods are 12.29, 11.90, 12.49, and 17.10, respectively. The seed-based method 

produces a similar result (20.98, 25.42, 19.46, and 30.16). Particularly, when compared with 

the recently proposed functional registration method [8], which gives a 28.78% 

improvement in the peak t-values over the T1-based registration (SPM_T1), our method 

achieves 43.69% improvement over the T1-based registration (SPM_T1) when applied to the 

same dataset. Note that our method uses only the rs-fMRI data for functional registration, 

whereas the method in [8] uses T1 MR image-based structural registration as an 

initialization for the subsequent functional registration.

3.2 Individual-Level Performance

Figure 5 illustrates the overlap between individual DMN FC maps (left: ICA-derived 

individual z maps; right: seed correlation-derived individual r maps) and the group-level 

DMN maps across all subjects with different thresholds. It can be observed that the best 

performance is achieved using our method in all cases.
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Figure 6 shows the correlation between individual DMN FC maps (left: ICA-derived 

individual z maps; right: seed correlation-derived individual r maps). Our method obtained 

significant improvement in all cases.

4 Conclusion

In this paper, we have proposed a novel whole-brain functional registration method for rs-

fMRI data. It is implemented via a multi-channel Large Deformation Diffeomorphic Metric 

Mapping (mLDDMM) based on functional correlation tensors (PFCTs) extracted from both 

GM and WM tissues. Results demonstrate that our method significantly increases inter-

subject consistency of functional regions after registration, compared with results by 

structural image based or cortical functional feature based registration methods.
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Fig. 1. 
Overview of the proposed method: (a) PFCT construction, (b) mLDDMM registration.
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Fig. 2. 
An example of 2D FCT: (a) directional vectors pointing from voxel q to its 8 neighbors 1–8; 

(b) time series corresponding to the BOLD signals from voxels in (a), where numbers on 

yellow arrows denote the respective correlation coefficients; (c) FCT modeled by a 2D 

tensor.
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Fig. 3. 
An example of PFCT-derived metric maps based on the real rs-fMRI data of a randomly 

selected subject. FA: fractional anisotropy; MD: mean diffusivity; λ1–3: three eigenvalue 

maps.
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Fig. 4. 
The group-level t-maps of DMN using two validation methods: (a) ICA and (b) seed-based 

correlation.
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Fig. 5. 
The overlap between the subject-specific DMN-related component and the group-level 

DMN component with different thresholds using two validation methods: (a) ICA and (b) 

seed-based correlation.
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Fig. 6. 
The correlation of inter-subjects' DMN-related component using two validation methods: (a) 

ICA and (b) seed-based correlation. *denotes significant pair-wise differences for each 

method vs. our proposed method.
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