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Abstract

Type 2 Diabetes mellitus (T2DM) is an evident growing disease that affects different cultures

throughout the world. T2DM occurs under the influence of three main factors: the genetic

background, environmental and behavioral components. Obesity is strongly associated to

the development of T2DM in the occident, while in the orient most of the diabetic patients

are considered lean. Genetics may be a key factor in the development of T2DM in societies

where obesity is not a recurrent public health problem. Herein, two different models of rats

were used to understand their differences and reliability as experimental models to study

the pathophysiology of T2DM, in two different approaches: the genetic (GK rats) and the

environmental (HFD-induced obese rats) influences. GK rats were resistant to weight gain

even though food/energy consumption (relative to body weight) was higher in this group.

HFD, on the other hand, induced obesity in Wistar rats. White adipose tissue (WAT) expan-

sion in this group was accompanied by immune cells infiltration, inflammation and insulin

resistance. GK rats also presented WAT inflammation and insulin resistance; however, no

immune cells infiltration was observed in the WAT of this group. Liver of HFD group pre-

sented fat accumulation without differences in inflammatory cytokines content, while liver of

GK rats didn’t present fat accumulation, but showed an increase of IL-6 and IL-10 content

and glycogen. Also, GK rats showed increased plasma GOT and GPT. Soleus muscle of

HFD presented normal insulin signaling, contrary to GK rats, which presented higher con-

tent of basal phosphorylation of GSK-3β. Our results demonstrated that HFD developed a

mild insulin resistance in Wistar rats, but was not sufficient to develop T2DM. In contrast,

GK rats presented all the typical hallmarks of T2DM, such as insulin resistance, defective

insulin production, fasting hyperglycemia/hyperinsulinemia and lipid plasma alteration.

Thus, on the given time point of this study, we may conclude that only GK rats shown to be a

reliable model to study T2DM.
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Introduction

By 2030, diabetes mellitus (DM) will be the 7th leading cause of death worldwide, staying

behind only of ischemic heart diseases, cerebral disease, HIV/AIDS, Chronic Obstructive Pul-

monary Disease (COPD), lower respiratory infections, and trachea, bronchus and lung cancer

[1]. The incidence of DM has risen vertiginously and, in 2014, as claimed by the World Health

Organization (WHO), reached the hallmark of 422 million individuals [2]. This augmentation

is mainly because of unhealthy dietary habits, like increased intake of sugar, fats, processed

foods, and sweetened beverages, related to low consumption of fruits and vegetables, as well as

sedentary lifestyle. DM is associated with complications that affect patient’s quality of life, for

example, more than 50% of diabetic patients present other physiological disorder, such as car-

diovascular diseases (heart attacks and strokes) [3], higher susceptibility to infections [4], kid-

ney failure [5], and retinopathy [6].

DM is a syndrome characterized by carbohydrate, lipid, and protein metabolism disorders

and it occurs as a result either from deficiency/absence of insulin secretion or resistance to the

action of this hormone. Type 2 DM (T2DM) is the most common type of DM and it is charac-

terized by insulin resistance in skeletal muscle, adipose tissue, and liver. Defective β-cell secre-

tory function, fasting hyperglycemia and hyperinsulinemia and increased hepatic glucose

production are also hallmarks of T2DM [7]. Development of T2DM is due to a combination

of three different factors: genetic, environmental and behavioral [8]. In this study, we aim to

compare two of the components that interfere in T2DM development: genetic versus environ-

mental (diet) factors.

Goto Kakizaki (GK) rat, a non-obese and spontaneous (genetic) T2DM experimental

model, has been widely used to investigate the development of T2DM and its complications

[9–14]. These animals were obtained by repetition of selective breeding of glucose intolerant

Wistar rats [15]. Males and females rats are similarly affected by the diabetic condition and dif-

ferences are observed even before birth. In uterus, GK fetus shows reduced pancreatic β-cell

mass; however, right after birth, rats present normal blood glucose. When GK rats are 28 days

of age, basal hyperglycemia, impaired insulin secretion by pancreatic β-cells and increased

hepatic glucose production are observed [16–18]. Only after 56 days of life, GK rats develop

peripheral insulin resistance [19]. Considering that the genetic factor contributes to etiology

and progression of T2DM, various studies have been developed to identify susceptible genes in

GK model. Recently, genes involved in multiple pathways that may be associated with T2DM

phenotype were observed in GK rats. [20–22].

High-fat diet (HFD) is commonly used as experimental strategy to develop obesity and

T2DM in rodents, simulating an environmental influence on the metabolism of these animals.

HFD feeding was first described in C57BL/6 mice by Surwit et al [23], showing that HFD con-

taining 58% of energy derived from fat leads to obesity, initial hyperinsulinaemia, impaired

glucose homeostasis due to insulin resistance, and late insufficient insulin production due to β
pancreatic cell failure [24]. These diets are enriched with saturated fat and promote weight

gain by expansion of white adipose tissue (WAT), altering lipid homeostasis, adipocyte differ-

entiation and survival. Consequently to these alterations, WAT expansion promotes an inflam-

matory state and leucocyte infiltration [25–27]. Chronic exposition to HFD induces liver

damage [28], impaired glucose homeostasis, compensatory hyperinsulinemia to maintain nor-

mal glycemia (in the initial stage), late pancreatic β-cell failure to produce insulin due to cell

exhaustion and consequent hyperglycemia, which are the main characteristics of T2DM [29–

31].

Considering that the prevalence of T2DM is increasing globally and that this syndrome

is a result from interactions of different factors, it is important to understand the altered
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mechanisms in T2DM and promote alternative options to minimize the consequences and

progression of this disease. In this study we investigate the molecular mechanisms of insulin

resistance induced by two different models: GK rats (genetic) and HFD inducing obesity (envi-

ronmental—diet). We expect that the conclusion of this work help other researchers to choose

their appropriate experimental model when aiming to study the causes and consequences of

T2DM.

Material and methods

1. Animals

Goto Kakizaki and Wistar rats were obtained from Charles River Laboratories International,

Inc. (Wilmington, MA, USA) and maintained in our animal facility in the Department of

Physiology and Biophysics of the Biomedical Sciences Institute, University of Sao Paulo. The

rats were maintained at 23 ± 2˚C under a cycle of 12 hours of light and 12 hours of darkness,

being allowed free access to food and water. Male rats were fed with standard rodent chow

(Nuvilab1, Curitiba, PR, Brazil) until 8 weeks of age. Then, the animals were randomly allo-

cated into three groups: control and GK groups fed a control diet, and Wistar group fed a

HFD (60%) (Table 1). Animals received the specific diets for eight weeks [32, 33]. Diets were

obtained from Rhoster Company (Araçoiaba da Serra, SP, Brazil) and their composition was

established based on Research Diets, Inc (New Brunswick, NJ, USA): D12450B (control) and

D12492 (HFD). The Animal Ethical Committee of the Institute of Biomedical Sciences of

the University of Sao Paulo (number 109/2013) approved all experimental procedures of this

study. Body weight gain was evaluated weekly and food intake was measured three times a

week.

2. Metabolic assays

2.1. Glucose tolerance test (GTT) and insulin levels. After 12 h fasting, animals were

injected (i.p.) with a 50% glucose solution, using a dose of 2 g/Kg (b.w.). Blood glucose concen-

tration was determined using a blood glucose monitor (AccuCheck, Roche, SP, Brazil). Blood

samples were obtained from a tail tip cut before (0 min) and at the following time points after

Table 1. Composition of rodent diets.

Ingredients Control Diet (10% Kcal of fat) Hyperlipidic Diet (60% Kcal of fat)

Casein (80 mesh) 200 g (800 Kcal) 200 g (800 Kcal)

L-Cystein 3 g (12 Kcal) 3 g (12 Kcal)

Corn starch 315 g (1260 Kcal) 0 g (0 Kcal)

Maltodextrin 10 35 g (140 Kcal) 125 g (500 Kcal)

Sucrose 350 g (1400 Kcal) 68.8 g (275,2 Kcal)

Cellulose (BW200) 50 g (0 kcal) 50 g (0 kcal)

Soybean oil 25 g (225 Kcal) 25 g (225 Kcal)

Lard 20 g (180 Kcal) 245 g (2205 Kcal)

Mineral mix S10026 10 g (0 Kcal) 10 g (0 Kcal)

DiCalcium Phosphate 13 g (0 Kcal) 13 g (0 Kcal)

Calcium Carbonate 5.5 g (0 Kcal) 5.5 g (0 Kcal)

Potassium Citrate 16.5 g (0 Kcal) 16.5 g (0 Kcal)

Vitamin Mix V10001 10 g (40 Kcal) 10 g (40 Kcal)

Choline Bitartrate 2 g (0 Kcal) 2 g (0 Kcal)

Total 1055 g (4057 Kcal) 773.8 g (4057 Kcal)

https://doi.org/10.1371/journal.pone.0189622.t001
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glucose injection: 15, 30, 60, 90, and 120 min. Insulin level was measured by ELISA, according

to the manufacture’s instructions (Merck Millipore, Darmstadt, Germany).

2.2. Insulin tolerance test (ITT). After 12 h fasting, animals were injected (i.p.) with insu-

lin (Humulin R; Eli Lilly, Indianapolis, USA), using a dose of 0.5 IU/Kg (b.w.). Blood samples

were obtained from a tail tip cut before (0 min) and at the following time points after insulin

injection: 4, 8, 12, 15, 20 and 30 min. The constant rate for the insulin tolerance test (kITT)

was calculated based on the linear regression of blood glucose concentrations obtained from 0

to 30 min of the ITT curve [34, 35].

2.3. Measurement of plasma metabolites. Plasma FFA levels were determined using the

enzymatic colorimetric assay (NEFA C) from Wako Chemicals GmbH, according to the man-

ufacturer’s instruction. Plasma levels of triglycerides, total cholesterol, and HDL were deter-

mined using enzymatic colorimetric assays from BioClin (Minas Gerais, Brazil), according

to the manufacturer’s instructions. LDL values were obtained by Friedewald equation [36].

HOMA-IR and HOMAb were calculated as described by Matthews et al. [37].

3. Lipid extraction and determination of plasma fatty acids composition

by gas chromatography

Derivatization of plasma lipids was performed according to AOAC Official Methods 996.06

[38], with some modifications. Aliquots of plasma (150 μL) were added to a screw-cap test

tube with 0.1 mL standard (5 mg/mL tritridecanoin C13:0 in chloroform) and 0.5 M NaOH

in methanol. The tubes were placed in a water bath at 100˚C, for 5 min. Methylation was per-

formed by addition of 2 mL BF3-methanol (14%) and subsequent boiling at 100˚C for 30 min.

After cooling at room temperature, 1.5 mL isooctane and saturated NaCl were added to allow

organic and watery phase separation. The organic phase with fatty acids was evaporated under

N2 and 0.2 mL hexane was added to each sample. Samples were analyzed using gas chromatog-

raphy on a GC 2012 plus (Shimadzu) equipped with a flame-ionization detector (FID), auto-

matic injector AOC-20 and a Workstation Class GC10. Fatty acid separation was achieved

using a fused-silica column SP-2560 (bis-cyano-propyl polysiloxane) [100 m (length) and 0.25

mm (diameter)]; Supelco, Bellefonte, USA). The column temperature was programed as fol-

lows: 140˚C for 5 min; heating at 4˚C/ min until 240˚C; and 240˚C for 30 min. The injector

and detector were at 250˚C, and helium was used as the carrier gas at a 1 mL/min flow rate.

The split ratio was 1/50. Two microliters of derivatized lipid extract were injected and the fatty

acid methyl ester peaks identified by comparison of retention times of fatty acid methyl ester

standards and the chromatograms viewed in the Ce 1 h-05 methods [39].

4. Glutamyl oxaloacetic transaminase (GOT) and Glutamyl pyruvic

transaminase (GPT) determination

GOT and GPT were measured in the plasma of 12 h fasted animals, using the colorimetric

assay from LabTest (Minas Gerais, Brazil), according to the manufacturer’s instructions.

5. Insulin signaling in soleus skeletal muscle

After 4 h fasting, rats were anaesthetized with xilasine hydrochloride and ketamine solution by

i.p. injection at 8 and 80 mg/kg b.w, respectively (Virbac do Brasil, São Paulo, Brazil). Soleus

muscle was removed, carefully and rapidly isolated, and incubated as described previously

by Crettaz et al. [40] and Challiss et al. [41] and routinely performed by our group [42, 43]

Briefly, soleus muscles were preincubated at 35˚C in Krebs-Ringer bicarbonate buffer, pH 7.4,

and maintained for 30 min with 95% O2 and 5% CO2 containing 5.5 mM glucose, at 90
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oscillations/min. After 30 min, muscles were transferred to vials containing Krebs buffer in the

presence or absence of insulin (7 nM) and incubated for 20 min. After incubation, muscles

were immediately homogenized in RIPA buffer (Thermo Scientific, Rockford, IL, USA)

containing protease inhibitor cocktail (Roche, Basel, Switzerland), at 4˚C, using a Polytron

PT-MR 3100 (Kinematica AG, Luzern, Switzerland), operated at maximum speed, for 30 s.

Tissue extracts were centrifuged at 10,000 x g at 4˚C for 10 min, and the supernatants collected

for western blotting analysis.

6. Insulin signaling in liver and adipose tissue

After 4 h fasting, rats were anaesthetized as described above. The abdominal cavity was

accessed and a slice of the liver and portion of the retroperitoneal adipose tissue were removed

and immediately homogenized in RIPA buffer (Thermo Scientific, Rockford, IL, USA), con-

taining protease inhibitor cocktail (Roche, Basel, Switzerland) at 4˚C, using a Polytron, as

described above. After initial tissue removal (basal condition), the portal vein was accessed

and 0.5 mL of insulin solution (prepared in 0.9% NaCl), containing a dose of 2 IU/Kg (b.w)

was injected. After 60 s and 120 s, another slice of the liver and another portion of the retroper-

itoneal adipose tissue were removed (insulin-stimulated condition), respectively, and homoge-

nized as described above. All tissue extracts were centrifuged at 10,000 x g, at 4˚C, for 10 min,

and the supernatants collected for western blotting analysis.

7. Western blot analysis

Protein content was determined in the supernatant of tissue extracts using BCA kit (Thermo

Scientific, Rockford, IL, USA) and 4x Laemmli Sample Buffer [44] was added to the samples.

Equal amounts of proteins (20 μg) were resolved in SDS-PAGE and transferred to nitrocellu-

lose membranes. Membranes were blocked for 1h at room temperature with 5% skim milk

and incubated with the specific primary antibodies overnight. Following incubation with

secondary antibody conjugated to horseradish peroxidase. Bands were detected with the

enhanced chemiluminescence system (Amersham Biosciences). Immunoblots were quantified

using ImageJ1 software and Ponceau staining was used as an inner control [45, 46]. Phospho-

AKT, phospho-GSK-3β, GSK-3β polyclonal antibodies were purchased from Cell Signaling

(Danvers, MA, USA); AKT polyclonal antibody was purchased from Santa Cruz Biotechnol-

ogy (Dallas, TX, USA); IL-1 β, TNF-α, IL-6 and IL-10 polyclonal antibodies were purchased

from Abcam (Cambridge, MA, USA).

8. Histological analyzes of liver slices

8.1. Morpho-quantitative evaluation. After collection and pre-fixation in 4% buffered

paraformaldehyde, liver from the three experimental groups were dehydrated by a growing

series of alcohols, diaphanized in xylol, embedded in paraffin and 4 μm liver sections were

obtained and mounted onto silanized slides. Sections were stained by Hematoxylin & Eosin

(HE) technique and used in the morphometric and quantitative evaluation of liver cells. The

area (μm2) of the hepatocytes’ cellular and nuclear profiles were determined by measuring 50

cells and nuclei/animal, randomly selected, summing 250 cells/group. Cell density (cells/mm2)

was determined as described by Mandarin-de-Lacerda [47], using 5 semi-serial sections/ani-

mal and 2 fields/section were analyzed, totalizing 10 photomicrographs/animal. Morpho-

quantitative analyzes were performed using a computerized imaging device (Axio Vision 4.5

Zeiss 1) coupled to a 40x objective trinocular microscope (Zeiss Axiovert 40; Camera: Zeiss

AxioCam ERc 5s).
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8.2. Hepatic fat accumulation. Liver was included in Tissue-Tek1 medium, frozen in liq-

uid nitrogen and 10 μm sections were obtained and adhered onto silanized slides. Slides were

fixed in 4% buffered paraformaldehyde, washed in distilled water and stained with Oil Red O

and hematoxylin for lipid analysis. The qualitative evaluation of the slides was performed

using photomicrographs captured by Zeiss Axiovert 40 microscope, with a 40x objective

(Camera: Zeiss AxioCam ERc 5s).

8.3. Hepatic glycogen content. Liver slides from frozen sectioning (10 μm) were stained

with Periodic Acid-Schiff (PAS) and hematoxylin for the detection of hepatic glycogen. The

qualitative evaluation of the slides was performed using photomicrographs captured by Zeiss

Axiovert 40 microscope, with a 40x objective (Camera: Zeiss AxioCam ERc 5s).

9. Histological analyzes of inflammatory infiltrate in the retroperitoneal

adipose tissue

Retroperitoneal adipose tissue was included in Tissue-Tek1 medium, frozen in liquid nitrogen

and 5 μm sections were obtained and adhered onto silanized slides. Slides were stained with

HE. Evaluation of leukocyte infiltrate was also performed by immunohistochemistry. Slides

were blocked with 3% BSA and incubated overnight with mouse anti-rat CD11b/c mouse anti-

body (BD Pharmingen ™, 1:1000). Subsequently, the tissue was incubated with biotinylated

anti-mouse IgG (Jackson ImmunoResearch, 1:200) secondary antibody for 2 hours, washed

with 0.1M phosphate buffer and incubated with VectaStain ABC kit (Vector Laboratories,

1:100) for 2 hours. Detection of the antigen-antibody complex was performed through the

chromogen 3,3’-diaminobenzidine (DAB) for 5 minutes at room temperature. Sections with-

out the primary antibody (Cd11b/c) were used as negative control of the immunolabeling pro-

cess. The qualitative evaluation of the slides was performed using photomicrographs captured

by Zeiss Axiovert 40 microscope, with a 40x objective (Camera: Zeiss AxioCam ERc 5s).

10. Data analysis

Results are presented as mean ± S.E.M. Statistical significance was assessed by one-way or

two-way ANOVA followed by the Bonferroni post-test. p� 0.05 was considered statistically

significant.

Results

HFD induced obesity in Wistar rats. GK rats were resistant to weight gain, showing, after 8

week treatment, 28% and 42% less gain when compared to the control group and HFD fed ani-

mals, respectively (Fig 1A and 1B). However, when energy consumption was measured, GK

rats consumed more energy per day per Kg than the control and HFD groups, when food and

energy intake were normalized by the body weight (Fig 1F). Even though HFD fed animals

presented higher weight gain, HFD and control groups had equal amounts of energy con-

sumption per day (Fig 1C–1F).

GK rats had decreased nose-to-tail length (Fig 2A), less adipose tissue and lower muscle

humid weight when compared to control and HFD fed rats (Fig 2D–2K). Interestingly, brown

adipose tissue was hypertrophied in GK rats (Fig 2G). Weight gain in the HFD group was

mainly by the accumulation of fat in the retroperitoneal and epididymal adipose tissue (Fig 2D

and 2E). No differences in liver weight were observed in the studied groups (Fig 2C).

When animals were glucose challenged (2 g/kg b.w), GK rats reached a glycemic peak after

60 min and maintained high plasma glucose concentration until the end of the experiment

(120 min) (Fig 3A and 3B). Control and HFD fed rats reached a glycemic peak at 15 min and

glucose plasma concentration decreased gradually until 120 min (Fig 3A and 3B). Before the
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glucose challenge, GK rats presented fasting hyperglycemia and hyperinsulinemia when com-

pared to the other groups (Fig 3A and 3C). Also, these animals failed to secrete/produce insu-

lin after glucose stimulus (Fig 3B). On the other hand, HFD fed rats secreted a great amount

of insulin after glucose challenge (Fig 3C and 3D). In the insulin tolerance test (ITT), GK rats

didn’t respond to insulin, maintaining high glucose plasma concentration after insulin stimu-

lus (Fig 3E). HFD fed animals presented decreased insulin sensitivity (kITT) when compared

to the control group and GK rats showed insulin resistance of greater magnitude (Fig 3F).

HOMA-IR and HOMA-B is clearly altered in the GK group (Fig 3G and 3H).

Fasting cholesterol, LDL and triglycerides were increased in GK plasma and HFD didn’t

alter these parameters (Fig 4). Gas chromatography (GC) showed higher contents of fat in

plasma from GK rats (S1 Fig) and different fat profiles between the groups: HFD fed rats pre-

sented more saturated and less monounsaturated fats when compared to the control group (S1

Fig) and GK animals had higher contents of monounsaturated and lower contents of polyun-

saturated fats when compared to the control group (S1 Fig). No difference was observed in

plasma leptin and adiponectin among the studied groups (S2 Fig). GOT and GPT levels were

higher in the plasma of GK rats (S3 Fig).

Soleus muscle, retroperitoneal adipose tissue and liver were analyzed before and after insu-

lin stimulus in order to verify the integrity of insulin response. In soleus muscle, after in vitro
insulin stimulus, the content of pAKT augmented in all groups (Fig 5A). Total AKT content

was similar in all studied groups and pAKT/AKT ratio was lower in the HFD group (Fig 5B

and 5D). The pGSK-3β content didn’t increase after insulin stimulus in GK rats. pGSK-3β

Fig 1. Body weight evaluation (A) and body weight gain (B) after 8 weeks of diet. Daily food intake (grams) (C); Daily energy

intake (Kcal) (D); Food and energy consumption normalized by the animal’s body weight (E; F). Results are presented as

mean ± S.E.M and n represents the number of animals used in each group. Studied groups: Control (n = 28), HFD (n = 22) and GK

(n = 34). (*) p <0.05 vs control; (**) p <0.01 vs control; (***) p <0.001 vs control; (###) p <0.001 vs HFD.

https://doi.org/10.1371/journal.pone.0189622.g001
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Fig 2. Nose-to-tail length (A); Tibia length (B); weight of Liver (C); Adipose tissues (D-G) and skeletal

muscles (H-K). Adipose tissues and liver were normalized by the animal’s nose-to-tail length. Muscles were

normalized by the animal’s tibia length. Results are presented as mean ± S.E.M and n represents the number of

animals used in each group. Studied groups: Control (n = 9), HFD (n = 12) and GK (n = 21). (**) p <0.01 vs control;

(***) p <0.001 vs control; (#) p <0.05 vs HFD; (###) p <0.001 vs HFD.

https://doi.org/10.1371/journal.pone.0189622.g002
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Fig 3. Glycemia measured during GTT (glucose 2 g/Kg (b.w) (i.p) after time 0 collected) (A); area under curve of

glycemia measured during GTT (B); plasma insulin levels measured during GTT (C), area under curve of

plasma insulin levels measured during GTT (D); glycemia measured during ITT (insulin 0.5 IU/Kg (b.w) (i.p)

after time 0 collected) (E); rate constant for ITT—kITT (F); HOMA IR (G) and HOMA B (H) indexes. Results are

presented as mean ± S.E.M and n represents the number of animals used in each group. Studied groups: Control
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content, before insulin stimulus, in this group was already higher when compared to the other

groups (Fig 6A). pGSK-3β/GSK-3β ratio was altered in the HFD and GK groups, not showing

an increase after insulin stimulus as observed in the control group (Fig 6D).

In the liver, HFD group didn’t show difference in pAKT content after in vivo insulin chal-

lenge (Fig 7A and 7C). Liver of the GK group responded equally to the control group (Fig 7A

and 7C). pGSK-3β content and pGSK-3β/ GSK-3β ratio was statistically similar among all

groups (Fig 8A–8D).

Retroperitoneal adipose tissue from GK and HFD fed rats presented lower pAKT content

and lower pAKT/AKT ratio, after in vivo insulin challenge, when compared to the control

group (Fig 9A and 9D). Accordingly to this result, pGSK-3β content did not increase after

(n = 24), HFD (n = 17) and GK (n = 31). (*) p <0.05 vs control; (**) p <0.01 vs control; (***) p <0.001 vs control; (#) p

<0.05 vs HFD; (###) p <0.001 vs HFD; (ϕ) p<0.05 vs GK; (ϕϕϕ) p<0.001 vs GK.

https://doi.org/10.1371/journal.pone.0189622.g003

Fig 4. Total cholesterol (A); HDL (B); LDL (C); triglycerides (D); NEFA (E). Six hours after instillation of saline or LPS, animals were

anesthetized and the blood was collected through the abdominal aorta. The dosages were carried out in the plasma by enzymatic-

colorimetric method. Results are presented as mean ± S.E.M and n represents the number of animals used in each group. Studied groups:

Control (n = 24); HFD (n = 20) and GK (n = 27). (*) p <0.05 vs control; (**) p <0.01 vs control; (###) p <0.001 vs HFD.

https://doi.org/10.1371/journal.pone.0189622.g004
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insulin stimulus in WAT of GK and HFD groups. pGSK-3β/ GSK-3β ratio were similar among

all groups (Fig 10A–10D).

In order to verify if these alterations in insulin response was due to an inflammatory pro-

cess, cytokines were measured in the same tissues. No differences in TNF-α, IL1-β, IL-6 and

IL-10 content were observed in soleus muscle among the studied groups (S4 Fig). In the liver,

no difference in cytokines content was observed in the HFD group when compared to the con-

trol group (Fig 11A–11E) and, in the GK group, IL-6 and IL-10 content were increased when

compared to the other groups (Fig 11D and 11E). Morphologically, liver from HFD fed rats

had lower density of cells and higher hepatocytes area while liver from GK rats presented

lower nuclear area (Fig 12A and 12B). When stained with oil red, hepatocytes from HFD

group showed great accumulation of fat and hepatocytes from GK rats didn’t show any differ-

ence from the control group (Fig 12A).

HFD fed animals presented inflamed retroperitoneal adipose tissue, showing increase in

TNF-α, IL-1β, IL-6 and IL-10 content when compared to the other groups (Fig 13A–13E).

Fig 5. pAKT and AKT quantification in soleus muscle by WB (A-D). Positive stimulus: insulin (7 nM). Graphs present

mean O.D. ± S.E.M of the bands and n represents the number of animals used in each group. Studied groups: Control

(n = 5); HFD (n = 3) and GK (n = 5). ($) p <0.05; ($ $) p <0.01 as indicated in the graphs.

https://doi.org/10.1371/journal.pone.0189622.g005
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IL-10 was increased in retroperitoneal adipose tissue from GK rats (Fig 13E). Greater inflam-

matory infiltrate was observed in the adipose tissue from HFD fed animals and no differences

in the amount of immune infiltrate was observed in GK rats (Fig 14).

Discussion

As obesity grows throughout the world, T2DM becomes one of the leading causes of death,

reaching different societies and cultures [1]. As well described by the scientific literature, obe-

sity is strongly associated to the development of metabolic complications leading to T2DM in

Fig 6. pGSK-3β and GSK-3β quantification in soleus muscle by WB (A-D). Positive stimulus: insulin (7 nM). Graphs present mean O.D.

± S.E.M of the bands and n represents the number of animals used in each group. Studied groups: Control (n = 5); HFD (n = 3) and GK

(n = 5). (***) p <0.001 vs control; (###) p <0.001 vs HFD; ($) p <0.05; ($ $ $) p <0.001 as indicated in the graphs.

https://doi.org/10.1371/journal.pone.0189622.g006
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the occident [48]. However, not all type 2 diabetics individuals are obese. In the orient, espe-

cially Japan, India and China, half of the population that develops T2DM is considered lean

(BMI< 25) [49, 50]. Even though obesity is a major cause of chronic inflammation associated

to T2DM, patients that present a chronic inflammatory condition, such as periodontal disease,

obstructive pulmonary disease, arthritis, myotonic dystrophy or chronic hepatitis C infection

may also develop T2DM [51]. The difference in the genesis of this syndrome occurs because

it depends not only on genetic background, but also on behavioral and environmental influ-

ence on the life of a certain population. The increase of T2DM prevalence is attributed to a

sedentary lifestyle and unhealthy diet consumption, associated to genetic predisposition [52].

Both behavioral and environmental factors may be controlled to promote the reduction of

obesity and associated comorbidities. Genetics is the only cause that still cannot be perma-

nently changed.

Fig 7. pAKT and AKT quantification in liver by WB (A-D). In vivo stimulus: insulin 2IU/Kg (b.w) (i.v.). Graphs present mean O.D. ±
S.E.M of the bands and n represents the number of animals used in each group. Studied groups: Control (n = 3); HFD (n = 3) and GK

(n = 3). ($) p <0.05 as indicated in the graphs.

https://doi.org/10.1371/journal.pone.0189622.g007
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Two models of rats, aiming two different approaches, were used to investigate their reliabil-

ity as T2DM experimental models: the genetic (GK rats) and the environmental (obese HFD-

induced wistar rats) influences in the development of TD2M. As a T2DM genetic susceptible

model, GK rats were used. Various works have described the genetic differences of this strain

that lead them to the diabetic phenotype [20–22]. These animals develop T2DM spontaneously

without the interference of obesity and have been widely used to understand the mechanisms

of pancreatic beta cell failure in producing insulin and its short/long term complications [9–

14]. GK rats are also insulin resistant, but the pathways responsible for this resistance are not

Fig 8. pGSK-3β and GSK-3β quantification in liver by WB (A-D). In vivo stimulus: insulin 2IU/Kg (b.w) (i.v.). Graphs present mean O.D. ±
S.E.M of the bands and n represents the number of animals used in each group. Studied groups: Control (n = 3); HFD (n = 3) and GK (n = 3).

https://doi.org/10.1371/journal.pone.0189622.g008
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completely elucidated yet. On the other hand, in order to investigate the influence of external

factors without the internal imprint in the possible development of T2DM, we used an obesity

model induced by HFD. Diet composition, such as increase in fat or/and sugar, is strongly

associated to the loss of insulin sensitivity in animal models, including Wistar rats [53]. There-

fore, herein, we evaluated the glucose homeostasis, the liver and also two peripheral tissues,

soleus muscle and retroperitoneal white adipose tissue, in response to the intrinsic (genetic)

and extrinsic (HFD) influences.

Soleus muscles of GK responded equally to insulin stimulus to phosphorylate AKT in the

serine site. Skeletal muscle is the most important peripheral tissue that controls glycaemia in

Fig 9. pAKT and AKT quantification in retroperitoneal adipose tissue by WB (A-D). In vivo stimulus: insulin 2IU/Kg (b.w) (i.v.).

Graphs present mean O.D. ± S.E.M of the bands and n represents the number of animals used in each group. Studied groups: Control

(n = 3); HFD (n = 3) and GK (n = 3). (*) p<0.05 vs control (+); (**) p<0.01 vs control (+); ($ $ $) p<0.001 as indicated in the graphs.

https://doi.org/10.1371/journal.pone.0189622.g009
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mammal’s organism. Even though our results did not indicate any failure in AKT serine site

phosphorylation in soleus of GK rats after insulin stimulus, we observed higher content of

pGSK-3β before insulin stimulus. The hormone did not increase GSK-3β phosphorylation in

soleus of GK rats as observed in the other groups. In normal insulin signaling, pAKT phos-

phorylates GSK-3β to transmit insulin signal through the cell. In soleus from GK rats, this sig-

nal seems to be deregulated, since pAKT is not able to phosphorylate GSK-3β because this

protein is already phosphorylated at a high level. GSK-3β may be phosphorylated by different

proteins besides pAKT, such as AMPK, PKA, PKC, p70 S6 kinase, and other kinases [54]. Fur-

ther studies are necessary to address this point and to determine the involvement of GSK-3β

Fig 10. pGSK-3β and GSK-3β quantification in retroperitoneal adipose tissue by WB (A-D). In vivo stimulus: insulin 2IU/Kg (b.w) (i.v.).

Graphs present mean O.D. ± S.E.M of the bands and n represents the number of animals used in each group. Studied groups: Control

(n = 4); HFD (n = 4) and GK (n = 4). ($) p <0.05 as indicated in the graphs.

https://doi.org/10.1371/journal.pone.0189622.g010

Comparison of GK rats and HFD obese rats: Are they reliable models to study Type 2 Diabetes mellitus?

PLOS ONE | https://doi.org/10.1371/journal.pone.0189622 December 8, 2017 16 / 27

https://doi.org/10.1371/journal.pone.0189622.g010
https://doi.org/10.1371/journal.pone.0189622


signaling deregulation in the insulin resistance development in GK rats. Other mechanisms

may be involved in the insulin resistance in skeletal muscle of these animals. For example,

defects in muscle microvasculature in GK rats can contribute to an impairment of muscle

cells metabolism and function [55]. Moreover, previous study by Dadke et al. reported that

skeletal muscle of GK rats has augmented activity of tyrosine phosphatase 1B (PTP1B) before

and after insulin stimulus. PTP1B is known to cause dephosphorylation of tyrosine sites and

consequently acts as negative regulator of insulin signaling by inactivating insulin-signaling

receptors [56]. HFD did not induce any alteration in soleus muscle insulin signaling, showing

that 8 weeks of the diet administration was insufficient to cause impairment in glucose homeo-

stasis in this tissue.

Adipose tissue is also an important site that controls glucose homeostasis in mammals.

Although HFD did not induce hyperglycemia, as also observed by others [57, 58], it triggered

insulin resistance in Wistar rats. HFD induced obesity with expansion of WAT depots. This

WAT expansion was accompanied by an increase in leukocytes infiltration and inflammation

in this tissue. Accordingly to our results, other groups also reported increase in the expression

of inflammatory genes in WAT after HFD feeding [25, 26]. During obesity, leukocyte infiltra-

tion in WAT, composed mainly by macrophages, enhances TNF-α and IL-6 production, to

initiate and maintain the inflammatory process [59, 60]. Although Wernstedt Asterholm et al.

[61] show that adipose tissue inflammation is an adaptive response that is essential for storage

of excess nutrients and that it contributes to WAT expansion and remodeling during HFD

Fig 11. Content of IL-10, IL-6, TNF-α and IL-1β in liver. Graphs present mean O.D. ± S.E.M of the bands and n represents the number of

animals used in each group. Studied groups: Control (n = 4); HFD (n = 4) and GK (n = 4). (**) p <0.01 vs control; (***) p <0.001 vs control;

(##) p <0.01 vs HFD; (###) p <0.001 vs HFD. Ponceau staining used in the normalization of the blots are in S11 Fig.

https://doi.org/10.1371/journal.pone.0189622.g011
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Fig 12. Histological analysis of the liver (A). HE and Oil Red staining revealed micro and macro steatosis (arrows) in HFD fed rats. PAS

revealed high concentration of glycogen in liver from GK rats. Morpho-quantitative evaluations (B) considered cell density, hepatocyte and

nuclear areas. Results are presented as mean ± S.E.M and n represents the number of animals used in each group. Studied groups: Control

(n = 6); HFD (n = 6) and GK (n = 6). (***) p <0.001 vs control; (#) p <0.05 vs HFD; (ϕϕϕ) indicates p <0.001 vs GK. Calibration bar: 50μm.

https://doi.org/10.1371/journal.pone.0189622.g012
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Fig 13. Contents of IL-10, IL-6, TNF-α and IL-1β in the retroperitoneal adipose tissue. Graphs present mean O.D. ± S.E.M of the

bands and n represents the number of animals used in each group. Studied groups: Control (n = 4); HFD (n = 4) and GK (n = 4). (*) p

<0.05 vs control; (**) p <0.01 vs control; (***) p <0.001 vs control; (ϕϕ) indicates p <0.01 vs GK; (ϕϕϕ) indicates p <0.001 vs GK.

Ponceau staining used in the normalization of the blots are in S12 Fig.

https://doi.org/10.1371/journal.pone.0189622.g013

Fig 14. Histological analysis of retroperitoneal adipose tissue. Both HE staining (A) and the immunohistochemistry to CD11b/c

revealed mononuclear cell infiltrate (arrows) around the adipocytes in the HFD group. Results are presented as representative images and

n represents the number of animals used in each group. Studied groups: Control (n = 6); HFD (n = 6) and GK (n = 6). Calibration bar:

50μm.

https://doi.org/10.1371/journal.pone.0189622.g014
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feeding, constant inflammatory stimulus may lead to insulin signaling impairment and conse-

quently insulin resistance [59, 62].

Cytokines promote serine phosphorylation of insulin receptor substrate-1 (IRS-1) and

impair insulin signaling by impeding the PI3K pathway [63, 64]. Inflammation was probably

the main cause of insulin resistance in WAT in obesity model induced by HFD, since a con-

comitant increase in cytokines content and decrease in AKT phosphorylation in WAT was

also observed in the present study. Even though HFD fed animals did not present an estab-

lished insulin resistance in soleus skeletal muscle, WAT insulin resistance was punctually iden-

tified. HFD fed rats did not present glucose intolerance, however, these animals showed a

great increase in insulin secretion after glucose stimulus, indicating that these animals present

lower insulin sensitivity. This data was confirmed when kITT was calculated and corroborates

with the WAT alterations.

Retroperitoneal white adipose tissue (rWAT) of GK rats had lower phosphorylation of

AKT after insulin stimulus, indicating, again, the peripheral resistance to insulin in this animal

model. Contrary to the HFD fed rats, GK rats have lower fat accumulation in the white adipose

tissue depots. This result may be explained due to impairment in differentiation of pre-adipo-

cyte into mature adipocyte, leading to a defect in triglycerides storage and increase in free fatty

acids release to the plasma [65–67]. The impaired adipocyte differentiation observed in GK

rats may be a consequence of chronic inflammation observed in the WAT of these animals

[68]. Our results confirmed an increase in IL-10 content in the rWAT of GK rats, showing the

establishment of a long-term inflammatory process at this site. Other mechanisms can contrib-

ute to insulin resistance in rWAT and are being better investigated by other researchers in our

group. Furthermore, our results evidenced the impediment that GK rats present to decrease

plasma glucose concentration and augment plasma insulin levels after a glucose stimulus, indi-

cating deficiencies in the production and secretion of insulin by pancreatic β cells. Impairment

in insulin production and secretion by pancreatic β cells from GK rats are also observed and

well established by other groups in the literature [9–14]. Nevertheless, it is important to con-

sider that elevated basal hepatic glucose production as a consequence of decreased insulin sup-

pressive effect on hepatocytes, contribute to high glucose levels in plasma from GK rats [16,

69, 70].

Hyperglycemia per se is capable to promote inflammation in GK liver by altering the

expression of genes that control pro and anti-inflammatory cytokines [70]. Our results con-

firmed an inflammatory state in the liver of GK rats by showing augmented IL-6 and IL-10

content at this site. Also, higher content of glycogen and no fat accumulation in liver from GK

rats was observed in our histological analysis. Accordingly to our findings, Almon et al demon-

strated that chronic hyperglycemia promotes deposition of glycogen and impedes excessive fat

accumulation in the liver of GK animals [71]. Although Karpe et al [72] and our present work

described that under fasted condition, plasma FFA levels were not different between the con-

trol and the HFD groups, Liu et al. reported that in the fed state, HFD promotes elevated

circulating FFA levels as a result of increased dietary intake of lipids and impaired ability of

postprandial insulin to effectively inhibit lipolysis [73]. Furthermore, it is also important to

consider plasma FFA composition. Our results demonstrated that HFD animals present high

percentage of saturated fatty acids (SFA) and low of monounsaturated fatty acids (MUFA) in

plasma. This difference may be a consequence of a decrease in enzyme SCD1 activity, predom-

inantly expressed in the liver, which converts SFA derived from dietary FA or from de novo
lipogenesis into MUFA, as described by Paton & Ntambi [74]. Elevated SFA and decreased

SCD1 activity in liver results in hepatocellular apoptosis, steatohepatitis and fibrosis [75]. Low

TG levels observed in HFD fed animals may be explained by the higher accumulation of fat in

liver, as previously demonstrated by Pan et al. [76] and Liu et al. [72].
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Intrinsic versus extrinsic stimulus to the development T2DM was the main subject in this

work. The choice of an experimental model is crucial to draw reliable conclusions and under-

stand the correct pathophysiology of the disease, given the correct scenario. Herein, we showed

two completely different approaches and tested their reliability as experimental models to

study the development of T2DM. The genetic model, GK rats, presented all the typical hall-

marks of this syndrome, which could be clearly observed after 2 months after birth. However,

Fig 15. GK rats versus obese HFD induced rats. Two experimental models to study the development of T2DM.

https://doi.org/10.1371/journal.pone.0189622.g015
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even before birth these animals already demonstrate loss of β cell mass and islet microangiopa-

thy [12, 77–79], indicating that the main defect of this model is encountered in the insulin pro-

duction. Consequently to the impairment in the capacity to secrete and produce insulin, the

other characteristics follow up, such as hyperglycemia, increase in plasma fat and TG, liver

inflammation, glucotoxicity and so on. Contrary to that, HFD induced a completely different

scenario. In these animals, liver and muscle responded well to insulin stimulus, even though

liver was found to have a great fat accumulation. However, we observed that HFD fed rats had

lower insulin sensitivity and had to produce a greater amount of insulin to maintain normal

glucose levels. This was mainly because the excessive fat accumulation in the WAT, which

caused leukocyte infiltration and inflammation at this site. This inflammatory process was

responsible to the impairment of insulin response in this tissue, as observed by decreased AKT

phosphorylation. Our results showed that 8 weeks of HFD (60%) feeding caused insulin sensi-

tivity impairment, but was not sufficient to induce T2DM in Wistar rats. We claim that longer

period of HFD feeding would lead to pancreatic beta cell failure, decrease in insulin levels

towards a glucose stimulus, hyperglycemia and finally the establishment of T2DM (Fig 15).

In sum, we can conclude that both experimental models are important tools to understand

the different changes that intrinsic (genetics) and extrinsic factors (diet) might cause on the

metabolism and physiology of the individuals. However, when GK rats and HFD fed rats (8

weeks) were compared, only GK rats were shown to be a reliable model to study the conse-

quences of T2DM on the physiological systems, since HFD was unable to induce diabetes.

Extrinsic factors can be regulated in order to avoid the progression of the disease and the

genetic background is determinant in the development of T2DM, even in the absence of

extrinsic factors influence. In order to draw the correct conclusion, studies have to consistently

consider the differences in the development of T2DM and the factors that influence the pro-

gression of this disease.
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16. Picarel-Blanchot F, Berthelier C, Bailbé D, Portha B. Impaired insulin secretion and excessive hepatic

glucose production are both early events in the diabetic GK rat. Am J Physiol. 1996; 271(4 Pt 1): E755–

E762. PMID: 8897865

17. Movassat J, Saulnier C, Serradas P, Portha B. Impaired development of pancreatic beta-cell mass is a

primary event during the progression to diabetes in the GK rat. Diabetologia. 1997; 40(8): 916–925.

https://doi.org/10.1007/s001250050768 PMID: 9267986

18. Portha B, Giroix MH, Serradas P, Gangnerau MN, Movassat J, Rajas F, Bailbé D, Plachot C, Mithieux
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fat-to-carbohydrate ratio in a high-fat diet prevents the development of obesity but not a prediabetic

state in rats. Clin Sci (Lond). 2007; 113(10): 417–425.

58. Wongchitrat P, Klosen P, Pannengpetch S, Kitidee K, Govitrapong P, Isarankura-Na-Ayudhya C. High-

fat diet-induced plasma protein and liver changes in obese rats can be attenuated by melatonin supple-

mentation. Nutr Res. 2017, 42: 51–63. https://doi.org/10.1016/j.nutres.2017.04.011 PMID: 28633871

59. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006; 116(7):

1793–1801. https://doi.org/10.1172/JCI29069 PMID: 16823477

60. Cawthorn WP, Sethi JK. TNF-alpha and adipocyte biology. FEBS Lett. 2008; 582(1): 117–131. PMID:

18037376

61. Wernstedt Asterholm I, Tao C, Morley TS, Wang QA, Delgado-Lopez F, Wang ZV, Scherer PE. Adipo-

cyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 2014;

20(1): 103–118. https://doi.org/10.1016/j.cmet.2014.05.005 PMID: 24930973

62. Asghar A, Sheikh N. Role of immune cells in obesity induced low grade inflammation and insulin

resistance. 2017; Cell Immunol. 315: 18–26. https://doi.org/10.1016/j.cellimm.2017.03.001 PMID:

28285710

Comparison of GK rats and HFD obese rats: Are they reliable models to study Type 2 Diabetes mellitus?

PLOS ONE | https://doi.org/10.1371/journal.pone.0189622 December 8, 2017 26 / 27

https://doi.org/10.1016/j.bbabio.2005.11.007
https://doi.org/10.1016/j.bbabio.2005.11.007
http://www.ncbi.nlm.nih.gov/pubmed/16375848
https://doi.org/10.1016/j.jnutbio.2012.08.014
http://www.ncbi.nlm.nih.gov/pubmed/23246156
http://www.ncbi.nlm.nih.gov/pubmed/5432063
https://doi.org/10.1016/j.jneumeth.2008.05.003
http://www.ncbi.nlm.nih.gov/pubmed/18571732
https://doi.org/10.1038/nature05482
http://www.ncbi.nlm.nih.gov/pubmed/17167471
http://www.ncbi.nlm.nih.gov/pubmed/21071881
https://doi.org/10.1111/j.1463-1326.2010.01336.x
http://www.ncbi.nlm.nih.gov/pubmed/21205111
https://doi.org/10.1210/jc.2011-0585
http://www.ncbi.nlm.nih.gov/pubmed/21602457
https://doi.org/10.1016/j.pharmthera.2014.11.016
http://www.ncbi.nlm.nih.gov/pubmed/25435019
https://doi.org/10.1016/j.resp.2006.08.008
http://www.ncbi.nlm.nih.gov/pubmed/17015044
https://doi.org/10.1006/bbrc.2000.3188
http://www.ncbi.nlm.nih.gov/pubmed/10924321
https://doi.org/10.1016/j.nutres.2017.04.011
http://www.ncbi.nlm.nih.gov/pubmed/28633871
https://doi.org/10.1172/JCI29069
http://www.ncbi.nlm.nih.gov/pubmed/16823477
http://www.ncbi.nlm.nih.gov/pubmed/18037376
https://doi.org/10.1016/j.cmet.2014.05.005
http://www.ncbi.nlm.nih.gov/pubmed/24930973
https://doi.org/10.1016/j.cellimm.2017.03.001
http://www.ncbi.nlm.nih.gov/pubmed/28285710
https://doi.org/10.1371/journal.pone.0189622


63. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-

induced insulin resistance. J Clin Invest. 2006; 116(11): 3015–3025. https://doi.org/10.1172/JCI28898

PMID: 17053832

64. Gallagher EJ, Leroith D, Karnieli E. Insulin resistance in obesity as the underlying cause for the meta-

bolic syndrome. Mt Sinai J Med. 2010; 77(5): 511–523. https://doi.org/10.1002/msj.20212 PMID:

20960553

65. Xue B, Sukumaran S, Nie J, Jusko WJ, Dubois DC, Almon RR. Adipose tissue deficiency and chronic

inflammation in diabetic Goto-Kakizaki rats. PLoS One. 2011; 6(2): e17386. https://doi.org/10.1371/

journal.pone.0017386 PMID: 21364767

66. Barbu A, Hedlund GP, Lind J, Carlsson C. Pref-1 and adipokine expression in adipose tissues of GK

and Zucker rats. Mol Cell Endocrinol. 2009; 299(2): 163–171. https://doi.org/10.1016/j.mce.2008.11.

019 PMID: 19084046

67. Xue B, Nie J, Wang X, DuBois DC, Jusko WJ, Almon RR. Effects of High Fat Feeding on Adipose Tis-

sue Gene Expression in Diabetic Goto-Kakizaki Rats. Gene Regul Syst Bio. 2015; 9: 15–26. https://doi.

org/10.4137/GRSB.S25172 PMID: 26309393

68. Lacasa D, Taleb S, Keophiphath M, Miranville A, Clement K. Macrophage-secreted factors impair

human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology. 2007;

148(2): 868–877. https://doi.org/10.1210/en.2006-0687 PMID: 17082259

69. Bisbis S, Bailbe D, Tormo MA, Picarel-Blanchot F, Derouet M, Simon J, Portha B. Insulin resistance in

the GK rat: decreased receptor number but normal kinase activity in liver. Am J Physiol. 1993; 265(5 Pt

1): E807–E813. PMID: 8238507

70. Berthelier C, Kergoat M, Portha B. Lack of deterioration of insulin action with aging in the GK rat: a con-

trasted adaptation as compared with nondiabetic rats. Metabolism. 1997, 46(8): 890–896. PMID:

9258270

71. Almon RR, DuBois DC, Lai W, Xue B, Nie J, Jusko WJ. Gene expression analysis of hepatic roles in

cause and development of diabetes in Goto-Kakizaki rats. J Endocrinol. 2009; 200(3): 331–46. https://

doi.org/10.1677/JOE-08-0404 PMID: 19074471

72. Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation.

Diabetes. 2011; 60(10): 2441–2449. https://doi.org/10.2337/db11-0425 PMID: 21948998

73. Liu TW, Heden TD, Matthew Morris E, Fritsche KL, Vieira-Potter VJ, Thyfault JP. High-Fat Diet Alters

Serum Fatty Acid Profiles in Obesity Prone Rats: Implications for In Vitro Studies. Lipids. 2015; 50(10):

997–1008. https://doi.org/10.1007/s11745-015-4061-5 PMID: 26318121

74. Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Phy-

siol Endocrinol Metab. 2009; 297(1): E28–37. https://doi.org/10.1152/ajpendo.90897.2008 PMID:

19066317

75. Li ZZ, Berk M, McIntyre TM, Feldstein AE. Hepatic lipid partitioning and liver damage in nonalcoholic

fatty liver disease role of stearoyl-CoA desaturase. J Biol Chem. 2009; 284(9): 5637–5644. https://doi.

org/10.1074/jbc.M807616200 PMID: 19119140

76. Pan M, Song YL, Xu JM, Gan HZ. Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet

in rats. J Pineal Res. 2006; 41(1): 79–84. https://doi.org/10.1111/j.1600-079X.2006.00346.x PMID:

16842545

77. Miralles F, Portha B. Early development of beta-cells is impaired in the GK rat model of type 2 diabetes.

Diabetes. 2001; 50(Suppl 1): S84–88.

78. Plachot C, Movassat J, Portha B. Impaired beta-cell regeneration after partial pancreatectomy in the

adult Goto-Kakizaki rat, a spontaneous model of type 2 diabetes. Histochem Cell Biol. 2001; 116(2):

131–139. PMID: 11685541

79. Calderari S, Gangnerau MN, Thibault M, Meile MJ, Kassis N, Alvarez C, Portha B, Serradas P. Defec-

tive IGF-2 and IGFR1 protein production in embryonic pancreas precedes beta cell mass anomaly in

Goto-Kakizaki rat model of type 2 diabetes. Diabetologia. 2007; 50(7): 1463–1471. https://doi.org/10.

1007/s00125-007-0676-2 PMID: 17476475

Comparison of GK rats and HFD obese rats: Are they reliable models to study Type 2 Diabetes mellitus?

PLOS ONE | https://doi.org/10.1371/journal.pone.0189622 December 8, 2017 27 / 27

https://doi.org/10.1172/JCI28898
http://www.ncbi.nlm.nih.gov/pubmed/17053832
https://doi.org/10.1002/msj.20212
http://www.ncbi.nlm.nih.gov/pubmed/20960553
https://doi.org/10.1371/journal.pone.0017386
https://doi.org/10.1371/journal.pone.0017386
http://www.ncbi.nlm.nih.gov/pubmed/21364767
https://doi.org/10.1016/j.mce.2008.11.019
https://doi.org/10.1016/j.mce.2008.11.019
http://www.ncbi.nlm.nih.gov/pubmed/19084046
https://doi.org/10.4137/GRSB.S25172
https://doi.org/10.4137/GRSB.S25172
http://www.ncbi.nlm.nih.gov/pubmed/26309393
https://doi.org/10.1210/en.2006-0687
http://www.ncbi.nlm.nih.gov/pubmed/17082259
http://www.ncbi.nlm.nih.gov/pubmed/8238507
http://www.ncbi.nlm.nih.gov/pubmed/9258270
https://doi.org/10.1677/JOE-08-0404
https://doi.org/10.1677/JOE-08-0404
http://www.ncbi.nlm.nih.gov/pubmed/19074471
https://doi.org/10.2337/db11-0425
http://www.ncbi.nlm.nih.gov/pubmed/21948998
https://doi.org/10.1007/s11745-015-4061-5
http://www.ncbi.nlm.nih.gov/pubmed/26318121
https://doi.org/10.1152/ajpendo.90897.2008
http://www.ncbi.nlm.nih.gov/pubmed/19066317
https://doi.org/10.1074/jbc.M807616200
https://doi.org/10.1074/jbc.M807616200
http://www.ncbi.nlm.nih.gov/pubmed/19119140
https://doi.org/10.1111/j.1600-079X.2006.00346.x
http://www.ncbi.nlm.nih.gov/pubmed/16842545
http://www.ncbi.nlm.nih.gov/pubmed/11685541
https://doi.org/10.1007/s00125-007-0676-2
https://doi.org/10.1007/s00125-007-0676-2
http://www.ncbi.nlm.nih.gov/pubmed/17476475
https://doi.org/10.1371/journal.pone.0189622

