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The technique of megavoltage cone-beam computed tomography (MV CBCT)

is available for image-guided radiation therapy to improve the accuracy of pa-

tient setup and tumor localization. However, development of strategies to

efficiently and effectively implement this technique or to replace the current

orthogonal portal images technique remains challenging in the clinical environ-

ment. It is useful to compare the difference in absorbed dose between the MV

CBCT technique and the orthogonal portal images technique, the current stan-

dard practice for treatment verification. Our study analyzed the doses generated

from these two imaging techniques for six treatment sites (pelvis, abdomen, lung,

head and neck, breast, prostate). The analysis was made by simulating the MV

CBCT technique with an arc beam and a beam-on time of 9 monitor units (MUs),

and the orthogonal pair technique with a double-exposure anterior–posterior and

lateral pair and a beam-on time of 4 MUs. The results are presented as dose per

MU (cGy/MU) and absolute dose (cGy). The isocenter doses, integral doses,

maximum doses, and mean doses to tumor and critical organs, and the two-di-

mensional isodose distributions and dose–volume histograms of each critical

organ were investigated. The absolute dose difference between MV CBCT and

orthogonal pair at the isocenter was 4.02 ± 0.59 cGy. Major differences were

seen between the two techniques in critical organs whose locations are away

from the tumor. These organs, such as the contralateral breast (difference: 0.17 ±
0.10 cGy/MU) and lung (difference: 0.15 ± 0.20 cGy/MU), receive a higher

dose from MV CBCT images than from orthogonal portal images. Additionally,

higher doses and larger dose areas involving more normal tissues were observed

for MV CBCT images than for orthogonal portal images in our analysis method-

ology, which used 200 beam projections delivered from various angles for the

MV CBCT simulation and from just two perpendicular angles for the orthogonal

pair simulation. In our selected clinical cases, the high-dose area from the or-

thogonal pair technique was always located inside the tumor; with MV CBCT,

the high-dose area will most likely be outside the tumor. Therefore, the poten-

tially higher doses to critical organs from MV CBCT images should be properly

analyzed to ensure that they do not exceed the tolerance dose when therapy is

delivered using that technique. On the other hand, to obtain good image quality,

the higher MUs with MV CBCT images may be necessary. The absorbed dose

for the tumor and for other critical organs should be calculated accordingly in

the treatment plans. Images by MV CBCT are a great tool for three-dimensional
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verification of patient treatment position. The trade-off is that the MV CBCT

technique for patient treatment verification might have a higher chance of in-

creasing the dose to normal tissue during image acquisition.

PACS number: 87.53.Oq

Key words: image-guided radiotherapy (IGRT), megavoltage cone-beam computed

tomography (MV CBCT), electronic portal image device (EPID), dose comparison

I. INTRODUCTION

The importance of accurate radiation treatment delivery has been discussed theoretically(1,2)

and demonstrated clinically.(3,4) The consequence of missing the tumor in radiation therapy is a

lowered tumor control probability, which might translate into a lower survival rate. The prob-

ability of normal-tissue complications are also increased. Thus, verification of patient treatment

position is a crucial aspect of radiation therapy.

In current clinical practice, variations in patient setup and organ motion are the two most

important limiting factors to radiation treatment precision. Traditionally, orthogonal portal film

images have been compared with the corresponding simulator image or a digitally constructed

radiograph to verify the beam isocenter position and beam angle and shape. This comparison

usually occurs at the beginning of the treatment, and it is repeated at regular intervals through-

out the treatment course. However, the filming procedure is time consuming and labor intensive.

Recently, electronic portal imaging devices (EPIDs) have gained in popularity as the device

of choice for patient setup verification.(5,6) This popularity is attributable mainly to the high-

sensitivity detectors used in EPID, which, in a busy clinic, provide an efficient and effective

method for accurately determining radiation field placement.

However, regardless of whether portal imaging is film-based or EPID-based, one of the

shortcomings of the technique is that it examines only the location of the bony anatomy. It does

not provide information on the tumor or other soft tissues. Current advanced treatment tech-

niques such as serial tomotherapy and intensity-modulated radiotherapy generate a spatially

and temporally complex variation of intensities with a large intensity gradient. The accuracy of

treatment positioning therefore becomes an even more critical issue. To localize the tumor and

critical organs more accurately, image-guided radiation therapy has been introduced.

One form of image-guided radiation therapy uses cone-beam computed tomography

(CBCT), a technique by which the patient three-dimensional (3D) image set is reconstructed

from a series of two-dimensional (2D) projection images acquired immediately before the

treatment. Two CBCT techniques have been developed: kilovoltage (kV) CBCT and

megavoltage (MV) CBCT.(7,8)

The kV CBCT system consists of a kV X-ray tube and a radiographic detector mounted

on the gantry of a medical linear accelerator. The MV CBCT system uses the existing EPID,

making it more cost effective. Moreover, because the same radiation source is used for both

imaging and therapy, no cross-calibration procedure is needed because the imaging geom-

etry is the same as the treatment geometry. However, clinical implementation of MV CBCT

has been challenging because of the relatively large dose required to achieve acceptable

image quality.(7–9)

Using a large-area cesium iodide detector viewed by television camera, Moslesh–Shirazi et al.

required 40 cGy to produce images with reasonable contrast and spatial resolution.(10,11) The

first generation of MV CBCT with amorphous silicon detectors needed high (50–200 cGy)

doses(7,12) to achieve good image quality. Advances in amorphous silicon technologies in the

past few years have made low-dose MV CBCT feasible through the use of fast, sensitive, and

high-spatial-resolution detectors.(13,14) Simpson et al.(15) developed a prototype megavoltage
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CT scanner with 110 projections and delivered a dose of approximately 12 cGy. Recently,

Seppi et al.(16) obtained high-quality megavoltage CT images using 16 cGy (360 projections ×
0.046 cGy/projection), and Pouliot et al.(13) also reported reasonable image quality acquired

with 5–15 cGy (180 projections × 0.027–0.083 cGy/projection).

In accordance with the ALARA (“as low as reasonably achievable”) principle in radiation

protection, doses from MV CBCT images should be reduced as far as reasonably possible. As

a reference for comparison, the dose delivered by the traditional orthogonal portal images

technique,(17–19) employing either film or EPID, is deemed clinically acceptable. The purpose

of the present study was to (1) obtain dose information for six different treatment sites by

simulating and calculating the delivered doses from the MV CBCT and orthogonal pair tech-

niques, and (2) report for the two imaging techniques the dose per monitor unit (cGy/MU) and

the absolute dose (cGy) at the isocenter, the integral dose, the maximum dose in the patient,

and the average doses to the tumor and critical organs.

II. MATERIALS AND METHODS

We calculated the doses to the patient resulting from the orthogonal pair and the MV CBCT

imaging techniques, both based on a 6-MV Oncor linear accelerator (Siemens Medical Solu-

tions, Malvern, PA) equipped with an amorphous silicon flat panel (AG-9). All calculations

were done on a Pinnacle 3D treatment planning system (Version 7.4f, Philips Medical Sys-

tems, Andover, MA).

For the orthogonal pair technique, an anterior–posterior (AP) and a lateral (LAT) field were

created, each with a field size of 20×20 cm and a beam-on time of 3 MUs (the standard practice

in our clinic). Thus, a total of4 MUs were used for the AP/LAT orthogonal pair.

For the MV CBCT technique, a 200-degree arc beam was created from 270 degrees to

110 degrees (International Electrotechnical Commission scale) in a clockwise direction as rec-

ommended by the manufacturer. For the purpose of the dose calculation, the arc beam was

divided into 200 fixed subfields at 1-degree intervals, and doses were calculated for each sub-

field. The total beam-on time for the arc was set to 9 MUs, as suggested by Pouliot et al.(13,20) to

achieve good image quality for head-and-neck treatment. To achieve a fair dose comparison with

the orthogonal pair technique, the field size was also set to 20×20 cm. The room views of the MV

CBCT and orthogonal pair techniques are shown in Fig. 1 (panels A and B respectively).

MV CBCT Orthogonal Pair  

FIG. 1. (A) The room’s eye view of a megavoltage cone-beam computed tomography image, created by delivering an
arc beam from 270 degrees to 110 degrees, clockwise direction. (B) The room’s eye view of orthogonal portal images
with 0-degree (anterior–posterior) and 90-degree or 270-degree (lateral) acquisition as an orthogonal pair.

(A) (B)
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To quantify and compare the doses to the tumor and the surrounding critical organs result-

ing from the MV CBCT and orthogonal pair techniques, 30 patients representing six different

treatment sites (pelvis, abdomen, lung, head and neck, left breast, and prostate) were analyzed

in our study. Data from 5 patients for each treatment site were used to calculate the means and

standard deviations. The calculated doses were the integral dose, maximum dose to the patient,

dose at the isocenter, and mean dose to the tumor and to each critical organ. Table 1 lists the

critical organs for each treatment site used in our study. For all patients, the contours of the

tumor and the critical organs were drawn by the same physician.

TABLE 1. Critical organs for each treatment site, where GTV is the gross tumor volume and CTV is the clinical tumor volume

Pelvis Abdomen Lung Head and neck Left breast Prostate

Max dose Max dose Max dose Max dose Max dose Max dose

Isocenter Isocenter Isocenter Isocenter Isocenter Isocenter

Integral dose Integral dose Integral dose Integral dose Integral dose Integral dose

GTV/CTV GTV/CTV GTV/CTV GTV/CTV GTV/CTV GTV/CTV

Bladder Spinal cord Spinal cord Spinal cord Spinal cord Bladder

Rectum Lung Lung Brainstem Lung Rectum

Kidney Kidney Heart Parotid Heart Bowel

Liver Esophagus Mandible Contralateral breast

Spleen

The calculated doses from the MV CBCT and orthogonal pair techniques can be cal-

culated in two ways—namely, dose per MU (cGy/MU) and absolute dose with specific

MU values. For estimating the dose to the patient, the absolute dose is of interest. How-

ever, because the actual MUs used in MV CBCT may vary with the treatment site and

the imaging protocols adopted in each institution, reporting the dose per MU is also

useful. Dose per MU provides a means for easily scaling the calculated dose results to

other MU settings.

III. RESULTS

For each of the 30 patients included in this study, the doses delivered by the MV CBCT and

orthogonal pair techniques were calculated and analyzed. Table 2 shows the dose per MU for

the two techniques for all six treatment sites. For each treatment site, 5 patients were included

in the calculation of the means and standard deviations. The dose per MU was calculated by

dividing the calculated absolute dose for each imaging technique by its corresponding MUs:

MV CBCT by 9 MUs, and orthogonal pair by 4 MUs.

Comparing the two techniques, the integral dose and the dose to the isocenter were similar

for all treatment sites. However, the maximum dose to the patient showed greater variation for

all sites except the head-and-neck site. The thicker treatment sites, such as the pelvis and the

abdomen, showed larger differences (1.15 cGy/MU vs. 1.43 cGy/MU and 1.14 cGy/MU vs.

1.36 cGy/MU respectively). Furthermore, the differences in the mean dose to critical organs

were larger for organs whose locations were farther from the tumor or the isocenter—for ex-

ample, normal lung (0.59 cGy/MU vs. 0.88 cGy/MU) and contralateral breast (0.40 cGy/MU

vs. 0.23 cGy/MU). In contrast, the differences in the dose per MU to the tumor [gross tumor

volume (GTV) / clinical tumor volume (CTV)] or to the critical organs located closer to the

tumor were very small (overall average: 0.04 ± 0.016 cGy/MU) between the MV CBCT and

orthogonal pair techniques.
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Table 3 shows the absolute dose difference for the six treatment sites. Because of the greater

MUs employed in the MV CBCT technique, the absolute dose from the MV CBCT technique

was higher than that from the orthogonal pair technique. The dose difference ranged from 1.46

± 0.45 cGy to 5.73 ± 0.43 cGy for various organs.

Fig. 2 shows the 2D absolute dose distributions on the transverse slice that contains the

isocenter for the six treatment sites: (A) pelvis, (B) abdomen, (C) lung, (D) head and neck, (E)

left breast, and (F) prostate. The left and right panels show the dose distributions from, respec-

tively, the MV CBCT technique and the orthogonal pair technique. The tumor and the critical

organs are shown in different colors, and the isocenter is located at the center of the tumor. Fig.

3(A–F) shows the dose distributions on the sagital/coronal slice.

In Figs. 2 and 3, the isodose lines corresponding to the given MUs (9 cGy for MV CBCT

and 4 cGy for orthogonal pair) are displayed with medium thickness. Compared with the or-

thogonal pair technique, the area covered by the 4-cGy isodose line of the MV CBCT technique

is larger, including more volume of the critical organs. With the orthogonal pair technique, the

isocenter is located at the center of the tumor, thereby contributing higher dose to the tumor,

but lesser doses to the normal tissue away from the tumor. Moreover, the high-dose area is

located at the proximal corner of the rectangular area intersected by the two orthogonal beams.

TABLE 2. Value and standard deviation of the relative dose differences (cGy/MU) between megavoltage cone-beam
computed tomography (MV CBCT) images and orthogonal portal images in six treatment sites for tumor and 14
critical organs, where GTV is the gross tumor volume and CTV is the clinical tumor volume

Pelvis Abdomen Lung

MV CBCT Portal MV CBCT Portal MV CBCT Portal

Max dose 1.15±0.02 1.43±0.01 1.14±0.06 1.36±0.06 1.16±0.01 1.25 ±0.1

Isocenter 0.74±0.04 0.78±0.03 0.78±0.06 0.84±0.05 0.84±0.02 0.83±0.08

Integral dose 0.58±0.12 0.73±0.07 0.54±0.12 0.67±0.19 0.62±0.04 0.60±0.04

GTV/CTV 0.72±0.07 0.76±0.08 0.80±0.07 0.84±0.06 0.88±0.06 0.89±0.05

Rectum 0.96 ±0.02 0.98± 0.03

Bladder 0.62±0.15 0.69±0.13

Kidney 0.87 ±0.06 0.9±0.16 0.43±0.28 0.42±0.29

Liver 0.65±0.07 0.90 ±0.14

Spleen 0.40±0.21 0.29±0.25

Lung 0.59 ±0.16 0.88±0.09 0.69±0.22 0.54±0.20

Esophagus 0.84±0.04 0.79±0.04

Heart 0.72±0.21 0.69±0.21

Spinal cord 0.43±0.19 0.55 ±0.23 0.61±0.11 0.58±0.10

Head and neck Left breast Prostate

MV CBCT Portal MV CBCT Portal MV CBCT Portal

Max dose 1.16±0.09 1.18±0.09 1.16±0.03 1.23±0.03 1.12±0.03 1.22±0.05

Isocenter 1.02±0.01 1.03±0.01 0.81±0.13 0.84±0.11 0.71±0.03 0.72±0.03

Integral dose 0.67±0.07 0.66±0.08 0.57±0.04 0.57±0.06 0.54±0.04 0.54±0.04

GTV/CTV 0.85± 0.18 0.87±0.17 1.05±0.05 1.08±0.02 0.71±0.04 0.70±0.06

Rectum 0.70±0.27 0.69±0.26

Bladder 0.64±0.16 0.65 ±0.13

Bowel 0.56 ±0.07 0.57±0.08

Lung 0.41±0.04 0.37±0.10

Heart 0.84±0.07 0.81±0.06

Contralateral breast 0.40±0.06 0.23±0.05

Spinal cord 0.80±0.15 0.79 ±0.14 0.40±0.01 0.60 ±0.05

Brainstem 0.31±0.28 0.31±0.28

Parotid gland 0.58±0.40 0.65 ±0.49

Mandible 1.05±0.01 1.05±0.00
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In contrast, because of the anterior arc, the high-dose area in the MV CBCT technique is lo-

cated anterior to the anatomy, where it will contribute more dose to the more anterior critical

organs such as the normal lung and the contralateral breast.

At the max dose point, the dose per MU was similar between the two techniques, with an

average difference of –0.13 ± 0.096 cGy/MU. However, the difference in absolute dose was

greater, averaging 5.23 ± 0.43 cGy [10.35 ± 0.43 cGy for MV CBCT (9 MUs) and 5.12 ±
0.11 cGy for orthogonal pair (4 MUs)] over all of the patients.

In Fig. 4, the dose–volume histograms (DVHs) are shown for the six treatment sites: (A)

pelvis, (B) abdomen, (C) lung, (D) head and neck, (E) breast, and (F) prostate. The doses were

calculated with 2 MUs for both techniques. The results of the MV CBCT and orthogonal pair

techniques are displayed as solid lines and dashed lines respectively. Red and blue lines show

tumor (GTV/CTV) and critical organs separately. For the pelvis, prostate, and head-and-neck

sites, the DVH difference between the two techniques is small. For the breast, lung, and abdo-

men treatment sites, the DVH difference is greater, especially for large-volume critical organs

located away from the tumor. Therefore, the dose distribution and absolute dose received by

the critical organs in specific treatment sites should draw more attention when MV CBCT

images are used in clinical treatment.

IV. DISCUSSION

Patient motion or setup error during the treatment course can sometimes lead to a geometric

miss. Verifying the treatment field at the beginning of treatment and at regular intervals during

the course is therefore important. Weekly port filming is a standard procedure used to verify

treatment delivery and thus to ensure the correct delivered dose.

For the past 20 to 30 years, regular filming technique with a wet processor has been used for

portal images. Digital imaging with phosphor plates or EPIDs has been gaining popularity and has

the potential to become the “gold standard” for patient setup verification. As the treatment tech-

nique becomes more complex, more precise patient positioning is needed. As a result, 3D imaging

TABLE 3. Value and standard deviation of the absolute dose difference between megavoltage cone-beam computed tomogra-
phy (MV CBCT) images with a total of 9 monitor units (MUs) and portal images with a total of 4 MUs in six treatment sites
for tumor and 14 critical organs, where GTV is the gross tumor volume and CTV is the clinical tumor volume

Pelvis Abdomen Lung Head and neck Left breast Prostate

Max dose 4.67±0.17 4.81±0.44 5.46±0.35 5.73±0.43 5.56±0.39 5.17±0.14

Isocenter 3.65±0.22 3.70±0.57 4.23±0.24 5.11±0.08 3.94±0.81 3.51±0.22

Integral dose 2.27±0.93 2.22±0.41 3.22±0.19 3.41±0.35 2.82±0.39 3.63±0.12

GTV/CTV 3.20±0.45 3.83±0.67 4.38± 0.50 4.98±0.95 5.21±0.49 2.71±0.22

Rectum 4.67±0.15 3.54±1.39

Bladder 2.87±0.60 3.17±0.91

Bowel 3.62±0.34

Kidney 4.20± 2.58 2.51±1.60

Liver 2.22± 0.51

Spleen 2.39±0.86

Lung 1.77± 1.79 4.02±124 3.89±0.36

Esophagus 4.40±0.37

Heart 3.69±1.09 4.33±0.650

Contralateral breast 2.65±0.49

Spinal cord 1.65±0.96 3.14±0.61 4.01 ±0.77 1.46±0.45

Brain Stem 1.57±1.39

Parotid 2.60±1.68

Mandible 5.52±0.07
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FIG. 2. The two-dimensional absolute dose distribution of transverse central slice is evaluated in various treatment sites—
(A) pelvis, (B) abdomen, (C) lung, (D) head and neck, (E) breast, and (F) prostate—using megavoltage cone-beam computed
tomography images at 9 MUs (left panels) and orthogonal portal images at 4 MUs (right panels).

techniques such as CBCT, which reconstructs 3D volumes from a series of 2D projection

images, have recently been developed. To achieve good image quality, the CBCT technique

requires at least 180 projections.(14) The value of the delivered MUs and the number of pro-

jections for MV CBCT imaging are therefore the most important factors that should be

considered in the clinical application of that technique as compared with the current or-

thogonal portal images technique.

Many studies have investigated the possibility of using standard CT reconstruction tech-

niques and specialized megavoltage photon detectors with a modest radiation dose (15–20 cGy)

to obtain a tomographic image of the patient during treatment.(13,14,16) Given the calcula-

tions in the present study, the dose to the isocenter using MV CBCT with a 200-degree arc

and 9 MUs was 6.69 ± 0.05 cGy for pelvis and prostate, 7.42 ± 0.13 cGy for breast and

lung, and 9.18 ± 0.01 cGy for head and neck. The absorbed dose varied with the treatment

site because of variations in site thickness. However, compared with the portal images tech-

nique, the dose to the isocenter from one orthogonal pair using 4 MUs was 3.00 ± 0.03 cGy for

pelvis and prostate, 4.67 ± 0.033 cGy for breast and lung, and 4.12 ± 0.0054 cGy for head and

neck. To reduce the total dose or the dose outside the treatment volume, the clinical appli-

cation of MV CBCT should be investigated by improving the sensitivity and efficiency of

detectors in the EPID, adjusting the size of the field of view, and performing a limited

number of projections. In addition, the frequency of use of MV CBCT should follow the

ALARA principle in radiation protection as dictated by professional judgment and institu-

tional practice.
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FIG. 3. The two-dimensional absolute dose distribution of sagital/coronal central slice is evaluated in various treatment
sites—(A) pelvis, (B) abdomen, (C) lung, (D) head and neck, (E) breast, and (F) prostate—using megavoltage cone-beam
computed tomography images at 9 MUs (left panels) and orthogonal portal images at 4 MUs (right panels).

The significance of the additional MV CBCT dose and the location of the high-dose

area could be questioned. Because the MV CBCT image is reconstructed from many pro-

jection images, an arc beam of at least 180 degrees is required. The 2D dose distribution

on each slice therefore varies depending on the beam angles spanned by the arc, as shown

in Fig. 5. In Fig. 5, a wider arc angle in MV CBCT produces a more uniform dose distribu-

tion, but delivers more dose to normal organs such as the contralateral breast or normal

lung than does the orthogonal portal images technique (although the difference in the inte-

gral dose is small).

The high-dose area in orthogonal portal imaging is always located inside the tumor or

close to it, so that the extra dose will not be a significant issue in clinical treatment. How-

ever, with MV CBCT imaging, the high-dose area may be inside normal critical organs located

away from the tumor. The effect could be significant and could possibly lead to secondary

malignancies, depending on the threshold dose of the irradiated organs. If high doses are

necessary for verification of patient treatment location, then the extra dose should be calcu-

lated and evaluated in treatment planning to ensure that it does not exceed the tolerance dose

of sensitive organs. The comparisons of the MV CBCT and orthogonal pair techniques in the

present study show significant differences in the DVHs seen in abdomen, lung, and breast

sites, but almost the same values for DVHs in the pelvis and prostate. The difference is

greater for critical organs whose locations are far away from the tumor than for those closer

to the tumor. The dose from MV CBCT should be included in the dose–volume histogram

for the plan evaluation.
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FIG. 4. The dose–volume histogram (DVH) of tumor [gross tumor volume (GTV) / clinical tumor volume (CTV)] and all
critical organs is evaluated in various treatment sites—(A) pelvis, (B) abdomen, (C) lung, (D) head and neck, (E) breast,
and (F) prostate—using megavoltage cone-beam computed tomography images (solid line) and orthogonal portal images
(dashed line) at the same monitor unit value (2 MUs total).

(A)

(F)(E)

(D)(C)

(B)

(E)

 

FIG. 5. The two-dimensional absolute dose distribution of a central slice is evaluated in three different beam-delivery
methods with 6 MUs. (A) Megavoltage cone-beam computed tomography images with 200 projections; (B) megavoltage
cone-beam computed tomography images with 360 projections (from 0 degrees to 359.9 degrees in a clockwise direc-
tion); (C) orthogonal pair images.

(A) (B) (C)
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V. CONCLUSION

Our study calculated doses, dose distributions, and DVHs resulting from both the MV CBCT

and orthogonal pair techniques were for six treatment sites. The calculation for the orthogonal

pair technique was based on 4 MUs and that for MV CBCT was based on 9 MUs. The latter

was considered to be feasible for routine clinical application—providing good image quality

while keeping the dose to the patient relatively low.

From our analysis, the relatively high-dose regions generated by MV CBCT occur inside

critical organs and tend to be larger than those generated by the orthogonal pair technique.

Radiation-induced secondary neoplasm is always a concern in radiation therapy. Because of

the potential biologic effects caused by the small dose from the imaging process, the extra dose

burden to the critical structures should be monitored carefully.

Our study provides a quantitative analysis on the extra radiation burden caused by current

verification procedures. It suggests that the number of projections and the total MU value are

the most important factors when the MV CBCT technique is used in clinical application. The

pros and cons of using MV CBCT for patient treatment verification should be examined to

balance the risks and benefits.
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