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Registration is critical for image-based treatment planning and image-guided
treatment delivery. Although automatic registration is available, manual, visual-
based image fusion using three orthogonal planar views (3P) is always employed
clinically to verify and adjust an automatic registration result. However, the 3P
fusion can be time consuming, observer dependent, as well as prone to errors,
owing to the incomplete 3-dimensional (3D) volumetric image representations. It
is also limited to single-pixel precision (the screen resolution). The 3D volumet-
ric image registration (3DVIR) technique was developed to overcome these
shortcomings. This technique introduces a 4th dimension in the registration cri-
teria beyond the image volume, offering both visual and quantitative correlation
of corresponding anatomic landmarks within the two registration images, facili-
tating a volumetric image alignment, and minimizing potential registration errors.
The 3DVIR combines image classification in real-time to select and visualize a
reliable anatomic landmark, rather than using all voxels for alignment. To deter-
mine the detection limit of the visual and quantitative 3DVIR criteria, slightly
misaligned images were simulated and presented to eight clinical personnel for
interpretation. Both of the criteria produce a detection limit of 0.1 mm and 0.1°.
To determine the accuracy of the 3DVIR method, three imaging modalities (CT,
MR and PET/CT) were used to acquire multiple phantom images with known
spatial shifts. Lateral shifts were applied to these phantoms with displacement
intervals of 5.0±0.1 mm. The accuracy of the 3DVIR technique was determined
by comparing the image shifts determined through registration to the physical
shifts made experimentally. The registration accuracy, together with precision,
was found to be: 0.02±0.09 mm for CT/CT images, 0.03±0.07 mm for MR/MR
images, and 0.03±0.35 mm for PET/CT images. This accuracy is consistent with
the detection limit, suggesting an absence of detectable systematic error. This
3DVIR technique provides a superior alternative to the 3P fusion method for
clinical applications.
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I. INTRODUCTION

Radiation therapy has been improved in recent years owing to technical advances, including
image-based treatment planning as well as image-guided treatment delivery.(1-5)  Multi-modality
imaging techniques that have been routinely applied in radiation treatment planning (RTP)
include: computed tomography (CT), magnetic resonance imaging (MR), and positron emission
tomography (PET). Through image registration,(6-10) patient anatomy and physiology can be
combined and visualized, providing a comprehensive view of the therapeutic target, together
with surrounding normal tissues. The addition of coaxial imaging equipment to megavoltage X-
ray accelerators, including on-site cone beam CT(11,12) and Tomotherapy Imaging,(13,14) has set a
new foundation for image-guided radiation therapy (IGRT) development, by providing immedi-
ate pre-treatment verification and adjustment of a patient’s position, resulting in improved accuracy
of conformal radiation treatment delivery. This high-precision radiation treatment delivery (RTD)
minimizes normal tissue toxicity and opens a path to more aggressive fractionation schemes. It
also permits a transition to frameless intra-/extra-cranial stereotactic radiation therapy, with
improved patient comfort and clinical outcome.(15-18) Image registration plays the key role in
providing optimum alignment between the pre-treatment setup image and the planning im-
age,(19-22) minimizing deviation (patient setup uncertainty) of the RTD from the RTP.

Principal image registration techniques include intensity-based automatic registration, as well
as visual-based manual registration.(6-10,23-29) Automated registration techniques have been used
increasingly in RTP and IGRT,(13, 14, 25, 27, 29) based on maximization of mutual information (MMI)
of multi-modal images(30-32) or grayscale similarity (MGS) for single modality images.(33,34) How-
ever, an automatic registration may carry and propagate systematic errors,(34) reach a sub-optimal
solution,(16) or even fail to achieve a reasonable alignment.(33) Realistically, these phenomena
exist because most clinical images contain a certain degree deformation, including motion in-
duced deformation and artifacts, especially in the case of PET imaging. Many deformable
registration algorithms have been reported,(7,30) but they all suffer from a lengthy optimization
process and are not yet applicable clinically. Simplified techniques have been reported and ap-
plied clinically, such as region-of-interest registration,(6) intensity-weighted registration,(14) and
discrete rigid body approximation,(32) but manual adjustment is clinically required based on
visual verification, combined with anatomical and physiological knowledge.(24-28)

Prior to the recent development of the 3D volumetric image registration (3DVIR) method,(27)

the only viable manual fusion method was based on three orthogonal planar views (3P).(6, 13, 24-28)

In addition to “fine-tuning” automatic registration results, this manual method was also used in
establishing initial conditions for an automatic registration and for an independent registration.
Because this 3P fusion is based on 2D visualization, it only provides partial 3D information at
any given time. A 3D alignment is actually achieved through massive, non-visual correlation
among a series of planar views in three orthogonal directions, resulting in the following major
shortcomings: (1) large inter-/intra-observer variations,(26) (2) time consuming, tedious method-
ology,(25-29) (3) single-pixel precision,(24, 26, 27) (4) fewer reliable anatomical landmarks for functional
images,(25) and (5) global registration errors.(27) Using the manual 3P fusion technique to verify
and adjust the results of an automatic image registration will adversely affect the final registra-
tion accuracy, making it both observer-dependent and error prone.

The 3DVIR technique overcomes most of the shortcomings of the 3P fusion method.(27) This
registration technique aligns the image using anatomic structure volumes and surfaces by em-
ploying a new dimension, namely the homogeneity of color distribution on an anatomical
landmark. Additionally, the criteria associated with the 3DVIR provide instant feedback on the
quality of the alignment and offer guidance for further iterations.  The method presents a visual
volumetric correlation of landmarks, eliminating the repetitive, tedious and observer-dependent
evaluation process inherent in the 3P fusion method. Previously, the 3DVIR technique was com-
pared with MMI-based automatic registration for cross-verification.(27)
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In this study, an improved 3DVIR technique and its validation against experimental data in
three imaging modalities will be reported. The technical improvements have included (1) incor-
poration of image classification to visualize internal registration landmarks in real-time, (2)
introduction of a quantitative registration criterion to further reduce observer dependency, and
(3) use of decimal precision in transformation and interpolation for sub-voxel registration capa-
bility. Validation and accuracy assessment of the 3DVIR have been performed based on three
phantom imaging experiments (CT, MR and PET/CT), by comparing calculated registration
shifts with measured spatial shifts in the phantom position. The detection limit of the 3DVIR
has been assessed visually and quantitatively using eight clinical personnel and a plot of quanti-
tative criterion versus spatial shifts, respectively. Both accuracy and detection limit were found
to be 1/10 voxel (1 voxel ~ 1 mm) for all three imaging modalities. The advantage of using the
3DVIR technique over the manual 3P fusion method and automatic MMI/MGS registration
methods will be discussed in terms of accuracy and reliability, based on the ability to selectively
use the most reliable, volumetric registration landmarks.

II. METHODS

The key of the 3DVIR technique, which was described previously,(27) is the registration criterion,
namely the homogeneity of color distributed on a given anatomic landmark, with the registering
images represented by pseudo-mono-colors, such as red (R), green (G) or blue (B). The volumet-
ric registration flow chart is shown in Fig. 1. The volumetric image visualization is supported by
a volume rendering video card for real-time performance based on the ray-casting visualization
algorithm, as shown in Fig. 2. All registration operations are performed in real-time, including
landmark classification and visualization, registration transformation and interpolation, calcu-
lation of the volumetric registration criteria, and viewpoint manipulation.

FIG. 1.  The flow chart of 3D volumetric image registration process. The 4 volumetric image data are stored in a 32-bit voxel
buffer array, which can be retrieved and manipulated in the two different processes: registration transformation and volumetric
visualization. The registration process iterates until the registration criterion is satisfied visually and/or quantitatively.
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A. Volumetric image visualization and registration

A.1  RGBA lookup tables (LUTs)
A lookup table (LUT) is a map (transfer function) that associates a set of scalar values (grayscale)
to color (R, G, and B) and visibility (opacity: A or Alpha) of a set of data points (voxels). A LUT
is often overlaid with image histogram, facilitating the color mapping (a one-dimensional visu-
alization technique). The opacity LUT (A) overrides the color LUTs (RGB); that is, when a voxel
is transparent (A=0) the assigned color does not matter as it becomes invisible. Under the RGBA
visualization format, the LUT is a sophisticated version of the “Window/Level” (W/L) control,
defining which voxels are visible and what color they are. In other words, the W/L is the simplest
case of a LUT with a linear Level function (increasing from zero to unity) within a grayscale
Window range.

A mono-colored image can be realized using either a single LUT (such as R, with G=B=0) or
identically weighted LUTs (such as white, with R=G=B). A linear color LUT(s) can be used to
show the grayscale image in mono-color for stereoscopic visualization of anatomical “land-
scape”, as shown in Fig. 3(C). It is worthwhile to note that a mild texture (“iso-elevation-contour”
pattern) appears due to the unevenness of the volumetric surface caused by limited imaging
resolution, as shown in Fig. 3. For the two superimposed images, slightly different colored LUTs
can make the existing texture colorful (similar to a diffraction pattern) that should not be misin-
terpreted as an image misalignment.

Four default LUTs, which are provided by the software for each of the image volumes, can be
modified by the user, based on the image histogram, as well as the visualized volume.  The
criteria for establishing a suitable LUT are based on if a desired anatomical volume is visualized
by adjusting Alpha-LUT. Linear RGB-LUTs can be used within the A-Window range that affects
the mono-colored rendition of the grayscale image for optimal stereoscopic visualization. This
anatomy-based visualization does not require a precise LUT function, as long as the registration
images have a similar volume. Slight LUT differences may result in a color weighted appearance
(producing base line color difference and local colored texture), but will not affect the global
homogeneity of the color distribution.

FIG. 2.  Demonstration of ray-casting algorithm for volumetric visualization. (a) The relationship of voxels in an image volume
and pixels in an image plane and (b) RGBA accumulation along a ray until the accumulated opacity reach unity.
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A.2 Ray-casting algorithm
Ray-casting is an algorithm for image-ordered volume rendering.(36) The basic idea is to deter-
mine the pixel values in an image plane by sending an array of rays through these pixels into the
scene based on the current camera settings, such as viewing angle, as shown in Fig. 2(A). For
RGBA visualization format, the rays accumulate RGBA values along the way and blend them
into the pixel for display, until the accumulated opacity (A) becomes unity (at which point all
voxels are opaque), as shown in Fig. 2(B). The mathematical equations for the RGBA accumu-
lation used in this study are discussed in a later section. In fact, a variety of blending functions
can be applied to the ray-casting visualization, generating very different views of the same im-
ages, such as the maximum intensity projection (MIP). One major drawback for the ray-casting
visualization is that it is fairly slow and it is necessary to use hardware-based volume rendering
to achieve real-time performance.(37, 38)

FIG. 3.  Volumetric views of two identical CT phantom images with simulated spatial shifts.  Top row (A to C): translational
shifts (Xt) of 0.5, 0.2 and 0.0 voxels (1 voxel = 0.78 mm) were applied to the aligned image (C); Bottom row (D to F):
rotational shifts (Xr) of 0.5°, 0.2° and 0.0° were applied to the aligned image (F). The color homogeneity on the “skin”
landmark improves as the alignment is improved. The translational (lateral) shifts appear mostly on the left and right sides of
the image volume: the larger the surface grayscale gradient and the larger the surface oblique angle (between the ray and
surface normal), the larger the visual color inhomogeneity would be. The rotational (around the superior-inferior axis through
the center of the image volume) shift causes non-uniform displacements in the directions perpendicular to the rotational axis:
the larger the distance of the viewing voxel to the rotational axis, the bigger the rotational displacement and so the more
dramatic color inhomogeneity.
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A.3 Volumetric image registration operations
Volumetric image registration relies on global views of the homogeneity of color distribution
within the visualized volume. It emphasizes the use of multiple viewing angles because rigid
transformations affect the volumetric alignment in a systematic fashion.  Any systematic change
in the color distribution of the image volumes reflects their relative alignment and indicates the
adjustment required to improve the homogeneity of color distribution. Distinguishing a transla-
tional misalignment from a rotational one is straightforward. For instance, a lateral translational
shift causes a lateral displacement in the color inhomogeneity. In contrast, an axial rotation
(passing through the center of the volume) causes color inhomogeneity that increases radically
from the rotational axis (the further the voxel is from the rotational axis, the more dramatic the
inhomogeneity, as shown in Fig. 3). In addition, the opposing color biases due to the rotation
show not only laterally, but also in any directions perpendicular to the axis of rotation. So,
viewing the volume from multiple directions should facilitate distinguishing between a rota-
tional misalignment from a translational one. The facial “landscape” plays a significant role as
well in distinguishing between the two different shifts. In the extreme case, a spherical phantom
would not provide any information on rotational shifts about its central axis, but a translational
displacement will clearly show.

The ability to have multiple views in real-time is the key to identifying and eliminating any
systematic misalignment. For multi-modality images, it is expected that there will be some local
color bias due to contrast, content and resolution differences among imaging modalities. The
objective is to look for an overall color distribution inhomogeneity displaying a systematic pat-
tern. We recommend rotational adjustments, followed by translation to superimpose the images.
This process iterates until a satisfactory result is obtained.

A.4 Four concurrent image registration
The image voxel buffers are designed to permit the registration of up to four concurrent image
volumes. Any of the four image volumes can be selectively turned on or off, if there is a need to
focus on fewer images. Only one image can be moved (translated or rotated) at any given time.
It is recommended to register any two images sequentially, followed by the cross-verification and
cross-adjustment among all four images. Fundamentally, the three primary colors (RGB) pro-
vide the limit in the number of images that can be simultaneously registered with visual tracking.
Practically, a tertiary color (white) can be used to represent the fourth image. An ambiguity may
be introduced since white voxels can result from either perfect alignment of RGB voxels or the
white image, but this can be resolved by turning on and off the white image. In our clinical
research, registration of four concurrent images has been performed whenever more than two
imaging modalities are involved, including this study. Previously, it was reported that registra-
tion of a set of CT, MR (T1), MR (T2) and PET images was performed in a single process for
pre-treatment planning and post-treatment evaluation.(35) Not only can this single process per-
form registration of up to four images, but also combine registration with visual verification.
The registration of four concurrent images eliminates potential error propagation if only two
images are allowed for registration and multiple images have to be registered sequentially.(27)

B. Image classification of anatomic landmarks

B.1 Image classification using opacity lookup table (A-LUT)
Image classification in the 3DVIR technique is achieved through a built-in opacity (A, or Alpha)
value, which is assigned to each voxel through a lookup table, together with three pseudo-color
(R, G, or B) LUTs, as the RGBA visualization format.(36) The A-LUT operation over the image



23 Li et al.: Accuracy of 3D volumetric image registration 23

Journal of Applied Clinical Medical Physics, Vol. 9, No. 4, Fall 2008

histogram determines the visibility of the voxel content displayed, while R, G, and B-LUTs
determine the color of the voxel. For any image point with intensity (I), the visible voxel inten-
sity (VVI) can be obtained using the RGBA LUTs (f’s) through a vector transformation:

(1)

In a CT image, for instance, there are two distinct interfaces with large voxel intensity differ-
ences: skin/air and bone/soft-tissue boundaries. Based on the definition of CT number, these
differences are as large as half the grayscale range. Therefore, both interfaces are readily ex-
tracted using the opacity LUT, controlled in real-time by the graphical user interface (GUI). In
MR and PET, the skin/air (and brain/bone) interfaces also possess significant intensity differ-
ences, in both phantom and patient images. As a matter of fact, skin is one of the few complete
anatomies shown in patient PET images.

B.2 Visual amplification of the alignment of classified landmarks
The VVI is a new dimension beyond the 3D volumetric space, in which image alignment is
examined. Because of the large intensity differences at the interface of a selected landmark over
a voxel displacement in space, it amplifies the signal in 3D space. As discussed above, skin/air
and bone/soft-tissue interfaces possess very large intensity gradient. Mathematically, it can be
expressed as:

              , or

(2)

where dVVI is intensity differential resulting from dD, which is a spatial displacement within a
voxel (1 voxel ~ 1 mm), and f() is an amplification function.

With the introduction of the decimal precision in the transformation and interpolation of the
registration, the spatial displacement of images can be a fraction of a voxel. When the image
alignment is evaluated volumetrically, any systematic bias in intensity (color) at the landmark
will indicate a misalignment, which serves as guidance for further alignment.

C. Quantitative volumetric registration criterion

C.1 Retrieving the visible voxel intensity on an anatomic landmark via ray-casting
To quantify the visual 3D volumetric registration criterion, the visible voxel must be retrieved in
real-time via a ray-casting algorithm.(37,38) A ray in a given viewing direction was cast through
the center of a pixel on an image plane, representing one or a series of voxels along the ray in a
volume, as shown in Fig. 2. The RGBA values of the voxel points along each ray were accumulated,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

)(

)(

)(

)(

)(

IAf

IBf

IGf

IRf

IfVVI

( )),,( zyxdDfdVVI =

1>>
dD

dVVI



24 Li et al.: Accuracy of 3D volumetric image registration 24

Journal of Applied Clinical Medical Physics, Vol. 9, No. 4, Fall 2008

producing a visible pixel intensity. The penetration depth of the ray (or the thickness of the
visible voxel layer on the landmark) was set to shallow, by using a narrow opacity window. The
matrix of pixels from an array of parallel rays formed a visual image of the volume.

Quantitatively, the following recursive functions were used for rendering the visible image
using front-to-back blending (accumulation) of RGBA (colors and opacity):

Ri+1
Accum = Ri

Accum + (1.0 − Ai
Accum) ⋅ Ri ⋅ Ai

Gi+1
Accum = Gi

Accum + (1.0 − Ai
Accum) ⋅ Gi ⋅ Ai (3)

Bi+1
Accum = Bi

Accum + (1.0 − Ai
Accum) ⋅ Bi ⋅ Ai

Ai+1
Accum = Ai

Accum + (1.0 - Ai
Accum) ⋅ Ai (4)

where i and i+1 represent current and next ray depth, respectively. Note: both accumulated
opacity (Ai

Accum) and voxel opacity (Ai) affect the volumetric visualization.  When Ai
Accum < 1.0,

a voxel is invisible if its opacity (Ai) equals zero. When Ai
Accum = 1.0, all voxels (> i) are invis-

ible, since they do not contribute to the pixel RGB values (Equation 3).
When registering multiple image volumes, one ray may reach a visible voxel that has contri-

butions from more than one image volume, if they coincide at that particular voxel.  Each voxel
buffer contains four fields, as shown in Fig. 1, and up to four image volumes can be registered
simultaneously. The RGBA-LUTs affect only the image visualization (which is useful in identi-
fying the first layer of visible voxels) but not the voxel data stored in the voxel buffer. The
uniformity of the VVI contributions at the surface of the landmark is used in the quantified
registration criterion, as discussed below.

C.2 Quantitative analysis of the homogeneity of color distribution in real-time
By definition, the visual homogeneity of the color distribution on a given anatomical landmark
should have minimal variance in the visible voxel intensity difference (VVID) between any two
mono-colored imaging modalities. Therefore, for registered images a random color distribution
(snow pattern) should be seen on the landmark; whereas a misalignment should appear to have
a systematic color-biased distribution (global alignment aberration), indicative of a systematic
spatial displacement.

Uniform sampling across the image plane is used for calculating the criterion, and about 4%
of the pixels are sufficient to correctly identify a registration point, while retaining real-time
performance. For any visible voxel (i), the VVID is: ΔIi = Ii

A – Ii
B , where Ii

A and Ii
B (< 256 = 8

bits) are the VVI from images A and B, respectively. For all sampled voxels, the variance of the
VVID can be expressed as:

(5)

where ΔI = Σ ( ΔIi / N ) represents the average of the VVID and N is the total number of pixels
sampled, excluding completely transparent rays. In the case of two identical images, the vari-
ance of VVID decreases as the image alignment improves, approaching zero with a perfect
alignment.

∑∑
==

Δ−−
=

Δ−Δ
=

N

i

B
i

A
i

N

i

i

N

III

N

II
VAR

1

2

1

2 )()(



25 Li et al.: Accuracy of 3D volumetric image registration 25

Journal of Applied Clinical Medical Physics, Vol. 9, No. 4, Fall 2008

In multi-modality image registration, the average voxel intensity of an anatomical landmark
can differ dramatically. Owing to high baseline differences between two given modalities, the
VAR value can become insensitive to the VVID. The sensitivity is substantially improved by
incorporating a weighting factor (R):

(6)

and the Equation (5) is modified, producing an intensity-weighted variance:

(7)

where ΔI * = Σ (ΔIi* / N ) is the average of modified VVID (ΔIi* = Ii
A/R – Ii

B).  This quantitative
measure, when minimized, indicates an optimal registration, which can be independently veri-
fied by visual examination, avoiding local minima.

D. Tests for quantitative and visual detection limit of the registration criteria
Two identical CT images (red and green) with simulated rotational or translational shifts were
used to evaluate the quantitative and visual detection limit of the 3DVIR criteria, using the
variance analysis and eight independent observers. Superimposition of the images produced a
yellow image, due to the color blending of equally weighted red and green contributions, as
shown in Figs. 3(C) and 3(F). When one of the two images was slightly rotated or translated, the
misalignment produced an inhomogeneous color distribution, as shown in Figs. 3(A), 3(B),
3(D) and 3(E).

For the quantitative test, incremental image shifts of 0.1° and 0.1 voxel, relative to the regis-
tration point, were simulated and used. The VAR value was calculated in different views for each
of the image shifts. These values were plotted resulting in a well-shaped curve.

For the visual test, eight observers were asked to identify color biases in 12 images, which
contained various shifts of 0.0, 0.1 and 0.2 units (degrees or voxels; 1 voxel = 0.78 mm) in any
of the six degrees of freedom. These images were randomly presented to the observers as a slide
show. A correct determination scored one point and an incorrect one scored zero. Statistical
analysis of the results yielded a visual detection limit for the 3DVIR criterion.

E. Head phantom positioning and imaging with pre-determined translational
shifts

E.1 Head phantom positioning accuracy
In all three imaging studies, the phantoms were immobilized with a head holder. Graph paper
with 0.13 mm lines (1 mm grid), which were verified using a reference line, were taped on the
scanner couches and on four sides of the phantom holder. A magnification glass was used for the
line alignment at each side. The phantom was displaced at a regular interval of 5.0±0.1 mm
between scans. The positioning uncertainty was limited by the width of the gridline (< 0.13 mm).
The room lasers were not employed for phantom alignment and displacement, because the width
of their projected line exceeded the desired alignment accuracy. Typically, four positions with
three lateral shifts were used for image acquisition.
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Lateral uncertainty of the couch position was negligible (within ±0.1 mm) since it is not
movable laterally. Longitudinally, however, the couch positioning uncertainty of < ±0.5 mm
(based on the manufacturer’s specification) was bigger than the gridline width (0.13 mm), domi-
nating the longitudinal uncertainty. Therefore, the lateral comparisons were used for the accuracy
evaluation of translational alignment. Experiments with rotational shifts were not conducted
due to difficulties in accurate phantom setup using the graph papers, as well as the unavailability
of an accurate shifting device for rotation. However, the rotational registration accuracy evalua-
tion using experimental data remains our interest and will be examined in the future.

All images were pre-processed automatically by tri-linear interpolation to have an image size
of 320×320 and an isotropic voxel size (~ 1 mm, varying with modalities, see below) with an 8
bit grayscale, prior to registration. For multi-modality image registration, the image field of
view was kept the same for both modalities.

E.2 CT head phantom image acquisition
A tissue equivalent anthropomorphic head phantom with internal structures, as shown in Fig.
4(A), was scanned using a CT scanner (AcQSim, Philips Medical Systems). Sixteen images
were acquired in an array of positional offsets (lateral and longitudinal), having 5.0±0.1 mm
displacement intervals. The original voxel size was 0.49×0.49×2.0 mm (with an original image
size of 512×512), and the reformatted voxel size was 0.78×0.78×0.78 mm (in the final image
size of 320×320).

FIG. 4.  Three head phantoms for (A) CT, (B) MR and (C) PET/CT experiments. Head holders and tapes were used to immo-
bilize the phantoms, and graph papers and magnifying glass were used for phantom positioning. The finest line width of 0.13
mm was used to align two gridlines on the couch and the phantom holder. The alignment was checked on all four sides of the
phantom holder for a translational shift.
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E.3 MR head phantom image acquisition
A water-based head phantom with internal structures, as shown in Fig. 4(B), was scanned in a
1.5T MRI scanner (Intera, Philips Medical Systems). Four axially-scanned images were ac-
quired with lateral shift intervals of 5.0±0.1 mm. The images were processed to exclude the
geometrically-shaped external voxels outside the skull. The “brain” image, as defined by the
inner surface of the skull, was extracted for registration. The original voxel size was 0.90 × 0.90
× 2.0 mm (with an original image size of 256 × 256), and the reformatted voxel size was 0.72 ×
0.72 × 0.72 mm (in the final image size of 320 × 320).

E.4 PET/CT head phantom image acquisition
An anthropomorphic head phantom filled with 18F-fluoro-deoxy-glucose (18F-FDG) solution (1
mCi), shown in Fig. 4(C), was scanned using a combined PET/CT scanner (DiscoveryST, GE
Healthcare). The thickness of the phantom wall was approximately 3-4 mm. Four image sets
were acquired with lateral shift intervals of 5.0±0.1 mm. The original PET voxel size was 4.25 ×
4.25 × 3.27 mm (with an original image size of 128 × 128) and the original CT voxel was 0.98
× 0.98 × 3.75 mm (with an original image size of 512 × 512). Some empty space in the field of
view was trimmed and the reformatted voxel size for both PET and CT images was 1.0 × 1.0 ×
1.0 mm (in the final image size of 320 × 320).

E.5 Alignment of the PET/CT scanner
The PET/CT scanner alignment was determined using a solid rod phantom (68Ga/68Ge), 9.5 mm
in diameter and 312 mm in length. The rod was placed with its axis parallel to the direction of
couch motion and normal to the image plane. The rod image was arbitrarily divided into three
segments, which were used as independent measures. In both PET and CT images, the identical
region of interest was applied and the centers-of-mass (or centers-of-activity) were calculated for
comparison. Because the rod was uniform in activity and density, the center of mass should be
coincident with the center of geometry.  Therefore, the difference between the two centers was
indicative of the alignment quality of the combined-modality scanner.

E.6 Expression of the Registration Accuracy
The accuracy of image registration is stated with its precision using standard deviation.  The
unit of accuracy can be expressed in degree for rotational shifts and in voxels and/or in millimeters
(mm) for translational shifts. In physical space, by definition, a voxel is the smallest unit of an
image volume, so its size should carry a volumetric unit, such as mm3.  In image space, however,
a voxel is a dot (often isotropic) with an assigned grayscale, and is used as a unit length for any
image operation. For the sake of simplicity, the lengths of a cubic (voxel) edge in mm are fre-
quently used to describe the voxel size. A linear scaling relationship exists between voxel and
mm, such as 1.0 voxel = 0.78 mm in CT, 1.0 voxel = 0.72 mm in MR, and 1.0 voxel = 1.0 mm
in PET/CT. Here, we have used either voxel and mm, or mm alone, as the unit for image trans-
formation and registration accuracy, as well as in comparison with previously reported results.
Clinically, the units of mm and degree are more preferable.

III. RESULTS

A. Quantitative measure of the 3DVIR criterion
Fig. 5(A) shows the quantitative measure (VAR) of color homogeneity versus rotational or trans-
lational shifts in the lateral direction with increments of 0.1° or 0.1 voxel (0.08 mm).  Two
identical images superimposed perfectly at the registration point, resulting in a null variance of
VVID (VAR in Equation 5) and uniform color homogeneity (Fig. 3(C)). The variance increases
exponentially with relative image displacement, forming a well shaped curve. This is consistent
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with the color inhomogeneity increase, as shown in Fig. 3. The curve slope is steeper in the
anterior view than the superior view, suggesting that the detection sensitivity is higher due to
greater anatomic “landscape” details.

Fig. 5(B) shows normalized curves from four, co-registered PET/CT images using the modi-
fied VVID variance (mVAR in Equation 7). These curves demonstrate an excellent agreement
(0.05±0.09 mm or voxel) between the hardware and software registration, indicating that the
mVAR provides an accurate measure of the quality of PET/CT registration. The lateral align-
ment of the combined PET/CT scanner was determined to be < ±0.1 mm. Again, the slope of the
well curves is steeper in the anterior than in the superior view. Comparing with CT/CT registra-
tion curves in Fig. 5(A), the curves in Fig. 5(B) are much shallower, indicating a relatively low
sensitivity of the “skin” voxel alignment in PET/CT images. Fig. 6 shows the anterior views of
three PET/CT images with shifts of -0.5 mm, 0.0 mm and +0.5 mm, relative to the co-registra-
tion point. The accuracy is independent of imaging modalities because the registration criteria
are built in the 4th dimension beyond the 3D image space.

FIG. 5. Quantitative criteria vs. spatial shifts (translation or rotation). (A) Identical CT/CT image alignment: VAR criterion is
used in lateral direction (Xt, translation) or lateral axis (Xr, rotation). Legends: (a) anterior and (b) superior views of Xt
translational shifts, and (c) anterior and (d) superior views of Xr rotational shifts. (B) Co-registered PET/CT image alignment:
mVAR criterion is used in lateral direction (Xt, translation).  From (a) to (h), eight curves of the 4 set PET/CT images based on
superior views (solid symbols) and anterior views (open symbols) are shown.

(A) (B)
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B. Visual detection limit of the 3DVIR criterion
Table 1 shows the results for determination of the visual detection limit. Under the experimental
conditions, two coincident color images were correctly identified by observers as homogeneous
(Fig. 3(C)) with a success rate of 94%. For images misaligned by 0.2 voxels (0.16 mm) of
translation or 0.2° of rotation (as illustrated by Figs. 3(B) and 3(E)), the color inhomogeneity
was identified with a 100% success rate by all eight observers. When the misalignment was
reduced to 0.1° and 0.1 voxels (0.08 mm), inconsistency started to occur. However, the average
success rate was still 80%.  Interestingly, the two lateral shifts (δXr and δXt in Table 1) had a
100% success rate, suggesting that the results were dependent upon image orientation and could
be improved by providing additional volumetric views. Therefore, the visual detection limit for
identifying color inhomogeneity using skin as the volumetric landmark was determined to be
0.1° and 0.1 voxel.

FIG.6.  Anterior views of PET/CT images with lateral off-alignments: (A) -0.5 voxels (mm), (B) 0.0 voxel (mm) and (C) +0.5
voxels (mm).  The arrows point to the region with color inhomogeneity.  Note: the local color inhomogeneity shown in (B) is
caused by different imaging resolutions in PET and CT and slightly different R/G-LUTs on the two image histograms.

TABLE 1.  Detection limit of the 3D volumetric image registration criterion (visual). Two identical CT images were used to
generate 12 images with various simulated spatial shifts in anterior view, including 2 perfectly aligned images.  Eight clinical
observers were participated the test: a correct identification of color homogeneity or inhomogeneity scores one point, while a
failure scores zero.  Here 1.0 voxel = 0.78 mm for the CT images.

Observer    Spatial Shifts (0.2° or 0.2 voxel)     Spatial Shifts (0.1° or 0.1 voxel) Aligned
δXr δYr δZr δXt δZt Σ/5 δXr δYr δZr δXt δZt Σ/5 Σ/2

1 1 1 1 1 1 1.0 1 1 0 1 1 0.8 1.0
2 1 1 1 1 1 1.0 1 1 1 1 1 1.0 1.0
3 1 1 1 1 1 1.0 1 1 1 1 1 1.0 1.0
4 1 1 1 1 1 1.0 1 1 0 1 1 0.8 1.0
5 1 1 1 1 1 1.0 1 0 1 1 1 0.8 0.5
6 1 1 1 1 1 1.0 1 0 1 1 1 0.8 1.0
7 1 1 1 1 1 1.0 1 0 1 1 0 0.6 1.0
8 1 1 1 1 1 1.0 1 0 1 1 0 0.6 1.0
Average 1.0 0.80 0.94
St. Dev. 0.00 0.18 0.15
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C. Accuracy of CT/CT phantom image registration
Table 2 shows the result of the CT/CT phantom image registration accuracy as: 0.03±0.12 voxels
(0.02±0.09 mm) in lateral (x) direction and 0.33±0.27 voxels (0.27±0.21 mm) in longitudinal
(z) direction.  This variation was attributed to the longitudinal uncertainty (< ±0.5 mm) in the
couch positioning (movable), while the lateral uncertainty of the couch (unmovable) was negli-
gible. Therefore, the lateral comparison provides the best measure of registration accuracy, yielding
a value of ~ 0.1 mm, which is similar to the experimental accuracy of phantom positioning. As
a by-product, this phantom experiment using 3DVIR can provide a quality assurance assessment
of couch mechanical accuracy.

Fig. 7 shows the CT/CT registration using bony landmarks, which were visualized by chang-
ing the A-LUT interactively. Using the independent bony landmark, the 3DVIR registration
accuracy remains unchanged, suggesting that the internal and external landmarks are equally
reliable in the phantom image registration. This finding provides flexibility in the selection of
landmarks as well as the ability to cross-verify registration of rigid images. Bony anatomy can be
used as a more reliable landmark when motion or deformation of soft tissue is present.

TABLE 2.  Comparison of the CT phantom translational shifts and CT/CT registration shifts.  The phantom “skin” was used as
the 3D volumetric image registration landmark, and the visual color homogeneity was used as registration criterion.  The
registration shifts were calculated by physical distance (mm) = (voxel shift) ×  (voxel size), where 1.0 voxel = 0.78 mm.  The
registration was cross-confirmed using the “skull” as landmark.  The uncertainty of the CT couch positioning was specified
within ±0.5 mm in longitudinal direction and within ±0.1 mm in lateral direction by the manufacturer. The phantom position-
ing had ±0.1 mm uncertainty by aligning reference lines of 0.13 mm in width under optical amplification.

    Experimental Shifts (mm)      Registration Shifts (mm) Statistical Analysis (mm)

Lateral XExp X1 X2 X3 X4 XAvg XExp - XAvg St. Dev.
5.0±0.1 4.92 4.92 4.99 5.07 4.98 0.02 0.08

10.0±0.1 9.92 10.14 9.99 9.99 10.01 -0.01 0.09
15.0±0.1 14.91 14.91 14.91 15.08 14.95 0.05 0.10
Average 0.02 0.09

Longitudinal ZExp Z1 Z2 Z3 Z4 ZAvg ZExp – ZAvg St. Dev.
5.0±0.5 5.00 4.68 4.61 4.68 4.74 0.26 0.04

10.0±0.5 9.76 9.53 9.92 9.59 9.70 0.30 0.21
15.0±0.5 14.84 14.52 15.15 14.44 14.74 0.26 0.39
Average 0.27 0.21
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D. Accuracy of MR/MR phantom image registration
Table 3 shows the results of the MR/MR image registration accuracy using 4 images shifted
laterally by 5.0±0.1mm intervals. The accuracy was found to be 0.04±0.10 voxels (0.03±0.07
mm), using the phantom “brain” (inner skull) as the registration landmark. In MR images, the
brain interface is intact since there is a natural grayscale change at the boundary with the skull,
which possesses void voxel. This can serve as another internal landmark for 3DVIR, with an
accuracy consistent with that of the CT/CT registration.

FIG. 7.  Using bony anatomy as registration landmark. The original two CT images (A, C) are 15.0±0.1 mm apart laterally and
the registered images (B, D) are obtained with a lateral shift of 15.00 mm. A minor superior-inferior shift of 0.3 voxel (0.23
mm) is made to compensate the couch positioning error. Note: the local color inhomogeneity (contour pattern) shown in (B, D)
is caused by limited imaging resolution and visualization with slightly different R/G-LUT settings, rather than global image
misalignment.
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E. Alignment of the PET/CT scanner and co-registered PET/CT images
The agreement between the center of mass for CT and PET images of the rod phantom was
0.05±0.13 mm laterally and 0.00±0.18 mm vertically. Therefore, the alignment of the combined
PET/CT scanner was determined to be within ~ 0.1 mm in the image plane.

Four co-registered PET/CT images were used to validate the quantitative mVAR criterion
using the “skin” landmark, as shown in Figs. 5(B) and 6. The agreement between the experi-
mental co-registration and the mVAR curve prediction was found to be within 0.1 voxel (mm).
The PET “skin” volume was defined using the CT volume as reference, and the presence of the
thin phantom wall did not affect the registration.

F. Accuracy of PET/CT, PET/PET and CT/CT phantom image registration
Table 4 shows the registration accuracy for PET/CT images to be 0.03±0.35 voxels (mm) using
visual criterion, and 0.05±0.09 voxels (mm) using the quantified (mVAR) criterion.  Both re-
sults show similar accuracy, but higher precision using the quantitative criterion.  Due to the low
quality of the PET image, the quantitative measure produces a more reliable indication than the
visual judgment.

Using the same image sets, the accuracies of CT/CT and PET/PET registration were found to
be 0.04±0.10 voxels (mm) and 0.09±0.31 voxels (mm) respectively, using the visual criterion,
similar to previous results.

TABLE 4. Comparison of the PET/CT phantom translational shifts and PET/CT registration shifts.  The phantom superficial
voxels were used as the 3D volumetric registration landmarks and the visual color homogeneity was used as registration
criterion. The registration shift of XAB represents the lateral distance between two adjacent pairs of PET and CT images with
5.0 mm apart, where A and B are the numbers (1-4) of CT and PET images, respectively, in the 4 sets of PET/CT images. Here
1.0 voxel = 1.0 mm for the reformatted PET and CT images.

Experimental Shift (mm)  Registration Shift (mm)                      Statistical Analysis (mm)

Lateral Shift (XExp) X12 X21 X23 X32 X34 X43 XExp - XAvg St. Dev.
5.0±0.1 4.5 5.5 5.2 4.8 5.0 4.8 0.03 0.35

TABLE 3. Comparison of the MR phantom translational shifts and MR/MR registration shifts.  The phantom “brain” voxels
(confined by the skull) were extracted by image segmentation and used as the 3D volumetric registration landmarks. The
visual color homogeneity was used as registration criterion. Here 1.0 voxel = 0.72 mm for the MR images.

Experimental Shift (mm)    Registration Shift (mm)                                    Statistical Analysis (mm)

Lateral Shift (XExp) X1 X2 X3 XExp - XAvg St. Dev.
5.0±0.1 5.03 4.96 5.10 0.03 0.07

 IV. DISCUSSION

A. Accuracy and reliability of single and dual modality image registration
The registration results of CT/CT, MR/MR, PET/PET and PET/CT images show an excellent
agreement between physical shifts in phantom position and corresponding image registration
shifts, resulting in an overall accuracy of 0.1 voxel (~ 0.1 mm), independent of imaging modal-
ity. In most cases, multiple volume surfaces serve as landmarks for the 3D registration, providing
a mechanism for rapid cross-verification.  Using both quantitative and visual criteria, together
with both superficial and internal landmarks, the volumetric registration offers a more reliable
and versatile tool for clinical use.
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A separate assessment of rotational accuracy was not performed experimentally due to diffi-
culty in accurate determination of rotational shifts experimentally and dependency of the result
upon the location of the rotational axis. Using simulated image sets with rotational shifts, a
visual detection limit of 0.1° was shown. Clinically, a 0.1° rotation may cause > 0.1 mm (voxel)
displacement at the surface, since the center of volume is used as the center of rotation. For
instance, assuming a head with ~200 mm separation, a 0.1° rotation will result in a voxel dis-
placement of R × sinθ = 100 × sin 0.1° = 0.17 mm at the surface. This is above the detectable
limit (0.1 voxel, which is ~ 0.1 mm in this study). For larger anatomies, such as torso, the bigger
radical distance from the center of volume should produce larger spatial shift at the surface. So,
an accuracy of 0.1° for rotational alignment was estimated.

The 3DVIR criteria are built into the VVID dimension beyond 3D space, resulting in a 0.1
voxel (mm) detection limit and accuracy. This phenomenon is resulted from the amplified pro-
jection from 3D space to the VVID space (Equation 2), so that a small spatial shift can result in
a large color difference. In the cases of skin and bony landmarks, the interface has high contrast
(spanning half of image grayscale), enabling detection of fractional voxel misalignment, as
illustrated in Figs. 3 and 7. Note that the subtle texture (“iso-elevation contours”) on the image
results from the limited imaging resolution (particularly 2 mm slice thickness);(36) such mono-
colored or colored local visual effects (or artifacts) can be eliminated using uniform RGB-LUT
settings. This volumetric visualization knowledge is useful in distinguishing local visual arti-
facts (the volume surface is not sufficiently smooth, but composed of multiple facets) from a
systematic bias in color distribution (due to misalignment).

B. Applicability of the 3DVIR accuracy to clinical patient image registration
As indicated above, the accuracy of the 3DVIR technique relies upon three key factors: (1) rigid
image assumption, (2) volumetric alignment criteria and (3) visualized external and/or internal
anatomical landmarks. Two major factors prevent direct translation of the accuracy from this
phantom study to clinical patient image registration: (1) patient motion and (2) organ deforma-
tion. In the presence of small, random, and rigid motion, which is restricted by using an
immobilization device during image acquisition, the 3DVIR can tolerate small volume increases
(due to blurring) by readjusting the A-LUT to achieve a volume match between images. For
patient PET/CT images, the PET skin, although low quality, is one of the few complete anatomic
landmarks identifiable and can be employed as a volumetric landmark for PET/CT image regis-
tration. In the presence of organ deformation, the use of soft-tissue landmarks will likely introduce
a systematic uncertainty. However, the 3DVIR technique allows registration using motion-free
bony landmarks, as shown in Fig. 7. Therefore, the registration accuracy remains unchanged by
using stable bony landmarks based on this study. In general, due to the uncertainties in patient
setup and patient motion, the image registration accuracy may be reduced, but it should roughly
remain in sub-voxel (sub-mm) scale. Therefore, this volumetric registration is potentially useful
in IGRT patient setup with minimal motion interference, as well as for frameless intra-/extra-
cranial stereotactic radiosurgery/radiotherapy.

C. Comparison of the 3DVIR technique with the 3P fusion method
The 3P fusion is based on three orthogonal 2D views of two image volumes at any given time. In
order to derive 3D information, all slices in the three orthogonal directions must be viewed
sequentially, and reviewed every time the image alignment is adjusted.  Additionally, the synthe-
sis of 3D information is dependent upon the cognitive ability of any given observer. Therefore, it
is both time consuming and error prone.(24-27) It is also limited to single pixel precision.

In contrast, the 3DVIR technique reconstructs and visualizes entire image volumes for the
observer, who can evaluate the alignment “on-the-fly”. The quantitative criterion can be em-
ployed to further minimize user dependency, especially in the fine tuning stages. More profoundly,
the 0.1 mm accuracy holds not only for the registration of anatomical images, but for functional
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images as well. The 3DVIR technique presents volumetric images in such a way that the align-
ment process is reduced to simply merging two objects in “virtual reality” (without perspective
visualization). As reported previously, the 3DVIR takes only about one-third the time required
by the 3P fusion to achieve a registration.(27) By using an automatic registration for a pre-align-
ment, the performance of the 3DVIR can be further enhanced by at least a factor of three.

D. Comparison of the 3DVIR technique and MI-based automatic registration
method
Most automatic (rigid) image registration methods based purely on voxel intensity uses all voxels
in the fused images, including those of moving organs. Therefore, this form of registration has
self-imposed limitations, due to motion artifacts and deformation of soft tissues caused by respi-
ratory, cardiac, digestive and muscular motion. Additionally, an automatic registration based on
this methodology, although reproducible, may contain systematic errors.(34) Therefore, a visual-
based manual fusion is always required to verify and often required to adjust the automatic
registration results utilizing specific clinical knowledge.(13) It was reported that the 3DVIR pos-
sesses similar registration accuracy as the MI-based registration for cranial images,(27) so the
3DVIR can be used to evaluate and adjust the automatic result without reducing the overall
registration accuracy.

Recently, efforts have been made to incorporate segmentation information into automatic
image registrations, by filtering the images so as to alter their voxel weights.(14) The success rate
of prostate registration was improved from 65% to 83% by eliminating high contrast voxels (air
and bone) using grayscale filters.(33) Semi-automatic registration with the assistance of manually
generated anatomical contours was reported to be useful.(19) The “hybrid” image registration
combined with segmentation and visualization has become a trend in pursuing better image
registration, especially deformable image registration.(6,39)

The 3DVIR technique registers anatomical landmarks, which are extracted by image classifi-
cation prior to visualization. These selectively classified landmarks can be more reliable than
other voxels, especially when bony landmarks are employed, since they are rigid, well-defined,
and motion-free (such as the spine). When soft tissues are rendered transparent, the organ mo-
tion and deformation can be ignored. Based on the quantified registration criterion, implementation
of an automatic registration is the next logical step.

E. Future direction: a potential semi-automatic 3DVIR technique
The current 3DVIR technique provides both visual and quantitative registration criteria, which
uniquely combine to minimize user dependency. In contrast, none of the visual based manual
image registration methods has such a feature, but depends solely upon a user’s visual judgment.(25-

29) The real-time variance analysis provides a tool that is helpful in determining subtle differences
in color homogeneity in the “fine tuning” of the registration, while the visual criterion provides
both verification and visual guidance throughout the registration process. For multiple modalities,
various VVI levels may affect the color baseline, but not the color distribution. This provides a
statistical basis for the use of mVAR as a highly sensitive registration indicator (Equation 7).
Multiple volumetric views from a variety of angles are helpful to view the global registration
volumes. This quantitative criterion provides a foundation for future semi-automatic registration
algorithms. The registration landmark selection and classification must be done manually, while
“fine tuning” of a coarse manual 3DVIR alignment can be performed automatically.

 V. CONCLUSION

The accuracy of 3D volumetric image registration of CT, MR and PET/CT images was found to
be 0.1 voxel (~ 0.1 mm) and estimated to be 0.1°, based on the three phantom studies. Both
superficial (skin) and internal (bone and brain) voxels were found to be suitable as volumetric
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landmarks. The quantitative registration criterion was found to be as effective as the visual
criterion for registration, but provided a higher degree of precision. The capability of using both
visual and quantitative measures makes the 3DVIR technique an effective, reliable, and accurate
tool for the clinical use. The intrinsic classification and visualization provided by this technique
allows registration of bony landmarks, while eliminating interference from organ motion and
deformation. In the future, this quantitative criterion can be employed to produce a semi-auto-
matic 3D volumetric image registration.
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