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Abstract

Microbial pathogens and viruses can often maintain sufficient population diversity to evade a wide 

range of host immune responses. However, when populations experience bottlenecks, as occurs 

frequently during initiation of new infections, pathogens require specialized mechanisms to 

regenerate diversity. We address the evolution of such mechanisms, known as stochastic phenotype 

switches, which are prevalent in pathogenic bacteria. We analyze a model of pathogen 

diversification in a changing host environment that accounts for selective bottlenecks, wherein 

different phenotypes have distinct transmission probabilities between hosts. We show that under 

stringent bottlenecks, such that only one phenotype can initiate new infections, there exists a 

threshold stochastic switching rate below which all pathogen lineages go extinct, and above which 

survival is a near certainty. We determine how quickly stochastic switching rates can evolve by 

computing a fitness landscape for the evolutionary dynamics of switching rates, and analyzing its 

dependence on both the stringency of bottlenecks and the duration of within-host growth periods. 

We show that increasing the stringency of bottlenecks or decreasing the period of growth results in 

faster adaptation of switching rates. Our model provides strong theoretical evidence that 

bottlenecks play a critical role in accelerating the evolutionary dynamics of pathogens.
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INTRODUCTION

In the biology of infections, microbial populations are often subject to reductions in numbers 

as they are transmitted from one host to another or translocate across anatomical barriers 

within a host. These reductions in population size are often described metaphorically as 

bottlenecks (reviewed in (Amos and Harwood, 1998)). Microbial bottlenecks reduce the 

variation in the gene pool of a population and the reduced genetic diversity takes time to be 

restored and may not be representative of the original population. The impact of bottlenecks 
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on population fitness is potentially complex. We consider two broad classes of bottlenecks – 

non-selective bottlenecks, in which all cells are equally likely to survive, and selective 
bottlenecks in which some cells are more likely to survive than others. In a non-selective 

bottleneck, the fitness of the population may be reduced if the future progeny, subjected to 

genetic drift, is founded by less fit genotypes. On the other hand, there can be an increase in 

population fitness under selective bottlenecks because certain genotypes will be more likely 

to survive, and less fit genotypes will be eliminated. In either of these scenarios, which are 

not mutually exclusive over the history of any given pathogen, there are potentially profound 

consequences for understanding the evolutionary trends of the commensal and pathogenic 

behaviour of microbes and of their hosts. Naturally occurring and experimental infections 

provide direct information on the population dynamics of spread between and within hosts 

and the impact of bottlenecks. Some of the most important examples are afforded by 

observations on viruses.

Clinical observations of HIV-1 infection in humans shows that the virus undergoes a severe 

population bottleneck during sexual transmission and yet must rapidly generate diversity to 

adapt to the earliest immune responses of the new host. The transmission bottleneck has 

been inferred to consist typically of a single virion and involves both stochastic and selective 

events in the donor, during transmission and within the recipient host (da Silva, 2012). These 

dynamics have major implications for HIV prevention, for example the use of treatment in 

pre-exposure prophylaxis.

In experimental poliovirus infection of mice, the probability of occurrence of central nervous 

system infection depends critically on population size and genomic diversity. Here, 

bottlenecks are an inevitable consequence of within host selection of the rare variants that 

facilitate disease progression (Pfeiffer, 2010). More generally, RNA viruses are endowed 

with relatively high mutation rates and these can be modulated through greater or lesser 

fidelity of RNA polymerases (Campagnola et al., 2014). Fidelity of RNA polymerase in 

replication and the effective population size determine whether sufficient variants are 

generated within the population for infection to occur. For example, studies on human 

influenza infection show that transmission may in some circumstances involve profound 

bottlenecks whereas in others spread between hosts does not involve a significant reduction 

in genetic diversity (Poon et al., 2016; Varble et al., 2014).

In the case of bacterial infections, population bottlenecks resulting from antibiotic treatment 

are implicated in the origin and spread of major pathogens. Clonal expansion and spread of a 

tetracycline-resistant lineage is now responsible for the majority of the current cases of 

Group B streptococci neonatal sepsis world-wide (Da Cunha et al., 2015). Whole genome 

sequencing of Staphylococcus aureus carriage isolates from patients who later develop 

septicaemia also provide circumstantial evidence of tight bottlenecks whereby clonal 

expansion of rare variants predominate in the blood, an example of drift and/or selection 

(Golubchik et al., 2013).

A recent review has summarised much of the data on experimental infections with bacteria 

and the importance of within-host bottlenecks (Abel et al., 2015). There are many 

convincing animal models of bacteraemia and sepsis using indirect (mucosal) and direct 
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(intravenous) challenge routes in which the entire population of organisms in the blood and 

distant systemic sites of infection (e.g. cerebrospinal fluid) results from a single cell 

bottleneck (Gerlini et al., 2014; Meynell, 1957; Moxon and Murphy, 1978; Pluschke et al., 

1983). There are many fewer experimental studies of bacterial transmission, but extreme 

bottlenecks occur in mouse models of bacterial infection (Kono et al., 2016; Wickham et al., 

2007).

The purging of genetic diversity of microbes through population bottlenecks has major 

implications in the outcomes of transmission between hosts or translocation across different 

anatomical barriers within hosts during infections (Bergstrom et al., 1999; Elena et al., 

2001). Since adaptation depends, in part, on the supply of variants in a population, it follows 

that bottlenecks would be expected to exert selective pressures on microbial mechanisms for 

generating diversity. In instances where bacterial populations undergo extreme bottlenecks, 

even to the point where an infection is founded by a single organism, the challenge of 

adaptation through natural variation is especially stringent. The evolutionary pressure to 

continually regenerate diverse populations from single individuals may favor microbes with 

specific mechanisms of hyper-mutation or alternative phenotypic diversification strategies.

Phase variation is a microbial diversification strategy in which cell surface molecules that 

are involved in host-pathogen interactions are stochastically and combinatorially varied 

across the pathogen population (van der Woude and Bäumler, 2004). This cell surface 

variability is controlled by the expression of different subsets of genes, known as 

contingency loci, in different cells, such that each locus can be turned on or off 

stochastically (Moxon et al., 1994, 2006). Stochastic expression of contingency loci is 

effected by simple-sequence repeats in the coding regions or promoters of these genes, 

which generate a high frequency of insertion and deletion (indel) mutations each time a cell 

divides. In coding regions, indels that lead to frameshifts turn contingency loci on or off 

reversibly and stochastically, while indels in promoter regions can modulate gene expression 

by altering the binding affinity of regulators. This repeat-based mechanism for phenotypic 

diversification provides localised hyper-mutation that increases adaptive potential at specific 

genes, without increasing the genome-wide deleterious mutational load as often occurs in 

mutator strains (Cox, 1976; Denamur and Matic, 2006; Wielgoss et al., 2013). Phase 

variation can also be mediated by epigenetic mechanisms (Manso et al., 2014; van der 

Woude and Henderson, 2008) and more broadly, the key features of reversible, spontaneous, 

stochastic switching can be achieved by a wide range of molecular mechanisms (Davidson 

and Surette, 2008; Rando and Verstrepen, 2007; Srikhanta et al., 2010).

The evolution of stochastic phenotypic switching has been analyzed theoretically in a 

number of different contexts. Under temporally variable environments for large populations 

without bottlenecks, it was shown that switching mechanisms whose rates match the 

environment’s own transition rates tend to maximize the population’s long-term growth rate 

(Gaal et al., 2010; Kussell and Leibler, 2005; Lachmann and Jablonka, 1996; Patra and 

Klumpp, 2015). Other studies have generalized on these results, e.g. by considering density-

dependent growth (Filiba et al., 2012), finite population sizes (King and Masel, 2007), 

spatial dynamics (Palmer and Feldman, 2011), demographic fluctuations (Xue and Leibler, 

2017), and other effects (Lancaster and Masel, 2009; Palmer et al., 2013). In laboratory 

Moxon and Kussell Page 3

Evolution. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experiments, bottlenecks have been shown to provide a critical benefit in evolving stochastic 

switches de novo (Beaumont et al., 2009), and a related modeling study provided further 

support for this finding (Libby and Rainey, 2011). While a number of studies have analyzed 

the capacity for microbes to adapt in the presence of bottlenecks (Campos and Wahl, 2009; 

Patwa and Wahl, 2010; Wahl and Gerrish, 2001), including in the context of host-host 

transmission (Bergstrom et al., 1999; Elena et al., 2001; Handel and Bennett, 2008), the 

potential impact of bottlenecks on the evolution of stochastic switching mechanisms and 

phenotypic diversification strategies has received little attention.

We here consider the effect of bottlenecks on phenotypic switching frequency, its evolution 

and impact on pathogen survival through analysis of a simple mathematical model. We 

analyze the fitness landscape for stochastic switching for selective and non-selective 

bottlenecks, and show that the stringency of selection during bottlenecks strongly affects the 

shape of the landscape and thus the speed with which switching rates evolve. We 

demonstrate the existence of an extinction-survival switching rate, below which pathogen 

lineages are guaranteed to go extinct. We suggest that this threshold rate may play a basic 

role in maintaining stochastic switching strategies generically in pathogens that experience 

bottlenecks. Above the threshold, we characterize the evolutionary dynamics by which 

switching rates adapt toward their optimum, and we predict that short growth durations and 

stringent bottlenecks accelerate the evolution of stochastic switching. We discuss the 

implications of these results for future studies on the evolution and population genetics of 

pathogens.

RESULTS

We study the evolutionary advantage of stochastic phenotype switching in pathogen 

populations using the simple mathematical model described below (“Model and 

Definitions”). We determine the probability of extinction in this model, as a function of the 

stochastic switching rate and the transmission probability from one host to the next. We then 

analyze the fitness landscape for the evolution of stochastic switching rates, and determine 

the impact of selective bottlenecks on the rate of adaptation.

A. Model and Definitions

We will consider a pathogen population that grows within each host for a given duration 

before being able to infect a new host. We call the pathogen population within each host a 

local population, and the pathogen population over all infected hosts the global population. 

A pathogen lineage will refer to all descendants arising from a single pathogen cell over 

time and across all future hosts.

Within a given host, the pathogen exhibits two distinct phenotypes, a growing phenotype A, 

and a non-growing phenotype B. Cells with phenotype A proliferate and occasionally switch 

to phenotype B, while cells with phenotype B cannot proliferate. Upon transfer to a new 

host, the phenotype labels are reversed – the previously non-growing cells now proliferate, 

while the previously growing cells do not.
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The mathematical model is parameterized as follows. The total number of hosts initially 

infected is denoted by Nhost. Within each host, growing cells replicate at a fixed rate f per 

unit time. Each time a cell divides, the daughter cell has probability s to switch to the non-

growing phenotype, while the mother cell retains its growing phenotype. The pathogen 

population grows for a fixed time period τ within the host. At the end of the period, the 

population experiences a transmission bottleneck such that each cell has a fixed probability 

of being transferred to a new host and initiating a new infection. Phenotype A and B cells 

have distinct probabilities of transmission, which we denote ra and rb, with 0 ≤ ra ≤ rb ≤ 1 i.e. 

non-growing cells can have a higher probability of initiating new infections. Sampling from 

the local population with these probabilities yields the numbers of transmitted cells of each 

phenotype that initialize new infections in the next round.

The model provides a coarse-grained representation of the complexity of real microbial 

infection, in which certain parameter combinations are analogous to quantities that are well-

known in the biology of infectious disease. The value τf represents the number of 

generations of the pathogen within the host before clearance. Equivalently, the exponential 

of this value is the total number of cell divisions that the pathogen undergoes. The 

parameters that control whether or not the bottleneck is selective are ra and rb, which specify 

the probability that any given cell of type A or B, respectively, will successfully initiate a 

new infection. If ra < rb, then the bottleneck is selective, and if ra = rb, it is non-selective. The 

stringency of the bottleneck is measured by how different the two values are. The smaller the 

ratio ra/rb, the more stringent the bottleneck. If ra = 0 and rb > 0, then the bottleneck is 

extremely stringent, and only the type B cells can make it through. Our goal here is to 

present and analyze the simplest model that captures key features of the evolutionary 

dynamics. Predictive modeling for clinical infectious disease would require additional 

details to be explicitly represented.

B. Extinction probability in a simple model of host-pathogen dynamics

We begin by examining the case of strong selective bottlenecks in which a phenotypic 

switch from A to B is required in order to initiate a new infection. In this case, currently 

growing cells cannot infect new hosts, or ra = 0, while 0 < rb ≤ 1. If no cells are transmitted, 

the population goes extinct. However, if one or more cells are successfully transmitted, then 

the process restarts and continues in each of the new hosts. We consider an infection 

initiated from a single cell of the growing phenotype A. Using a standard generating 

function approach (Appendix A), the extinction probability of the local population after a 

single round of growth and transmission is calculated as

(1)

and the survival probability as Psurvive = 1− Pextinct. In Fig. 1A, the dashed lines show the 

dependence of Psurvive on the switching rate. As τ increases, we see that the fitness 

landscape takes on a mesa-like shape (e.g. green dashed curves in Fig. 1A, top panel), rising 

from zero at low switching rates to values close to one as switching rates increase, and then 
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appearing nearly flat over several orders of magnitude before decaying back toward zero. 

Along the mesa top, as shown on a logarithmic scale in the lower panel of Fig. 1A, the 

extinction probability continues to decay over orders of magnitude before reaching a 

minimum at a value that we denote as ssurvive.

Decreasing the transmission probability rb causes the survival curves to shift to the right 

(Fig. 1B), requiring higher switching rates to obtain the same survival rates. Comparing Fig. 

1A and Fig. 1B, we see that survival curves are very sensitive to small changes in the period 

τ, while requiring order-of-magnitude changes in rb to cause the same overall shift. For 

example, consider the dashed green curves in Figs. 1A and 1B, which have identical 

parameters with τ = 20 and rb = 0.01. A slight change of period to τ = 15 yields the light 

green curve in Fig. 1A, whereas a hundredfold reduction in transmission to rb = 10−4 yields 

the nearly identical brown curve in Fig. 1B. These dependencies are clear from the 

functional form of Eq. 1. We confirmed by simulations the calculation of Pextinct, with 

simulation results agreeing closely with the theoretical prediction (Fig. S1).

We next calculate the long-term survival probability, P̂
survive, over many rounds of host-to-

host transmission for ra = 0, starting from a single cell of phenotype A. At the end of each 

growth period, each cell that successfully initiates an infection is propagated in a new host 

starting from a single growing cell. If n cells are successfully transmitted at the end of a 

round, we restart n new infections from a single growing cell in n new hosts, and we 

propagate this branching process indefinitely for all pathogen lineages. Eventually, either all 

lineages will go extinct, or the number of successful lineages will grow indefinitely and the 

pathogen population will survive over the long term, provided there is always an abundance 

of new hosts to infect. The probabilities P̂
survive and P̂

extinct ≡ 1−P̂
survive are shown in solid 

curves in Fig. 1A (see Appendix B for details of the calculation). In contrast to the single 

round Psurvive, which is positive for all values of s, the long-term P̂
survive is identically zero 

for s ≤ smin, where smin is a threshold value, and it only begins rising for switching rates 

larger than the threshold.

The value of smin itself can be calculated using a basic result from the theory of branching 

processes: a general branching process has extinction probability one if and only if each 

individual generates on average no more than one offspring (Karlin and Taylor, 1975, p. 

397). Starting from a single cell of phenotype A, the local population grows to size ~ eτf and 

the proportion of cells with phenotype B will be ≈ s eτf. Since each B cell has probability rb 

to infect the next host, the average number of cells transmitted will be ≈ rb s eτf. Extinction 

is therefore guaranteed if and only if rb s eτf ≤ 1, from which we obtain

(2)

(see Appendix B for derivations). For s ≫ smin, we see that Pextinct and P̂
extinct are nearly 

identical (Fig. 1A). This is a consequence of the fact that for high values of s any lineage 

that does not go extinct in the first round produces on average many transmitted cells. The 
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probability of extinction in subsequent rounds is thus tiny compared to extinction in the first 

round, hence the dominant contribution to the long-term P̂
extinct is the single round Pextinct.

The evolutionary implication of the threshold smin is that for any value of s ≤ smin, the global 

pathogen population is guaranteed to go extinct regardless of the number of hosts Nhost 

initially infected, since the lineage of each local pathogen population will go extinct with 

probability Pêxtinct = 1. Conversely, for values of s > smin, P̂
extinct < 1, and the probability of 

extinction of the global pathogen population is (P̂
extinct)Nhost, or exponentially small in the 

number of infected hosts. Thus, the probability of global pathogen survival approaches a 

step function as Nhost increases (Fig. 1C): it is identically zero for s ≤ smin, and extremely 

close to one for s > smin. In light of this, we will refer to smin as the extinction-survival 
threshold. This result could explain the maintenance of high stochastic switching rates in 

pathogens, as lineages that evolve to values of s ≤ smin are pruned out by extinction and thus 

occur only transiently in nature, while lineages with s > smin survive indefinitely.

C. Fitness landscape for evolution of stochastic switching rates

To analyze the evolution of stochastic switching rates, we consider the evolutionary 

pressures experienced by two pathogen lineages with distinct switching rates s and s′. Our 

analysis above shows that extinction will eliminate any lineages with switching rate lower 

than smin, so we can assume that s, s′ > smin. Since the rates are above the extinction-

survival threshold, both lineages are expected to survive indefinitely when propagated in 

isolation of each other, i.e. in separate sets of hosts. However, if the lineages infect a 

common set of hosts, one lineage will outcompete the other if it is capable of infecting more 

hosts per round, or equivalently of transmitting more cells at the end of each growth period. 

We would like to be able to predict which lineages will eventually outcompete others, and to 

determine conditions that favor adaptation of stochastic switching rates.

We quantify the competitive advantage of a pathogen lineage by computing its growth rate. 

In the case of strong selective bottlenecking, as before we have ra = 0, and the lineage 

growth rate Λ is given by the logarithm of the average number of phenotype B cells 

transmitted, n*, per period, or

(3)

We calculate n* by taking the expectation over the stochastic process of growth and 

switching (see Appendix B) or equivalently by solving the deterministic equations for the 

population vector x(t) = (xA, xB), which gives the expected cell numbers of types A and B, 

respectively,

(4)
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(5)

Using the initial condition x(0) = (1, 0), we have

(6)

from which we obtain n* = rb · xB(τ). The growth rate is given by

(7)

and for τf ≫ 1 we find

(8)

We plot Λ using Eq. 7 for different growth periods τ over s on a logarithmic scale (Fig. 2A, 

upper panel). At extremely low values of s, Λ is negative, indicating that the lineage will go 

extinct, since the expected number of transmitted cells is less than one. The extinction-

survival threshold smin is determined by Λ = 0, and it is seen from Eq. 8 that for s ≪ 1 we 

obtain smin = (1/rb)e−τf as before. For switching rates smin < s ≪ 1, the function increases 

linearly with log(s), and its slope is 1/τ indicating that the shorter the growth phase within 

each host, the more evolutionarily advantageous it is for the pathogen to increase its 

switching rate. This is apparent from the increasing slopes of the curves in the upper panel 

of Fig. 2A from left to right. In other words, a more rapidly changing host environment 

selects more strongly for increased switching rates. At high values of s ≫ smin, the function 

reaches a maximum at a value that we call the optimal switching rate, sopt. We calculate sopt 

by setting ∂Λ/∂s = 0 in Eq. 8, which yields

(9)

i.e. the optimal switching rate is proportional to the environmental rate of change, 1/τ, a 

well-known result from previous theoretical studies (Kussell and Leibler, 2005; Lachmann 

and Jablonka, 1996; Patra and Klumpp, 2015). We note that sopt and ssurvive are 

approximately equal when the transmission probability per cell is small (rb ≪ 1) (Appendix 

C), which is the case in most biologically relevant scenarios, indicating that maximization of 

long-term growth rate simultaneously maximizes survival probability.

Moxon and Kussell Page 8

Evolution. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We now generalize the analysis to vary the stringency of the bottleneck, such that both 

phenotypes A and B have non-zero probability of transmission, with 0 < ra ≤ rb ≤ 1. To 

compute Λ, we must consider the population dynamics over multiple rounds of growth in 

different hosts. We denote by x(i)(t) the population vector in the i-th round for 0 ≤ t ≤ τ. For 

each round with initial condition x(i)(0), the population vector satisfies Eqs. 4 and 5, or

(10)

We account for selective bottlenecking and the swapping of phenotype labels at each host-

to-host transfer by setting

(11)

Solving Eqs. 10 and 11, we obtain

(12)

The above recursion shows that over the long term, the population vector grows according to 

the repeated application of the matrix ReGτ : the population vector approaches the direction 

of the leading eigenvector of this matrix, and the long-term growth rate is given by

(13)

where λ1(·) denotes the maximal eigenvalue. The explicit expression for Λ is given in 

Appendix C, Eq. 32. Using this, one can easily check that for the case ra = 0, we recover the 

value of Λ computed in Eq. 7.

In Fig. 2A, lower panel, we plot Λ for the case of no selective bottleneck, in which ra = rb = 

1. At low switching rates, the landscape is essentially flat, and a noticeable gradient appears 

only as s begins to approach sopt. In contrast, the fitness landscape under strong selective 

bottlenecks (Fig. 2A, upper panel) exhibits a gradient over the entire range of s from very 

low values all the way to sopt. To determine how selective bottlenecking changes the 

landscape, we progressively reduce the value of ra, and plot Λ for fixed τ in Fig. 2B. First, 

we find that for sufficiently high switching rates, all of the curves overlap, and appear to be 

independent of ra. Second, at low switching rates for ra > 0 the curves are flat and the growth 

rate shifts downward linearly for each order-of-magnitude reduction in ra.
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To explain these behaviors, we calculate Λ in the limits of low and high switching rates (see 

Appendix C). For high switching rates, where s ≫ (1/rb)e−τf, we find that Λ is independent 

of ra, and we obtain the identical form as previously computed in Eq. 8, showing that all 

curves in Fig. 2B indeed collapse on the ra = 0 curve. In this case the degree of selective 

bottlenecking ra is irrelevant, since the transmitted B cells have sufficient time in each 

subsequent host to completely outgrow any residual A cells that are transferred. In the 

opposite limit for sufficiently small s, most cells do not switch phenotype during any given 

growth period. We can therefore consider the growth rate of a non-switching single cell as it 

is transferred from host to host. An initially type A cell grows with rate f for time τ, to a 

population of size efτ, and is then bottlenecked by a factor ra in the next host where it 

persists without growing as a type B cell for another period τ before being bottlenecked by a 

factor of rb and resuming growth as type A in the next host. Over a total time 2τ, the 

population expanded from one cell to rbraefτ cells, which corresponds to a growth rate of

(14)

consistent with the dependence of Λ on ra seen in Fig. 2B (see Appendix C).

We can estimate the switching rate at the cross-over region between flat and steep portions 

of the landscape, denoted scross (see Fig. 2A, lower panel), by setting equal the two limiting 

forms of Λ from Eqs. 8 and 14, and solving for s. This yields

(15)

indicating that reduction of ra proportionally reduces the value of scross, thereby increasing 

the size of the region over which the landscape exhibits a gradient. As ra is reduced, scross 

approaches the value of smin, and using Eq. 2 we find that for ra < (1/rb)e−τf/2, we have scross 

< smin yielding an evolutionary landscape of switching rates that exhibits a gradient all the 

way from smin to sopt. We see therefore that sufficiently strong selective bottlenecking 

changes substantially the adaptive landscape, enhancing the capacity for rapid stochastic 

switching to evolve.

D. Simulated evolution of stochastic switching rates

To test these evolutionary predictions, we carried out extensive stochastic simulations of the 

evolutionary process at various degrees of selective bottlenecking. We considered a set of 

genotypes each with a different switching rate s, spanning several orders of magnitude of 

switching rates from s = 10−5 to s = 0.3. The values of switching rates of the genotypes are 

shown as pink circles in Fig. 2B. Mutations occurring with rate μ = 10−5 per cell division 

alter the genotype, increasing or decreasing the switching rate according to a linear 

arrangement of the genotypes shown in Fig. S2A. Our analysis predicts that the 

corresponding values of Λ for each genotype will depend strongly on ra, such that more 
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stringent bottlenecking selection via lower ra will lead to a steeper gradient of the 

evolutionary landscape (Fig. 2B). For example, from Fig. 2B we predict that evolution of 

switching rates using ra = 0.001 (closed circles) will proceed much faster toward sopt than 

evolution using ra = 1 (open circles).

We propagated in simulation a pathogen lineage starting from a single cell with the genotype 

corresponding to the lowest switching rate s = 10−5, with growth in each host lasting τ = 12 

generations (see Appendix D for simulation details). In this case, the genotype s = 0.1 has 

the highest value of Λ among the available genotypes. Simulations were run over a range of 

values ra, and we tracked the speed of the evolutionary dynamics by recording the time at 

which the genotype s = 0.1 first achieved a frequency of 90% in the population, which we 

will refer to as the adaptation time. In Fig. 2C, we show the cumulative distribution of 

adaptation times over 100 independent simulations for each value of ra (for a more detailed 

view of the evolutionary trajectories, see Fig. S2B,C). For a non-selective bottleneck (ra = 

1), none of the simulations exhibit adaptation within 1000 generations, while for 

increasingly stringent bottlenecking, using ra = 0.1, 0.01, and 0.001, adaptation is achieved 

in a greater number of runs. Once the genotype s = 0.1 is fixed in the population, genotypes 

with both higher (0.3) and lower (0.01) switching rates are maintained at much lower 

frequencies at mutation-selection balance (Fig. S2B). A median adaptation time of about 

400 generations is found for ra = 0.001, with all simulations evolving to the best genotype by 

1000 generations. These results confirm the predicted impact of selective bottlenecks on 

evolutionary rates.

For comparison, we computed the evolutionary dynamics in the infinite population size limit 

(Fig. S2D). In this case, since population size is not limiting, all genotypes appear in the 

population instantaneously, with each subsequent genotype appearing at a frequency μ = 

10−5 times that of its predecessor. Rapid evolution of the optimal genotype ensues within ≈ 
200 generations. In reality, such rapid evolution would only be possible in a sufficiently 

large population of size N > 1028, which is comparable to the total number of bacterial cells 

on Earth, and much larger than the estimated effective population sizes of bacteria. It is 

therefore remarkable that bottlenecking selection with ra = 0.001 (Fig. S2B) achieves a 

comparable evolutionary rate (≈ 400 generations) in a population of size N ~ 108.

DISCUSSION

Stochastic switches have been studied in a wide range of pathogenic organisms, and are 

thought to evolve as a survival mechanism under fluctuating and unpredictable 

environments. In many instances, such switches were discovered in connection with host-

pathogen interactions, including variation in surface antigens (Moxon et al., 2006; van der 

Woude and Bäumler, 2004). Understanding the evolutionary pressures that drive the 

emergence of stochastic switches, and modulate their rates, has been a subject of both 

theoretical and experimental studies. A body of theoretical work has examined the adaptive 

utility of stochastic switches as a function of several key parameters including the 

environmental fluctuation rates, the uncertainty of external conditions, phenotype-specific 

growth rates, and the cost of alternative strategies such as sensing (Donaldson-Matasci et al., 

2010; Filiba et al., 2012; Gaal et al., 2010; Kussell et al., 2005; Kussell and Leibler, 2005; 
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Lachmann and Jablonka, 1996; Lancaster and Masel, 2009; Palmer and Feldman, 2011; 

Patra and Klumpp, 2015; Rivoire and Leibler, 2011; Thattai and van Oudenaarden, 2004; 

Wolf et al., 2005). When switching rates are able to adapt thereby increasing long-term 

population growth rates, the optimal switching rates in a slowly fluctuating environment are 

inversely proportional to the environmental durations (Gaal et al., 2010; Kussell and Leibler, 

2005; Lachmann and Jablonka, 1996; Patra and Klumpp, 2015). The role of finite population 

size and the conditions in which optimal switching rates can evolve were characterized in 

(Fudenberg and Imhof, 2012; King and Masel, 2007). When populations are too small, e.g. 

if phenotypic switches occur less often in a population than environments change, it 

becomes difficult for optimal switching rates to evolve, and strains would be expected to 

exhibit suboptimal switching. More recently, the relation between fluctuating population 

sizes and stochastic switching was studied in the context of dispersal and extinction 

dynamics (Xue and Leibler, 2017).

We considered a simple model in which pathogens can switch reversibly and stochastically 

between two phenotypic states, a growing and a non-growing state. When transferred to a 

new host, the phenotypes swap their behavior – the previously growing phenotype becomes 

the presently non-growing phenotype, and vice versa. In this model, which was previously 

analyzed in (Kussell et al., 2005; Lachmann and Jablonka, 1996; Thattai and van 

Oudenaarden, 2004), it is beneficial for cells to switch phenotype stochastically with a non-

zero rate, otherwise the lineage of any given cell would only be able to proliferate in every 

other host, and thus achieve only half of its maximal possible long-term growth rate. 

Stochastic switching is also detrimental, since phenotypic switches that occur before transfer 

to the new host yield non-growing cells, compromising the growth potential of the 

population within the current host. It is therefore best for cells to switch at an optimal rate, 

sopt, which optimizes the trade off between maintaining non-growing cells in the present 

host and their growth potential in the next host, maximizing the population’s long-term 

growth rate. Yet, whether and how quickly switching rates can evolve is determined by the 

fitness landscape for stochastic switching, given by the long-term growth rate as a function 

of switching rate. Our goal here has been to determine how switching rates evolve when 

pathogens experience frequent selective bottlenecks, a scenario that is typical in many host-

pathogen interactions. By computing the shape of the fitness landscape for stochastic 

switching, we found that selective bottlenecks increase its slope and accelerate the evolution 

of switching rates.

We showed that in the absence of selective bottlenecks, switching rates can adapt rapidly 

only in the vicinity of the optimal switching rate, sopt, while for much smaller switching 

rates the fitness landscape is essentially flat (Fig. 2A, lower panel). We demonstrated that 

selective bottlenecks substantially alter the fitness landscape for stochastic switching rates, 

causing a slope that extends all the way from switching rates in the vicinity of smin to sopt 

(Fig. 2B). We verified by stochastic simulations that this effect is pronounced, and leads to a 

dramatic acceleration of adaptation speed when bottlenecks are sufficiently stringent (Fig. 

2C and Fig. S2). We showed that the crossover between flat and sloped portions of the 

landscape occurs at a value scross ≈ rae−τf/2, and therefore increasing the stringency of 

selective bottlenecks via reduction of ra leads to proportional reduction of scross, facilitating 

evolution over a wider range of switching rates. For very stringent bottlenecks, scross is less 
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than smin, and the population can in principle adapt rapidly across all viable switching rates. 

However, for switching rates above but close to smin, the risk of eventual extinction of any 

single lineage increases (Fig. 1A, solid curves). We showed that this effect may be negligible 

if Nhost, the number of initially infected hosts, is sufficiently large (Fig. 1C). In that case, 

smin is effectively an extinction-survival threshold, above which the global pathogen 

population survives with near certainty, and below which extinction is guaranteed for any 

value of Nhost.

It is important to note that if bottlenecks are non-selective, i.e. ra = rb, then the theoretical 

analysis shows that the bottleneck does not accelerate evolution of switching rates, 

regardless of bottleneck size. Stochastic switching is still beneficial in this case since it 

enables growth in subsequent hosts, but it provides no advantage in initiating infections. A 

non-selective bottleneck affects the population size, which sets the magnitude of 

demographic fluctuations, but it does not impact the mean composition of the transmitted 

population and thus has no effect on the fitness landscape. The impact of non-selective 

bottlenecks on bacterial phase variation was recently studied in (Aidley et al., 2017), where 

the effect of bottleneck size on patterns of diversity was analyzed. It was shown that 

populations that are passaged through single cell bottlenecks exhibited patterns of diversity 

that varied significantly from their ancestral populations, in contrast to the case of wide 

bottlenecks where the ancestral composition was largely maintained. Thus, while non-

selective bottlenecks do not influence the fitness landscape of stochastic switching, they can 

impact the host-to-host variability of pathogen populations.

The existence of an extinction-survival threshold switching rate, which is a general feature 

of the stochasticity associated with bottlenecks, provides a simple and general evolutionary 

mechanism for maintenance of stochastic switches in natural populations. Indeed, the values 

and distributions of switching rates that evolve in a population are clearly dependent on 

multiple effects, e.g. in our model these include growth durations τ, transmission 

probabilities ra and rb, mutation rate μ, and the local and global population sizes; while in 

nature many more effects exist, such as variability in τ, in population sizes, in hosts and their 

immune systems, etc. The extinction-survival threshold dictates only that switching rates 

remain above some minimal value, regardless of all other effects that determine precisely 

how adaptation will proceed. In this sense, stochastic switches with sufficiently high rates 

are expected to be maintained in pathogens that experience strong selective bottlenecks. In 

our simple model, a strong selective bottleneck is defined by the condition that in the 

absence of switching, less than one cell on average would survive host transmission, or 

rbraeτf < 1 (see Eq. 14). In a more general model, where growth rates f, growth durations τ, 

and transmission probability r are random variables that depend on the host environment, the 

condition becomes , where the average is taken over the distribution of hosts. 

When this condition is satisfied, an extinction-survival threshold exists, and stochastic 

switches are predicted to be maintained in the pathogen population.

Extensive laboratory studies of stochastic switches have characterized their molecular 

mechanisms (reviewed in (Ackermann, 2015; Moxon et al., 2006; van derWoude and 

Bäumler, 2004)), while a smaller number of studies have assessed their adaptive advantages 

in fluctuating environments (Acar et al., 2008; Van den Bergh et al., 2016; Lin and Kussell, 
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2016; Lin et al., 2015; New et al., 2014), yet rigorous measurements of an evolutionary 

fitness landscape as a function of switching rates have not previously been made. A 

remarkable laboratory evolution experiment, however, successfully evolved a stochastic 

switching strain de novo (Beaumont et al., 2009), and highlighted the importance of 

selective bottlenecks, which were termed an “exclusion rule” in further modeling work 

(Libby and Rainey, 2011). In the absence of such bottlenecks, it was apparently not possible 

to evolve a stochastic switching strain. This finding is consistent with our prediction that 

strong selective bottlenecks are needed to evolve switching rates from initially very low 

values, which may be comparable for example to mutation rates (i.e. on the order of 10−10 

−10−9 per generation in bacteria), to much higher values (Fig. 2B,C). In the absence of 

bottlenecks, the fitness landscape is extremely flat for very low switching rates, which 

means that a series of small evolutionary steps leading from low to high switching rates is 

not a viable evolutionary path. Evolution to high switching rates could only occur if a high 

switching rate were obtained by a single mutational step, which appears to be an unlikely 

scenario at least in laboratory evolution.

Recently, a number of studies have begun to probe the evolutionary dynamics of stochastic 

switching in natural populations of pathogens (Alamro et al., 2014; Bidmos and Bayliss, 

2014). Ideally, one would like to reconstruct from their dynamics the fitness landscape that 

evolutionarily tunes switching rates in these organisms. Our work provides a first theoretical 

step in this direction, by determining how fitness landscapes depend on population dynamic 

parameters in simple models. It may be possible to infer evolutionary fitness landscapes for 

stochastic switching pathogens by precisely characterizing switching rate variation. For 

example, in contingency loci that are well-known in many pathogenic bacteria including 

Haemophilus influenzae, Neisseria meningitidis, and Campylobacter jejuni, simple sequence 

repeats cause high-frequency reversible switching of gene expression across different 

genetic pathways. The length of repeats is strongly correlated with switching rates both in 

the lab (Richardson et al., 2002) and in natural populations (Lin and Kussell, 2012). Hence, 

by measuring repeat lengths at multiple loci (Lango-Scholey et al., 2016) across strains and 

over time, with sufficient statistical power it may become possible to draw key inferences 

about the natural evolutionary dynamics of stochastic switches.

In summary, our results identify a major shift in the evolutionary pressures acting on 

stochastic switches that occurs due to selective bottlenecks. We propose that such 

bottlenecks are instrumental in the evolution of stochastic switches in pathogenic organisms, 

since they enable the key evolutionary steps that select for an increase of switching rates 

from very small values that are comparable to mutation rates to rates that are orders of 

magnitude larger. These findings provide a new foundation for analysis of the evolutionary 

mechanisms that underlie rapid generation of genetic and non-genetic diversity in pathogens.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDICES

Appendix A. Population dynamics and extinction in a branching process 

model

We compute the probability Pt(m, n) of observing m cells of type A and n cells of type B at 

time t. The probability satisfies the following master equation,

(16)

The generating function,

(17)

satisfies the partial differential equation

(18)

which is found by multiplying Eq. 16 by wmzn and summing over all values of m and n. This 

equation is solved by the method of characteristics, yielding a general solution of the form

(19)

where F is an arbitrary function to be determined. If the process is initialized from a single 

cell of type A at time zero, we have P0(1, 0) = 1 and P0(m, n) = 0 for m ≠ 1. This implies 

P̃
0(w, z) = w, and using Eq. 19 we have

(20)

Setting u = logw − log(1 − w + sw − sz), and solving for w in terms of u yields w = (1 − 

sz)/(1 − s + e−u), which we substitute in Eq. 20 to obtain

(21)
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Using the above form in Eq. 19, the generating function is found to be

(22)

The extinction probability after a single growth period τ is given by

(23)

Substituting ra = 0 above we obtain the expression in Eq. 1.

Appendix B. Long-term extinction probability

To compute the long-term extinction probability P̂
extinct under strong selective bottlenecks 

we proceed as follows. Starting from a single A cell at time zero, the random number of B 
cells, n, is distributed according to the marginal distribution

(24)

with generating function

(25)

Conditional on n, the number of B cells present at the end of the period, the number of 

transmitted cells l is a Poisson-distributed random variable with rate nrb. We let Q(l) be the 

probability that l cells are transmitted after a single period τ, with generating function

(26)

and we have

(27)
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which is the generating function for a Poisson random variable. Taking expectation over

(28)

After transmission to the new host, the phenotype labels are reversed, and the cells begin 

growing as phenotype A. The generating function at the end of M rounds, Q̃(M)(z), therefore 

satisfies the recursion

(29)

If we let P̂
extinct be the eventual probability of extinction, we have P̂

extinct = limM→∞ 
Q̃(M)(0). Taking this limit on both sides of Eq. 29, we obtain

(30)

i.e. P̂
extinct is a fixed point for the mapping Q̃(z). It is well-known from the theory of 

branching processes that (i) P̂
extinct is the smallest positive root of Eq. 30, (ii) there is at most 

one positive root less than one, and (iii) P̂
extinct = 1 if and only if the average number of 

offspring per cell per round is less than or equal to one (Karlin and Taylor, 1975, p. 397). We 

numerically solve Eq. 30 using the expression in Eq. 28 to obtain the solid curves in Fig. 1. 

To determine the value of smin, we compute the average number of B cells transmitted after a 

single round,

(31)

and determine smin using the condition n* = 1, which can be solved numerically. For s ≪ 1 

and τ ≫ 1/f, we find that n* > 1 when s ≥ (1/rb)e−τf , from which it follows that smin ≈ (1/

rb)e−τf .

Appendix C. Optimization of long-term growth rate vs. long-term survival

The general expression for Λ computed using Eq. 13 is

(32)
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In the limit in which srbeτf ≫ 1, i.e. on average many B cells are transferred at each round, 

the leading order term within the square root is (srb)2e2τf(1−s), using which we find

(33)

In this limit, the value of Λ is independent of ra, hence all of the curves in Fig. 2B overlap 

for large s. In this case, as in Eq. 9, we find that sopt = 1/(τf), and is therefore independent of 

both ra and rb. In the opposite limit, for s ≪ 1 and ra > 0, we have

(34)

Due to this dependence, we see that for the case ra = rb = 1 shown in Fig. 2A, lower panel, 

all curves overlap for small s and are independent of τ ; and in Fig. 2B for small s, we see 

that Λ indeed varies as log ra for decreasing values of ra.

The value of s that maximizes the survival probability, ssurvive, can be found in the limit s ≪ 
1 and τf ≫ 1, by using Eq. 1 to obtain

(35)

Minimizing the above with respect to s yields

(36)

from which

(37)

In this limit, we find that ssurvive = sopt/(1 − rb) (see Eq. 9), and thus for rb ≪ 1, the rates 

ssurvive and sopt are nearly equal. More generally, this results from the fact that for rb ≪ 1,

(38)
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where n̄ is the expected number of B cells at time τ, hence minimizing extinction is 

equivalent to maximizing the average number of transmitted cells n* = rb n̄. In most cases, 

this is the biologically relevant limit since transmission rates per cell are small.

Appendix D. Stochastic simulation of evolutionary dynamics

To simulate a local population of cells with switching between phenotype A and B cells, we 

perform stochastic simulations in which each cell division event is tracked. The simulation 

tracks the number of cells m and n with phenotypes A and B, respectively. At each 

simulation step, the random time to the next cell division event is determined by drawing 

from an exponential distribution with mean (fm)−1. We increment the time variable t by this 

amount, and determine randomly whether the newborn cell has switched to phenotype B, 

which occurs with probability s; if it has, we increment n, otherwise we increment m. The 

simulation step process is repeated until one of the following events occurs: A transmission 
event occurs when t = τ, the current growth period ends, and a new growth period is 

initialized at t = 0 with Poisson-distributed numbers of A and B cells, with means nrB and 

mrA, respectively, which accounts for the swapping of phenotype labels; a resampling event 
occurs when the total population size m+n reaches the maximal local population size Nmax, 

and the population is resampled down to an average size Nmin by Poisson sampling, with 

means mNmin/Nmax and nNmin/Nmax for A and B cells, respectively. We used Nmax = 108 

and Nmin = 107 in simulations. The resampling step, which is equivalent to serial dilution, 

maintains the population in a continuously proliferating state while preventing it from 

growing without bound in simulations, which would be computationally intractable. 

Simulation steps resume after either of these two events occur. If extinction occurs during a 

transmission event, the simulation ends.

This basic simulation method was used in two different ways in the text. To determine the 

extinction probabilities in Fig. S1 at different values of τ and s, in each simulation we 

initialized the population using a single cell of type A, and ran a single growth period τ and 

transmission step, recording whether or not extinction occurred. We averaged this value over 

1000 independent simulations to determine the extinction probability at a given value of s 
and τ. To simulate the evolutionary dynamics shown in Fig. S2 and Fig. 2C, we used the 

genotype network shown in Fig. S2A, keeping track of the numbers mi and ni of A and B 
cells, respectively, of each genotype i = 1. . . 6. The mutation rate is a constant μ = 10−5 

(horizontal arrows), while the phenotype switching rate si (vertical arrows) depends on the 

genotype as shown. All aspects of the simulation for each genotype were as above, with the 

addition of mutation occurring with probability μ each time a cell divided. When an A cell 

of genotype i divides, we determine which of the following mutually exclusive events has 

occurred in the daughter cell: (a) a mutation occurs to genotype i + 1 (for i < 6), and we then 

increment mi+1; (b) a mutation occurs to genotype i − 1 (for i > 1), and we then increment 

mi−1; (c) a phenotype switch occurs, and we increment ni; or (d) none of the above occur, 

and we increment mi. The probabilities of events (a) – (c) are μ, μ, and si, respectively.

Moxon and Kussell Page 22

Evolution. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 1. 
Dependence of survival probability on stochastic switching and infection rates. (A) Upper 

panel shows the survival probability of the local pathogen population as a function of 

switching rate s for different growth period durations τ in units of generations (gen.), i.e. f = 

1; lower panel shows the extinction probability on a logarithmic scale. Dashed curves are the 

survival (Psurvive) or extinction (Pextinct) probability of a local population after a single 

growth period; solid curves indicate long-term survival (P̂
survive) or extinction (P̂

extinct) 

probability of a pathogen lineage. The minimum value of the switching rate that allows long-

term survival, smin, and the switching rate that maximizes survival, ssurvive, are indicated. 

Plots show results for infection probability ra = 0 and rb = 0.01 using Eq. 1 to calculate 

Pextinct and Eq. 30 to obtain P̂
extinct. (B) Dependence of survival probability of a local 

population on transmission probability rb, for ra = 0 and τ = 20 gen. (C) Survival probability 

of the global pathogen population approaches a step function with increasing Nhost, the 

number of initially infected hosts. The extinction-survival threshold smin is shown. Curves 

plot 1−(P̂
extinct)Nhost for the values of Nhost indicated using ra = 0, rb = 0.01, and τ = 20 gen.
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FIG. 2. 
Fitness landscape for evolution of stochastic switching rates, for different stringency of 

selective bottlenecks. (A) Fitness landscape with a strong selective bottleneck (ra = 0, upper 

panel) or a non-selective bottleneck (ra = 1, lower panel). Each panel shows the long-term 

growth rate Λ as a function of switching rate s for different durations of proliferation τ, for 

transmission probability rb = 1. We use f = 1 so that rates are expressed per generation. (B) 
Dependence of the fitness landscape for increasingly stringent bottleneck selection via 

decreasing ra. Full (open) pink circles indicate the expected long-term growth rate using τ = 

12 generations for strains with different switching rates with (without) bottleneck selection, 

showing that stronger selective bottlenecking leads to a steeper landscape and predicting 

faster evolution. (C) Evolutionary dynamics of stochastic switching rates for τ = 12 gen. 

Curves show the cumulative probability of fixation of the optimal switching strain (s = 0.1) 

over the set of simulations for the given value of ra, each of which were initialized with a 

single cell of the lowest switching strain (s = 10−5). Mutations that alter switching rates 

occur with rate μ = 10−5 (reversibly), and change the switching rate by an order of 

magnitude. Six different switching rates can occur, at the values indicated by circles in panel 

B. The average population size in simulations is 107 − 108 cells. Fixation is defined as 

reaching a frequency greater than 0.9 in the population. Each curve is computed using at 

least 100 simulations. Each simulation was run for 1000 generations. For the values of ra 

shown, extinction occurred in < 2% of simulation runs, and those runs were not used for 

analysis. The network of genotypes and phenotypes, average traces of simulated dynamics, 

and further simulation details are given in Fig. S2 and Appendix D.
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