
Assessing type I error and power of multistate Markov models 
for panel data-A simulation study

Christy Cassarly1,*, Renee’ H. Martin1, Marc Chimowitz1, Edsel A. Peña2, Viswanathan 
Ramakrishnan1, and Yuko Y. Palesch1

1Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC

2Department of Statistics, University of South Carolina, Columbia, SC

Abstract

Ordinal outcomes collected at multiple follow-up visits are common in clinical trials. Sometimes, 

one visit is chosen for the primary analysis and the scale is dichotomized amounting to loss of 

information. Multistate Markov models describe how a process moves between states over time. 

Here, simulation studies are performed to investigate the type I error and power characteristics of 

multistate Markov models for panel data with limited non-adjacent state transitions. The results 

suggest that the multistate Markov models preserve the type I error and adequate power is 

achieved with modest sample sizes for panel data with limited non-adjacent state transitions.
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1. Introduction

Most randomized trials in acute stroke neuroprotection treatment have failed to show 

efficacy for new interventions (Bath et al., 2012). Mergenthaler and Meisel (2012) provide 

several explanations to describe the lack of positive trials in stroke including heterogeneity 

in stroke pathophysiology and incomplete preclinical testing (Mergenthaler & Meisel, 2012). 

Two of the explanations cited by the Optimising Analysis of Stroke Trials Collaboration are 

inadequate study designs and inappropriate statistical methods, specifically the analysis of 

the primary outcome (Bath et al., 2007).

The modified Rankin Scale (mRS) score at 90 days post-randomization is a commonly used 

primary outcome measure in Phase III clinical trials of acute stroke therapy (Saver, 2011). 

The mRS is a seven-point ordinal scale that measures degree of disability of stroke patients 

(Table I). Analyzing the mRS as an ordinal scale has only recently gained acceptance (Bath 

et al., 2007; Bath et al., 2012; DeSantis et al., 2014). Many trials have chosen to dichotomize 

the mRS into success, scores of 0 or 1 (or 0 to 2), or failure, scores greater than 1 (or 2), for 

the primary analysis (Savitz et al., 2007). Though models used for dichotomous outcomes 
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are easier to implement and some prefer the clinically meaningful interpretations, 

dichotomization can result in a loss of statistical power (Bath et al., 2007). It is intuitive that 

some patients with severe stroke may never have the potential to achieve a success as 

defined by the dichotomy. Thus, the prognostic heterogeneity of subjects does not allow for 

potential equal contribution to the estimation of the treatment effect for all subjects (Price et 

al., 2013).

Recently, an emphasis has been placed on exploring alternate analytic methods for the mRS 

outcome data from acute stroke trials. Results indicate that the mRS should be analyzed in 

such a way that maintains the original structure of the scale as much as possible (Bath et al., 

2007; Bath et al., 2012). Linear regression and analysis of variance have been suggested to 

analyze the mRS scale as a continuous variable. Although results from these models are 

generally intuitive, the application to the mRS leads to summary statistics that will not have 

a clear interpretation. Non-integer values from an ordinal scale do not have a clear meaning 

when they are treated as continuous.

Another popular alternative method for mRS outcome data is sliding dichotomy analysis. 

The sliding dichotomy method allows for the definition of success to vary based on patient-

specific baseline prognostic variables while maintaining a dichotomized outcome (Garofolo 

et al., 2013). Commonly, re-analysis of acute stroke trial data using the sliding dichotomy 

defines pre-specified cut-points for prognostic group inclusion based on the National 

Institutes of Health Stroke Scale (NIHSS) score (Garofolo, 2012). The mRS is unavailable 

immediately after randomization so models of acute stroke trial data often adjust for baseline 

severity using the NIHSS, a score that ranges from 0 (no neurological deficit) to 42. Often, 

three prognostic groups are defined using the baseline NIHSS for the sliding dichotomy as 

‘mild’, ‘moderate’, and ‘severe’ and the definition for ‘success’ differs for each group. One 

example is to define favorable outcome as mRS = 0 for mild strokes, mRS = 0–1 for 

moderate strokes and mRS = 0–2 for severe strokes. Since baseline severity is a strong 

predictor of outcome in stroke patients, this baseline severity adjusted approach has been 

considered for use over the traditional dichotomy.

While the sliding dichotomy has the potential to be a powerful tool in some settings, it has 

limitations. Some simulation studies have shown that the utilization of the sliding dichotomy 

provides higher sensitivity to detect true treatment effects (Young et al., 2005). For example, 

when the probability of favorable outcome is high (greater than 0.5), the sliding dichotomy 

provides higher power (Price et al., 2013). This is not a general result; however, as other 

studies have shown that the traditional dichotomy is more powerful than the sliding 

dichotomy in many situations (Price, 2009). When the probability of favorable outcome is 

lower, the traditional dichotomy is more powerful (Price et al., 2013). In addition, 

determining the number of prognostic groups to use is not an obvious decision and can be 

difficult to justify. Moreover, determining how to choose the cut points for the different 

groups can be a difficult task. Although the use of three groups (mild, moderate and severe) 

is common in the literature, methods used to determine severity cut points vary and need to 

be verified (Garofolo et al., 2013). Poor selection of the number of prognostic groups and 

cut points could result in a loss of power. Furthermore, while the sliding dichotomy allows 

for a baseline severity adjusted outcome, it still ignores any non-‘success’ transition from 
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one mRS score to another even though each mRS category (except 5 to 6) represents a 

clinically meaningful difference in health state (Lees et al., 2012). The recovery and 

outcome of subjects following a stroke realistically lies on a continuum. Ordinal analysis of 

the mRS scores can provide a more complete understanding of this process than analysis of 

the dichotomized scale (CPMP, 2001).

Recently, methods using the full ordinal scale have been demonstrated (Bath et al., 2012; 

DeSantis et al., 2014; Nunn et al., 2016). The proportional odds model is a cumulative 

logistic regression model that has been proposed for analysis of mRS outcome data, Use of 

this model requires the assumption of proportional odds- the odds ratio comparing treatment 

to control in subjects with mRS = 0 versus 1–6 is the same as the odds ratio for mRS = 0–1 

versus 2–6, and so on. In data where the proportional odds assumption does not hold, shift 

analysis, an assumption-free ordinal test, can be used (Savitz et al., 2007). Shift analysis can 

be performed using the van Elteren test, an extension of the two-sample Wilcoxon rank-sum 

test. Though shift analysis does not require assumptions, it does not produce a summary 

statistic which is often desired by clinicians. Alternatively, in cases where the proportional 

odds assumption is unreasonable, the partial proportional odds model or adjacent categories 

logit model can be used. The partial proportional odds model includes an additional term to 

allow for the odds ratios to increase proportional to the outcome scale (DeSantis et al., 

2014). The adjacent categories logit model calculates odds ratios for each adjacent category 

of response in relation to covariates. Both of these models are more flexible than the 

proportional odds model but lack a single summary statistic.

An additional drawback of focusing the primary outcome on the 90-day time point is the 

lack of use of available longitudinal data. Many acute stroke trials collect the mRS at 

discharge and/or at 30 days from randomization and also at periodic intervals through 12 

months, if long-term follow-up is planned. The longitudinal data are not often used in the 

primary analysis. Repeated measures analysis, which incorporates outcome data from all 

follow-up visits, may provide a more comprehensive clinical understanding of the treatment 

effect on outcome after a stroke (Feng et al., 2011).

In this article, a novel approach using multistate Markov modeling is proposed for the mRS 

scores. Multistate Markov modeling incorporates the longitudinal ordinal data and provides 

clinically relevant summary statistics to describe treatment effect. The mRS has more 

disease ‘states’ (here, the seven levels of the ordinal response) than many previously 

considered clinical applications of multistate Markov models. An example of the typical 

data structure of the observed mRS could be illustrated in Table II. In this example, mRS 

outcome data from a mock acute stroke trial of 1,000 subjects was created for three follow-

up visits. The ‘transition’ from one state to another that occurred from one visit to the next is 

described in Table II. For example, 79 of the 145 subjects that had mRS = 1 at time 1 also 

had mRS = 1 at time 2. Only 17 of the 145 subjects with mRS = 1 at time 1 transitioned to 

mRS = 2 at time 2. This is an example of an ‘adjacent-state’ transition. Throughout the table, 

a majority of the observations are instances where the subjects remained in the same state, or 

had the same mRS score from one time to the next. Most of the subjects that transitioned to 

a different state display adjacent-state transitions, with a limited number of non-adjacent 

state transitions.
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A literature review conducted of an online database yielded a total of 40 articles using the 

following keywords: multistate, Markov, panel, clinical, application, continuous-time, and 

the following excluded words: piecewise, non homogeneous, nonhomogeneous, 

inhomogeneous, semi Markov, hidden, random effects. An article was excluded if (a) the 

content was actually theoretical and there was no application, (b) it was a review with no 

new content, (c) multistate models were referenced, flagging it for review but the models 

were not actually fit, or (d) the models were actually discrete-time. Of the remaining 26 

articles, 25 fit models to data with five or fewer states and two fit models to data with six 

states (Aalen, 2012; Alessandrino et al., 2013; Allen & Farewell, 2009; Batina et al., 2016; 

Cao et al., 2013; Chauvel et al., 2007; Chui, 2002; Combescure et al., 2003; Elbasha et al., 

2009; Gangnon et al., 2012; Garcia et al., 2016; Haeussler et al., 2016; Hanly et al., 2016; 

Jackson et al., 2012; Jambarsang et al., 2015; Joutard et al., 2012; Liu et al., 2003; Ndumbi 

et al., 2013; Nunez et al., 2016; Raiche et al., 2012, 2014; Rodriguez-Girondo & de Una-

Alvarez, 2012; Saint-Pierre et al., 2006; Tung et al., 2006; Zhang et al., 2014). One 

publication used a six-state model to analyze a dataset with much more data than is typically 

collected in acute stroke trials- approximately 5,000 patients (Gangnon et al., 2014).

The multistate Markov model is introduced in Section 2. The main focus of the paper is to 

approximate the power and type I error probabilities for multistate Markov models of data 

structures similar to the longitudinal mRS outcomes observed in acute stroke trials. In 

Section 2, continuous-time multistate Markov models are defined and the simulation 

scenarios for estimation of the operating characteristics of these models are described. In 

Section 3, the type I error probabilities and power are approximated for varying design 

elements and power of the multistate models is compared with that of repeated measures 

logistic regression. In Section 4, the findings are summarized and discussed.

2. Methods

Multistate Markov modeling is an alternative approach to analyze repeated measures data 

with an ordinal outcome. The multistate Markov model describes how a process moves 

between states over time, which is desirable in the description of disease processes that 

naturally move through increasing stages of severity (Jackson, 2011). Subjects can improve 

and worsen over the course of follow-up and these movements back and forth between 

disease states are all incorporated in the estimation of the model. Multistate Markov models 

can provide a better clinical understanding of the disease process since the information from 

the entire course of the disease is used to estimate the parameters of the model. These 

models have been used in numerous clinical applications including: multiple sclerosis (Gani 

et al., 2007; Mandel et al., 2013), periodontal disease (Mdala et al., 2014), alcoholism 

(Shirley et al., 2010), and psychiatry (Gharoodi et al., 2009). This approach has not been 

used before for mRS data and therefore, in this article a simulation study is performed to 

examine the operating characteristics of the proposed approach.

2.1 Multistate Markov models

The use of multistate Markov modeling requires that the Markov property holds for the 

observed data. Consider a stochastic process with a finite state-space S = {1,2,3,…I}, where 
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I represents the number of states in the model. Let X(s) be the state occupied at time s. The 

series of observations has the Markov property if the conditional distribution of X(s + t), 
given FX(s) ={X(v):v ≤ s}, where FX(s) denotes all of the information pertaining to the 

history of X up to time s (Chiang, 1980), satisfies

(1)

In other words, a Markov process is one such that the conditional probability distribution of 

the state of a process at a given time is dependent only on the immediately preceding 

observation and not on the earlier ones.

Markov models may be defined for discrete time as well as continuous. Although the course 

of disease is a continuous process, clinical trials often only collect data at intermittent 

follow-up visits. In the context of stroke, the exact time of progression or recovery, or 

change of state, of disease is not observed. Data of this type, representative of a continuous 

process that is only observed at discrete time points, is known as panel data (Titman, 2007). 

Both discrete and continuous time multistate Markov models can be used to describe panel 

data. If the sampling times are equally spaced, a continuous model that has been adapted for 

panel data is preferred over a discrete model (Kalbfleisch & Lawless, 1985). In many acute 

stroke trials, the mRS is collected at follow-up visits that are not evenly spaced. In such 

instances, continuous time models are appropriate. A continuous model for panel data can 

only be used in cases where the sampling times are considered to be non-informative 

(Jackson, 2011). An example of non-informative sampling is a fixed observation scheme, 

where the interval of follow-up is specified in advance. However if observations are not 

fixed or random and are self-selected by the subject (informative), this modeling technique is 

not appropriate without properly adjusting for the additional information (Jackson, 2011). 

For instance, these models cannot be used in a scenario where observations occur when a 

subject visits a doctor because they are in poor-condition. A model that incorporates the 

information from the sampling times must be used for this type of self-selected follow-up 

outcome data. In acute stroke trials, the follow-up visits are usually specified in advance and 

are non-informative so continuous modeling is appropriate.

A common assumption when fitting continuous-time Markov models is the time-

homogeneity assumption. This is the assumption that the transition probabilities remain 

constant over time. When time-homogeneity is assumed, the probability that the next move 

of the process is from state i to state j can be written,

(2)

Thus, the probabilities only depend on the length of the time interval, t. The pij(t) are 

elements of the transition probability matrix, P(t). The (i, j)th entry of P(t) is the probability 

of being in state j given the starting state is i after a time interval of t.

The movement of a subject between states is described by λij, the transition intensities:
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(3)

The intensities represent the instantaneous rate of moving from state i to state j ≠ i. The 

intensities form the generator matrix, Λ, whose rows sum to zero and the diagonal entries 

are . P(t) can be solved by taking a matrix exponential of Λ scaled by the time 

interval,

(4)

where Λk is the kth power of the generator matrix Λ.

Suppose now that we observe X over t1 < t2 <…< tM. Let i1, i2,…, iM be the observed states 

over these time points. Then, the associated likelihood function is

(5)

Using (4) and (5), the likelihood is therefore

(6)

where  is the initial probability that the process is at i1.

The effects of covariates can also be investigated by modeling the intensity as a function of 

the variables of interest, z(t). The transition intensity matrix elements λij are replaced by

(7)

where  represent the baseline intensities (without covariates) and βij are the effect of 

covariates on the transition from state i to state j (Jackson, 2011). To determine the 

significance of a covariate, a likelihood ratio test is used to compare nested models. In 
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Section 3, the model including treatment is compared to a model without treatment. Thus, 

the resulting intensities are

(8)

where  represent the intensities without the covariate and z(t) is the treatment assignment 

(0 for control and 1 for treatment) for subject n. Thus, the null and alternative hypotheses for 

the test of the effect of treatment are

The null hypothesis will be rejected using the asymptotic distribution of −2ln(L0/L1) where 

L0 is the maximum value of the likelihood of the reduced model and L1 is the maximum 

value of the likelihood of the full model. For large n, this asymptotic distribution is a χ2 with 

k degrees of freedom, where k is the difference in the number of parameters in the two 

models.

The difficult part in this process is obtaining the maximum likelihood estimates. Often 

methods such as Newton-Raphson can cause issues because the computation of the second 

derivative can be costly in terms of time. Additionally, if the Hessian matrix is non-negative 

definite away from the optimum, slow or non-convergence may occur. To avoid this, other 

approaches have been proposed. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is 

used to maximize the likelihood with analytic gradients and can be used with or without 

analytic first derivatives (Jackson, 2011; Kalbfleisch & Lawless, 1985). The BFGS 

algorithm approximates Newton’s iterative method for finding the roots of differentiable 

functions (Dai, 1997). In this algorithm, the Hessian matrix of second derivatives is not 

evaluated directly. Instead, it approximates the Hessian using gradients. If too many 

transitions are considered with not enough data in a multistate model, the maximum 

likelihood estimate could lie on boundary of the parameter space (when one or more 

transition intensities equal 0). If this occurs, the maximum likelihood estimate may be 

inconsistent since asymptotic theory requires the assumption that the true parameter value 

lies away from the boundary.

It is important to consider which transitions can realistically occur in continuous time. When 

the states represent levels of disease severity it is assumed that in order for a subject to travel 

from one state to a non-adjacent state, the subject also had to travel through the intermediate 

states. Thus, in this application of these models, a reduced transition intensity matrix where 

nonadjacent state transition intensities are fixed to equal zero should be assumed. The 

exception is with mRS = 6, we assume that death can occur from any state and transitions 

cannot occur out of it because it is an absorbing state. The allowable transitions are 

displayed in Figure 1.
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2.2 Simulation scenarios

In this section, the procedures for examining the operating characteristics of multistate 

Markov models under a variety of conditions are described. First, whether or not the 

multistate Markov model preserves the type I error probability is examined through 

simulations. Next, given the type I error probability, the desired power is examined for two 

clinically relevant scenarios, each with two sets of follow-up trajectories for each of the 

models. The power of the multistate Markov model is compared with that of repeated 

logistic regression. The motivating example of this simulation study is the limited non- 

adjacent state transitions observed in mRS data. The simulation scenarios are generated such 

that the assigned transition probabilities mimic real acute stroke trial as closely as possible. 

Data from three different phase III acute stroke trials were considered when assigning 

transition probabilities.

The first trial used is the National Institute of Neurologic Disorders and Stroke (NINDS) 

tissue-Plasminogen Activator (t-PA) study (“NINDS rt-PA Stroke Study Group,” 1995). The 

NINDS t-PA trial compared t-PA versus placebo in subjects with acute ischemic stroke. The 

primary analysis showed a significant global test score for four (Barthel Index, mRS, 

Glasgow Outcome Scale, and NIHSS) outcomes as well as for the mRS alone (Tilley et al., 

1996). To further illustrate the structure of acute stroke trial data, the mRS scores for the 

control and treatment groups are displayed in Sankey plots in Figures 2 and 3 (Rosanbalm, 

2015), respectively. The Sankey plots allow for a visualization of changes within each 

treatment group over time. The longitudinal bar chart shows the percentage of subjects with 

each mRS score at each follow-up visit. In addition, the wavy lines between each bar, the 

links, describe the change in the number of subjects in each state, over time. A thick line 

indicates that a large number of subjects transition between two states. Note that as 

illustrated in Table II with the mock data, the percentage of transitions that occur between 

non-adjacent states is small.

The other two trials considered for data generation were the albumin in acute stroke 

(ALIAS) II trial and the Interventional Management of Stroke (IMS) III trial (Broderick et 

al., 2013; Ginsberg et al., 2013). ALIAS II was designed to compare 25% human serum 

albumin and saline in patients with acute ischemic stroke. IMS III was designed to compare 

intravenous t-PA plus an intra-arterial device therapy and/or additional intra-arterial t-PA 

versus t-PA alone. Both ALIAS II and IMS III were stopped early for futility.

For each of the previously mentioned trials, the observed transition counts for each follow-

up visit are combined in one table to calculate aggregate observed transition probabilities. To 

illustrate, data in Table II would be combined in an aggregate table with 192 (84 + 108) 

instances where a subject stayed in state 0 out of the total 254 (110 + 144) instances where a 

subject started in state 0. Thus, for example, the observed aggregate transition probability of 

remaining in state 0 is 0.76 (192/254), in the mock trial. These observed transition 

probability matrices are calculated for each study to illustrate the structure for mRS outcome 

data from acute stroke trials. As previously mentioned, the notable characteristic of the mRS 

outcome data from these trials is the limited number of non-adjacent state transitions.
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To evaluate power, data are generated under the alternative hypothesis that a treatment effect 

exists. In each multistate Markov model, multiple parameters describe a single covariate 

effect. Therefore, there are many ways in which a significant treatment effect could exist. In 

order to simplify, we consider two different clinically relevant scenarios. The first scenario 

considers a case where only one of the assigned transition probabilities differs between the 

control and treatment groups. For this set of simulations, the transition probabilities are 

assigned such that they are all the same for both groups except for the transition from mRS = 

3 to mRS = 2 (as well as the transition from mRS = 2 to 1, mRS = 2 to 0, and mRS = 1 to 0, 

as the intermediate transitions may not be observed). The second scenario for sample size 

estimation is one where the treatment effect exists in all transitions. The positive transitions 

are assigned higher probabilities in the treatment group, making them more likely. The 

negative transitions are assigned a larger probability in the control group.

It is likely that other ordinal scales collected over time have a longitudinal structure similar 

to the mRS, where non-adjacent state transitions are sparse. In order to consider scales with 

differing numbers of states, we used the data generated to mimic the mRS described above 

and collapsed the estimated transition probability matrices to create six-, five-, and four-state 

models. The method in which the states are aggregated is described in Table III.

In practice, collapsing states is a decision that should be made with caution. For example, if 

there is clinical evidence that two health states are not distinct, it may be acceptable to 

combine them. If two health states are aggregated that are vastly different there could be a 

loss of power. In order to illustrate this point, for the 5-state (and subsequently the 4-state) 

model, mRS = 2 and mRS = 3 are aggregated. In the scenario where only the transition from 

mRS = 3 to mRS = 2 differs, there is an expected loss in power for these aggregated models. 

Thus, in the case where only one transition differs, an additional scenario was considered 

where mRS = 2 and mRS = 3 are not combined, referred to as the 5-state* model.

The probabilities used to assign outcome trajectories are listed in Appendices A–C. Using 

these probabilities, the data generation includes the following steps:

1. Generate a sample of treatment assignments from a random uniform(0, 1) 

distribution where the probability that the mth subject is assigned to treatment is 

0.5.

2. Generate random uniform variables for all t.

3. Assign a state for t = 0 using the probabilities described in the appendices.

4. For each t > 0 use the probabilities to assign a state conditional on the state 

occupied at t − 1.

To determine the type I error, data are generated under the null hypothesis of no treatment 

effect. The simulation scenarios for estimation of type I error include differing number of 

states and increasing sample size per group, starting at 200.

The simulation studies for power are repeated for each set of simulation parameters (Table 

IV) allowing the number of subjects in each treatment group to vary, as well as the number 

of follow-up visits (three or six visits). Each set of simulations is carried out using 1,000 
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runs. For each set of parameters the sample size is set to observe approximately 80% power. 

The type I error for the multistate Markov model is set to the observed value from the 

previously described simulations. The resulting power is compared to that of the repeated 

logistic regression model.

The data used were simulated using SAS 9.4 statistical software. SAS 9.4 was also used to 

run the Generalized Estimating Equation models for repeated measures logistic regression 

with PROC GENMOD. The Markov models were fitted in R statistical software version 

3.3.0 using the ‘msm’ package for multistate Markov models (Jackson, 2011).

3. Results

In this section, the behavior of the type I error and power is evaluated. The simulation results 

of the type I error are displayed in Figure 4. For the application considered, with data 

structured similar to the three acute stroke trials described in Section 2, the type I error 

probability is preserved for all of the multistate Markov models. In order to examine whether 

the chi-square approximation of the likelihood ratio test is appropriate for comparing the 

nested models, p-values under the appropriate chi-square distribution were obtained and are 

shown in Appendix D. The p-values appear to be approximately uniform and the test-

statistic sampling distribution approximates the chi-square distributions quite adequately.

For considering power we need to set alternative hypotheses. There are many potential 

alternative hypotheses so we consider two scenarios that are clinically relevant. In the first 

scenario, transition probabilities are assigned such that the only difference between 

treatment groups is in the transition from mRS = 3 to mRS = 2. The results with three and 

six follow-up visits are displayed in Figures 5a and 5b, respectively. The transition 

probabilities assigned for these simulations are presented in Appendix B. The results 

indicate that for a seven-state model with three follow-up visits, approximately 500 subjects 

are needed in each group to obtain 80% power. There is a marginal increase in power when 

states mRS = 4 and mRS = 5 are combined in the six-state model. When mRS = 2 and mRS 

= 3 are combined for the original five-state model we see an extreme decrease in power. This 

is expected because the model was misspecified. The only difference between treatment 

groups was in the transition from mRS = 3 to mRS = 2 so when these two states are 

combined, there are virtually no differences to detect. The same phenomenon is observed in 

the four-state model because the difference is still lost from aggregating mRS = 2 and mRS 

= 3. If we consider the fact that the difference lies between those two states and instead 

collapse mRS = 0 and mRS = 1 in the alternative five-state model (5*) then we see another 

marginal increase in power. The observed increases in power are expected because there are 

no differences in the two groups in the aggregated states and there are fewer parameters to 

estimate in the model.

Figure 5b displays the approximated power in the scenario where only the transition from 

mRS = 3 to mRS = 2 differs, now with six follow-up visits instead of three. The results for 

the models with six follow-up visits are similar to those in the models with three follow-up 

visits, except that the power is significantly increased. The power for the seven-, six- and 

five-state* model are all very similar. Each of these models requires approximately 150 
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subjects in each group to obtain 80% power. When mRS = 2 and mRS = 3 are combined in 

the five-state model (and subsequently in the four-state model), there is an extreme loss of 

power, as previously observed.

The results of the power simulations in the second scenario, where the treatment effect exists 

for all transitions, are displayed in Figures 5c and 5d. The assumed transition probabilities 

are described in Appendix C. The approximate power for the three follow-up visit case is 

displayed in Figure 5c. In the six- and seven- state model, the iteration to obtain the 

estimates do not converge for sample sizes as small as 200. There are negligible differences 

in power between each of the models. Since there are differences in all transitions, there will 

be some loss of power by aggregating states. However, there is a gain in power with fewer 

parameters in a reduced model. These two facts lead to very minimal change in power. For 

any given model with three follow-up visits in this scenario, approximately 600 subjects are 

needed per group to attain 80% power.

Figure 5d displays the approximated power where all assumed transition probabilities differ 

between groups and the number of follow-up visits is increased from three to six. As 

observed in the first scenario, the results from the models with six follow-up visits are 

similar to those from the models with three follow-up visits, with a significant increase in 

power. The increase in power is expected since there are twice as many observation per 

subject contributing to the estimation of the model parameters. In this case, approximately 

250 subjects are needed per group to reach 80% power.

The approximated power from the models displayed in Figure 5 is compared with that from 

repeated logistic regression in Tables V and VI. Table V lists the power for the models with 

three follow-up visits and Table VI lists the power for the models with six follow-up visits. 

Repeated logistic regression was performed using the dichotomized mRS scores, where 

scores of 0 or 1 were defined as successes and scores greater than 1 were defined as failures.

When only one assigned transition probability differs between groups, in correctly specified 

models, the multistate Markov model requires significantly fewer subjects than the repeated 

logistic regression model to be adequately powered. When the multistate model is 

misspecified, the repeated logistic regression is more powerful. When all assumed transition 

probabilities differ between groups, the repeated logistic regression requires fewer subjects 

per group to reach 80% power. When there are three follow-up visits, the repeated logistic 

regression model only requires about 300 subjects per group to be adequately powered, 

compared to 600 in the multistate model. In the six follow-up visit case, approximately 150 

subjects are needed per group compared to 250 in the multistate Markov model.

Summary and discussion

The mRS, one of the most commonly used outcome measures in acute stroke trials, is 

ordinal but is often dichotomized for analysis. The loss of information from dichotomizing 

the ordinal variable was examined in this article. In addition, despite the availability of 

multiple mRS scores over time in many trials, a single measurement is often chosen for 

primary analysis. The additional information available from the longitudinal data could add 
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further efficiency to the analysis. Multistate Markov modeling is presented here as an 

alternative analytic approach for ordinal outcomes collected longitudinally. The multistate 

Markov model describes how a process moves between states over time, which is desirable 

because it lends itself to clinically relevant interpretations.

In this paper, we have considered time-homogenous continuous Markov multistate models 

for mRS outcome data observed in phase III acute stroke trials. Simulations demonstrated 

that the desired type I error probability is preserved for the likelihood ratio test comparing a 

multistate Markov model including treatment to one without. Power was examined for two 

different clinically relevant scenarios. The two scenarios represented two diverse instances 

where a treatment effect exists. In the first scenario all of the assigned transition probabilities 

were the same for the two treatment groups except the transition from mRS = 3 to mRS = 2. 

The assigned treatment probabilities in the second scenario differed between the groups for 

all transitions, representing a positive treatment effect for all shifts.

The key findings of the simulation studies could be summarized as follows:

• When the only difference between the treatment groups in assigned transition 

probabilities is from mRS = 3 to mRS = 2,

○ misspecification of the five-state (and four-state) multistate model 

drastically decreases power as this masks the only difference between 

groups, the transition from mRS = 3 to mRS = 2

○ the multistate model yielding the highest power is the 5-state* model 

where mRS = 4 and mRS = 5 are combined, as well as mRS = 0 and 

mRS = 1

○ power is not drastically different for the seven- six- or five-state* 

Markov model

○ the multistate model, when correctly specified, is more powerful than 

repeated logistic regression

• When all assigned transition probabilities differ between groups,

○ power is essentially equal for all four multistate Markov models 

considered

○ the repeated logistic regression models are more powerful than the 

multistate Markov models

• For both scenarios, and all combinations of states considered, increasing the 

number of follow-up visits from three to six drastically increased power.

We considered a case where two distinct states were combined to examine the effects of 

misspecification. It is important to note that for a process that is truly Markov on I states, a 

reduced-state model will not satisfy the Markov property (Regnier & Shechter, 2013). The 

sojourn time will be non-exponential for the merged states and bias can be expected through 

the misspecification. This highlights the importance of correctly specifying models when 
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using the multistate Markov approach. A modified version of Akaike’s criterion could aid in 

model selection (Thom et al., 2015).

We conclude that multistate Markov modeling can be a more efficient approach to analysis 

of mRS data from acute stroke trials. There are situations where dichotomization might not 

lose efficiency and may be more powerful than the multistate Markov model. Depending on 

the observed data structure, either technique could be more powerful. In every model, 

however, increasing the number of follow-up visits from three to six dramatically improved 

the power to detect a treatment difference.

A limitation of this study is the computational intensity required to run the simulations. For 

the scenarios with a larger number of states, the time required to complete the simulations 

was lengthy. Because of the time these simulations take, each was only repeated 1,000 times. 

Larger simulation studies, say with 10,000 runs rather than 1,000, would improve the 

precision on the estimates of the operating characteristics. A second limitation of this study 

is the lack of effect size measurement. In order to quantify an effect size, we would need to 

be able to define what outcome would be of interest. For example, some previous studies 

have considered a 10% difference in proportion of good outcome, where good outcome is 

defined by a dichotomized mRS scale. Quantification of the effect is not straightforward 

when using Markov multistate modeling. This is a practical question to consider in the 

future.

A future direction of this work could be to compare the results of multistate Markov 

modeling to repeated cumulative logistic regression. At the time of submission the authors 

could not find any publications where longitudinal proportional odds models or adjacent 

categories logit models were applied to mRS data. Interesting issues arise about how to 

handle the proportional odds assumption and how to compare models when the assumption 

fails. This may be a useful extension of the analysis of longitudinal mRS data.

Appendix A: assumed transition probabilities for type I error simulations

In this appendix, we present Tables A.1–A.4, which show the probabilities used to determine 

the trajectories for the subjects in the type I error simulation study.

Table A.1

Assumed transition probabilities for the seven-state model.

Probabilities for time = 1

0 1 2 3 4 5 6

0.1000 0.1200 0.1300 0.1500 0.2300 0.1400 0.1300

Conditional Transition Probabilities for time > 1

0 1 2 3 4 5 6

0 0.8000 0.1700 0.0200 0.0050 0.0030 0.0010 0.0010

1 0.2000 0.6800 0.0800 0.0200 0.0100 0.0050 0.0050

2 0.0500 0.2800 0.5400 0.1100 0.0100 0.0010 0.0090
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Probabilities for time = 1

0 1 2 3 4 5 6

3 0.0200 0.0800 0.2200 0.6000 0.0600 0.0050 0.0150

4 0.0050 0.0150 0.0600 0.2300 0.6000 0.0700 0.0200

5 0.0005 0.0070 0.0075 0.0450 0.2800 0.4800 0.1800

Table A.2

Assumed transition probabilities for the six-state model

Probabilities for time = 1

0 1 2 3 4/5 6

0.100 0.120 0.130 0.150 0.370 0.130

Conditional Transition Probabilities for time > 1

0 1 2 3 4/5 6

0 0.800 0.170 0.020 0.005 0.004 0.001

1 0.200 0.680 0.080 0.020 0.015 0.005

2 0.050 0.280 0.540 0.110 0.011 0.009

3 0.020 0.080 0.220 0.600 0.065 0.015

4/5 0.003 0.011 0.034 0.138 0.714 0.100

Table A.3

Assumed transition probabilities for the five-state model

Probabilities for time = 1

0 1 2/3 4/5 6

0.100 0.120 0.280 0.370 0.130

Conditional Transition Probabilities for time > 1

0 1 2/3 4/5 6

0 0.800 0.170 0.025 0.004 0.001

1 0.200 0.680 0.100 0.015 0.005

2/3 0.035 0.180 0.735 0.038 0.012

4/5 0.003 0.011 0.172 0.714 0.100

Table A.4

Assumed transition probabilities for the four-state model.

Probabilities for time = 1

0/1 2/3 4/5 6

0.220 0.280 0.370 0.130

Conditional Transition Probabilities for time > 1
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Probabilities for time = 1

0/1 2/3 4/5 6

0/1 2/3 4/5 6

0/1 0.924 0.063 0.010 0.003

2/3 0.215 0.735 0.038 0.012

4/5 0.014 0.172 0.714 0.100

Appendix B: assumed transition probabilities for the scenario with only one 

differing assumed transition

In this appendix, we present Tables B.1–B.5, which show the probabilities used to determine 

the trajectories for the subjects in the simulation study to approximate power when the 

treatment effect exists for only one transition (from mRS = 3 to mRS = 2).

Table B.1

Assumed transition probabilities for the seven-state model.

Probabilities for time = 1 (control)

0 1 2 3 4 5 6

0.110
(0.090)

0.130
(0.110)

0.150
(0.110)

0.110
(0.190)

0.230
(0.230)

0.140
(0.140)

0.130
(0.130)

Conditional transition probabilities for time > 1 (control)

0 1 2 3 4 5 6

0 0.800
(0.800)

0.170
(0.170)

0.020
(0.020)

0.005
(0.005)

0.003
(0.003)

0.001
(0.001)

0.001
(0.001)

1 0.200
(0.200)

0.680
(0.680)

0.080
(0.080)

0.020
(0.020)

0.010
(0.010)

0.005
(0.005)

0.005
(0.005)

2 0.050
(0.050)

0.280
(0.280)

0.540
(0.540)

0.110
(0.110)

0.010
(0.010)

0.001
(0.001)

0.009
(0.009)

3 0.030
(0.010)

0.110
(0.050)

0.300
(0.140)

0.480
(0.720)

0.060
(0.060)

0.005
(0.005)

0.015
(0.015)

4 0.005
(0.005)

0.015
(0.015)

0.060
(0.060)

0.230
(0.230)

0.600
(0.600)

0.070
(0.070)

0.020
(0.020)

5 .0005
(.0005)

0.007
(0.007)

.0075
(.0075)

0.045
(0.045)

0.280
(0.280)

0.480
(0.480)

0.180
(0.180)

Table B.2

Assumed transition probabilities for the six-state model.

Probabilities for time = 1 (control)

0 1 2 3 4/5 6

0.110 (0.090) 0.130 (0.110) 0.150 (0.110) 0.110 (0.190) 0.370 (0.370) 0.130 (0.130)

Conditional transition probabilities for time > 1 (control)

0 1 2 3 4/5 6
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Probabilities for time = 1 (control)

0 1 2 3 4/5 6

0 0.800 (0.800) 0.170 (0.170) 0.020 (0.020) 0.005 (0.005) 0.004 (0.004) 0.001 (0.001)

1 0.200 (0.200) 0.680 (0.680) 0.080 (0.080) 0.020 (0.020) 0.015 (0.015) 0.005 (0.005)

2 0.050 (0.050) 0.280 (0.280) 0.540 (0.540) 0.110 (0.110) 0.011 (0.011) 0.009 (0.009)

3 0.030 (0.010) 0.110 (0.050) 0.300 (0.140) 0.480 (0.720) 0.065 (0.065) 0.015 (0.015)

4/5 0.003 (0.003) 0.011 (0.011) 0.034 (0.034) 0.138 (0.138) 0.714 (0.714) 0.100 (0.100)

Table B.3

Assumed transition probabilities for the five-state* model

Probabilities for time = 1 (control)

0/1 2 3 4/5 6

0.240 (200) 0.150 (0.110) 0.110 (.190) 0.370 (.370) 0.130 (0.130)

Conditional transition probabilities for time > 1 (control)

0/1 2 3 4/5 6

0/1 0.925 (0.925) 0.050 (0.050) 0.012 (0.012) 0.010 (0.010) 0.003 (0.003)

2 0.330 (0.330) 0.540 (0.540) 0.110 (0.110) 0.011 (0.011) 0.009 (0.009)

3 0.140 (0.060) 0.300 (0.140) 0.480 (0.720) 0.065 (0.065) 0.015 (0.015)

4/5 0.014 (0.014) 0.034 (0.034) 0.138 (0.138) 0.714 (0.714) 0.100 (0.100)

Table B.4

Assumed transition probabilities for the five-state model.

Probabilities for time = 1 (control)

0 1 2/3 4/5 6

0.110 (0.090) 0.130 (0.110) 0.260 (.300) 0.370 (.370) 0.130 (0.130)

Conditional transition probabilities for time > 1 (control)

0 1 2/3 4/5 6

0 0.800 (0.800) 0.170 (0.170) 0.025 (0.025) 0.004 (0.004) 0.001 (0.001)

1 0.200 (0.200) 0.680 (0.680) 0.100 (0.100) 0.015 (0.015) 0.005 (0.005)

2/3 0.040 (0.030) 0.195 (0.165) 0.715 (0.755) 0.038 (0.038) 0.012 (0.012)

4/5 0.003 (0.003) 0.011 (0.011) 0.172 (0.172) 0.714 (0.714) 0.100 (0.100)

Table B.5

Assumed transition probabilities for the four-state model

Probabilities for time = 1 (control)

0/1 2/3 4/5 6

0.120 (0.100) 0.150 (0.120) 0.230 (0.280) 0.500 (0.500)
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Probabilities for time = 1 (control)

0/1 2/3 4/5 6

Conditional transition probabilities for time > 1 (control)

0/1 2/3 4/5 6

0/1 0.924 (0.924) 0.063 (0.063) 0.010 (0.010) 0.003 (0.003)

2/3 0.235 (0.195) 0.715 (0.755) 0.038 (0.038) 0.012 (0.012)

4/5 0.014 (0.014) 0.172 (0.172) 0.714 (0.714) 0.100 (0.100)

Appendix C: assumed transition probabilities for scenario with global 

treatment effect

In this appendix, we present Tables C.1–C.4, which show the probabilities used to determine 

the trajectories for the subjects in the simulation study to approximate power when the 

treatment effect exists for all transitions.

Table C.1

Assumed transition probabilities for the seven-state model.

Probabilities for time = 1 (control)

0 1 2 3 4 5 6

0.150
(0.100)

0.150
(0.100)

0.140
(0.100)

0.100
(0.150)

0.200
(0.250)

0.200
(0.230)

0.060
(0.070)

Conditional transition probabilities for time > 1 (control)

0 1 2 3 4 5 6

0 0.800
(0.720)

0.186
(0.230)

0.010
(0.042)

0.001
(0.002)

0.001
(0.002)

0.001
(0.002)

0.001
(0.002)

1 0.200
(0.160)

0.693
(0.676)

0.080
(0.120)

0.001
(0.002)

0.005
(0.010)

0.001
(0.002)

0.020
(0.030)

2 0.050
(0.030)

0.280
(0.220)

0.509
(0.528)

0.100
(0.140)

0.020
(0.030)

0.001
(0.002)

0.040
(0.050)

3 0.020
(0.010)

0.130
(0.080)

0.230
(0.200)

0.560
(0.620)

0.040
(0.050)

0.010
(0.020)

0.010
(0.020)

4 0.010
(0.005)

0.030
(0.020)

0.060
(0.050)

0.250
(0.200)

0.510
(0.565)

0.070
(0.080)

0.070
(0.080)

5 0.002
(0.001)

0.010
(0.005)

0.010
(0.005)

0.070
(0.050)

0.250
(0.200)

0.408
(0.439)

0.250
(0.300)

Table C.2

Assumed transition probabilities for the six-state model.

Probabilities for time = 1 (control)

0 1 2 3 4/5 6

0.150 (0.100) 0.150 (0.100) 0.140 (0.100) 0.100 (0.150) 0.400 (0.480) 0.060 (0.070)

Conditional transition probabilities for time > 1 (control)
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Probabilities for time = 1 (control)

0 1 2 3 4/5 6

0 1 2 3 4/5 6

0 0.800 (0.720) 0.186 (0.230) 0.010 (0.042) 0.001 (0.002) 0.002 (0.004) 0.001 (0.002)

1 0.200 (0.160) 0.693 (0.676) 0.080 (0.120) 0.001 (0.002) 0.006 (0.012) 0.020 (0.030)

2 0.050 (0.030) 0.280 (0.220) 0.509 (0.528) 0.100 (0.140) 0.021 (0.032) 0.040 (0.050)

3 0.020 (0.010) 0.130 (0.080) 0.230 (0.200) 0.560 (0.620) 0.050 (0.070) 0.010 (0.020)

4/5 0.006 (0.003) 0.020 (0.013) 0.035 (0.028) 0.160 (0.125) 0.619 (0.641) 0.160 (0.190)

Table C.3

Assumed transition probabilities for the five-state model.

Probabilities for time = 1 (control)

0 1 2/3 4/5 6

0.150 (0.100) 0.150 (0.100) 0.240 (0.250) 0.400 (0.480) 0.060 (0.070)

Conditional transition probabilities for time > 1 (control)

0 1 2/3 4/5 6

0 0.800 (0.720) 0.186 (0.230) 0.011 (0.044) 0.002 (0.004) 0.001 (0.002)

1 0.200 (0.160) 0.693 (0.676) 0.081 (0.122) 0.006 (0.012) 0.020 (0.030)

2/3 0.035 (0.020) 0.205 (0.150) 0.700 (0.745) 0.035 (0.050) 0.025 (0.035)

4/5 0.006 (0.003) 0.020 (0.013) 0.195 (0.153) 0.619 (0.641) 0.160 (0.190)

Table C.4

Assumed transition probabilities for the four-state model

Probabilities for time = 1 (control)

0/1 2/3 4/5 6

0.300 (0.200) 0.240 (0.250) 0.400 (0.480) 0.060 (0.070)

Conditional transition probabilities for time > 1 (control)

0/1 2/3 4/5 6

0/1 0.939 (0.893) 0.046 (0.083) 0.004 (0.008) 0.011 (0.016)

2/3 0.240 (0.170) 0.700 (0.745) 0.035 (0.050) 0.025 (0.035)

4/5 0.026 (0.016) 0.195 (0.153) 0.619 (0.641) 0.160 (0.190)

Appendix D: plots of p-values and test-statistics from type I error 

simulation study

In this appendix, we present Figures D.1 and D.2, which display the distribution of the p-

values and test-statistics from the likelihood ratio tests from the type I error simulation 

study.
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Figure D.1. 
Distribution of p-values from the likelihood ratio tests calculated in the type I error 

simulation study.

Figure D.2. 
Distribution of test-statistics from the likelihood ratio tests calculated in the type I error 

simulation study.
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Table I

Modified Rankin Scale.

Score Description

0 No symptoms at all

1 No significant disability despite symptoms; able to carry out all usual duties and activities

2 Slight disability; unable to carry out all previous activities but able to look after own affairs without assistance

3 Moderate disability requiring some help, but able to walk without assistance

4 Moderately severe disability; unable to walk without assistance and unable to attend to own bodily needs without assistance

5 Severe disability; bedridden, incontinent, and requiring constant nursing care and attention

6 Dead
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Table III

Modified Rankin Scale inclusion categories

Symbol Model mRS Scores

7-state mRS 0, mRS 1, mRS 2, mRS 3, mRS 4, mRS 5, mRS 6

6-state mRS 0, mRS 1, mRS 2, mRS 3, mRS 4–5, mRS 6

5-state* mRS 0–1, mRS 2, mRS 3, mRS 4–5, mRS 6

5-state mRS 0, mRS 1, mRS 2–3, mRS 4–5, mRS 6

4-state mRS 0–1, mRS 2–3, mRS 4–5, mRS 6
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Table IV

Simulation scenarios for power.

Number of subjects per group

States Visits One differing transition All differing transitions

7 3 200, 300, 400, 500, 600, 800, 1000 300, 400, 500, 600, 800, 1000

6 100, 150, 200, 250, 300, 400, 500 100, 150, 200, 250, 300, 400, 500

6 3 200, 300, 400, 500, 600, 800, 1000 300, 400, 500, 600, 800, 1000

6 100, 150, 200, 250, 300, 400, 500 100, 150, 200, 250, 300, 400, 500

5* 3 200, 300, 400, 500, 600, 800, 1000

6 100, 150, 200, 250, 300, 400, 500

5 3 200, 300, 400, 500, 600, 800, 1000 200, 300, 400, 500, 600, 800, 1000

6 100, 150, 200, 250, 300, 400, 500 100, 150, 200, 250, 300, 400, 500

4 3 200, 300, 400, 500, 600, 800, 1000 200, 300, 400, 500, 600, 800, 1000

6 100, 150, 200, 250, 300, 400, 500 100, 150, 200, 250, 300, 400, 500
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