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Abstract

The role of non-coding Ribonucleic Acids (ncRNAs) in biology is currently an area of intense 

focus. Hematopoiesis requires rapidly changing regulatory molecules to guide appropriate 

differentiation and ncRNA are well suited for this. It is not surprising that virtually all aspects of 

hematopoiesis have roles for ncRNAs assigned to them and doubtlessly much more await 

characterization. Stem cell maintenance, lymphoid, myeloid and erythroid differentiation are all 

regulated by various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs 

(lncRNAs) and various transposable elements within the genome. As our understanding of the 

many and complex ncRNA roles continues to grow, new discoveries are challenging the existing 

classification schemes. In this review we briefly overview the broad categories of ncRNAs and 

discuss a few examples regulating normal and aberrant hematopoiesis.

Introduction

It has been proposed that less than 2% of the human genome is translated into proteins. 

However, somewhere between 70% [1] to over 90% [2] of the genome is transcribed, and 

over 60% of these transcripts are processed [1]. The RNA that does not encode conventional 

proteins is referred to collectively as non-coding RNA (ncRNA) and encompasses transfer 

RNA (tRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), small nucleolar RNA 

(snoRNA) and small cajan body-specific RNA (scaRNA), piwi-interacting RNA (piRNA), 

miRNA and lncRNA amongst others (see Table 1). While relatively recent advances in deep 

sequencing technology has shed light on the full extent of ncRNA expression it has long 

been recognized ncRNA is critical in genomics. For instance, rRNA and tRNA are essential 

in protein synthesis [3], and messenger RNA (mRNA) splicing and nuclear organization 

require snRNAs and snoRNAs [4]. The recent documentation of the extensive contribution 

of ncRNA transcripts of all sizes and types has resulted in new and constantly evolving 

categories. As our understanding grows, new nomenclature will most likely develop to better 

categorize ncRNAs by functionality. Recently, a number of predicted ncRNAs have been 
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documented that encode proteins, either as micropeptides hidden as short open reading 

frames (sORFs) within ncRNAs, or due to read-throughs of stop codon sequences [5], 

adding further confusion around the broad coding and non-coding classification scheme. 

Here we will define the current classifications of ncRNAs and briefly discuss the emerging 

roles they play on various aspects of hematopoiesis.

MicroRNA (miRNAs)

miRNAs consist of 21–24 bases and are involved in regulation of post-transcriptional gene 

expression regulation and RNA silencing. The first example was documented in 1993 in 

Caenorhabditis elegans when a 21 nucleotide RNA was shown to inhibit the Lin 14 

transcript [6]and was subsequently named Lin4. Since then, hundreds of miRNAs have been 

identified and the list continues to grow [7]. However, the name microRNA was not applied 

until 2001 [8].

As summarized in Figure 1, these short RNA sequences are initially generated in the nucleus 

from primary miRNA (pri-miRNA) transcripts. The pri-miRNAs are recognized by 

DiGeorge Syndrome Critical Region 8 (DGCR8) and bind the RNAse III enzyme Drosha, 

which in turn cleaves the RNA into precursor miRNAs (pre-miRNAs) of approximately 70 

nucleotides. The pre-miRNAs are exported to the cytoplasm and subsequently processed by 

the RNAse III enzyme Dicer to yield the mature form [9]. Most miRNAs exert an inhibitory 

effect through binding a short (6–8 nucleotide sequence) in the 3′ untranslated region 

(3′UTR) of a target gene. Binding is facilitated by a complementary sequence (seed 

sequence) in the miRNA [10] and is often shared by a number of miRNAs [7], especially 

within the same miRNA family. Reasons for multiple miRNAs with the same seed sequence 

may reflect subtle differences in the inhibitory effect of each. Alternatively, because miRNA 

expression is very tissue specific [11] it may facilitate inhibition of the same 3′UTR 

sequences in different cellular contexts when a single miRNA with a particular seed 

sequence would not be expressed. While over 80% of miRNA-affected transcripts currently 

recognized share a sequence complementary to the seed sequence, seed-sequence-

independent targets have also been identified [7]. MiRNAs have been associated with roles 

in disease, cancer and viral infection amongst others, primarily through gene regulation [12].

Regulating self-renewal and differentiation of hematopoietic stem cells (HSCs) and 
Progenitor Cells

The first study examining miRNAs in hematopoiesis was performed in the laboratory of 

Harvey Lodish [13]. Since then dozens of miRNAs playing a role in both normal and 

malignant hematopoiesis have been identified.

Perhaps the most characterized miRNA pathways in primitive hematopoietic compartments 

involve the miR125 family (miR125a, miR125b1 and miR125b2), miR196b, and the 

miR17–92 cluster (miRNAs 17–5p, 17–3p, 18a, 19a, 20a and 92a). Four of the miR17-92 

miRNAs are upregulated in HSCs compared to mature blood cells [14] with the whole 

cluster transcribed from a single promoter as one non-coding transcript and then processed 

into seven mature miRNAs [14]. This facilitates expression of the entire group 

simultaneously during differentiation. The importance of coordinated expression of miRNAs 
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is illustrated by the observation that overexpression of each of the miR17-92 cluster 

miRNAs alone induces various blood malignancies [15]. Target genes of miR17-92 miRNAs 

include transcription factors involved in cell cycle regulation and differentiation [16].

MiR196b, which is highly expressed in HSCs, is encoded between the homeotic (HOX) 

genes HOXA9 and HOXA10 and appears to be co-regulated with HOXA9 [17]. To aid in 

maintaining cells in a primitive state, miR196b directly targets HOX genes upregulated 

during myeloid differentiation (such as HOXA7 and HOXC8) and other genes involved in 

differentiation [17]. During myeloid differentiation miR196b itself is downregulated by 

expression of the myeloid differentiation factor Growth factor independent 1 (Gfi1) [18].

The miR125 family are highly expressed in HSCs and progenitor cells compared to 

differentiated cells and their expression increases self-renewal, however the target genes 

remain uncharacterized [19]. Over-expression of miR125 provides a proliferative advantage 

and skews progeny towards a myeloid lineage [20].

miRNAs in Erythropoiesis and Megakaryopoiesis

Ten to 30% of genes are predicted to be targets of miRNAs [21] and many have been linked 

to erythropoiesis, suggesting an important role during this process. Numerous high 

throughput screens and functional approaches to determining the role of miRNAs in 

erythropoiesis have been utilized. Unfortunately, many miRNA functions characterized 

through high-throughput array screens have different roles when examined using more 

functional approaches [22]. This includes miRs15, 24, 221 and 223, which were reported as 

being up-regulated in multiple microarray studies, but were found to be down-regulated 

during erythroid maturation in non-microarray based studies [22]. The reason for such 

discrepancies is unclear, but reflects uncertainty regarding the exact roles of these miRNAs 

in the various stages of differentiation during erythropoiesis.

Other miRNAs, including miR451, have roles in promoting erythroid differentiation 

supported by both high-throughput and functional screens. Erythroid differentiation in K562 

cells was disrupted in the absence of miR451 [23] and mice lacking miR451 exhibit 

defective erythropoiesis via repression of the zeta isoform of the 14-3-3 protein [24]. Further 

supporting a requirement for miR451 in regulating erythropoiesis, Cluster of Differentiation 

34 positive (CD34+) precursor cells derived from thalassemic patients exhibit dysregulation 

of miR451 when differentiated towards the red blood cell lineage [25].

miRNAs play important roles during megakaryocyte differentiation from the common 

erythro-megakaryocyte progenitor. For example, miR181 represses lineage protein 28 

homologue (Lin28) expression, which results in an increase of lethal 7 (let-7). The high 

levels of let-7 causes increased megakaryocytic differentiation with no appreciable role in 

haemin-induced erythrocytic differentiation [26]. Similarly, the miR34a transcript inhibits 

cellular proliferation [27] and downregulates the pro-erythropoiesis factor cellular 

myeloblastosis oncogene (c-Myb), to delineate these cells from erythroblasts [28]. The 

downregulation of miR155 is also essential for megakaryopoiesis progression. When 

present, miR155 represses both E26 transformation specific 1 (Ets-1) and Meis, both of 

which are required for megakaryocyte differentiation and inversely correlated with miR155 
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expression levels [29]. A central feedback loop in megakaryopoiesis involves the 

transcription factor RUNX1 and miR27a. High levels of runt-related transcription factor 1 

(RUNX1) induce expression of miR27a which, in turn, suppresses the expression of RUNX1 

[30]. Due to the developmental importance of RUNX1 in many hematopoietic lineages, its 

exact expression level is tightly regulated.

miRNAs in Myeloid Differentiation

Myeloid differentiation is the development of different types of mature blood cells from 

stem cells and several miRNAs are involved during this process. One of the most studied 

miRNA during granulocytic development is miR223. The expression of miR223 is 

significantly increased during granulocytic, but not monocytic, differentiation and induced 

expression of miR223 results in increased granulocytic differentiation capacity [31]. Two 

distinct mechanisms have been proposed for the induction of miR223. The first proposes an 

element within the miR223 promoter occupied by one of two transcription factors. Nuclear 

Factor 1A (NFI-A) and CCAAT/enhancer binding protein alpha (C/EBPα) compete for 

binding with NFI-A binding suppressing miR223, while C/EBPalpha binding drastically 

increases miR223 transcription. The second mechanism requires binding of C/EBPalpha and 

pu box-containing 1 (PU.1) at a more distal promoter site, with PU.1 having the strongest 

contribution to granulocyte differentiation [32].

Both miR21 and miR196b have also been implicated in differentiation of the granulocytic 

lineage, as the expression of these miRNAs inhibits granulocyte-colony stimulating factor 

(G-CSF) induced differentiation [18]. It has been proposed that (Gfi1) regulates miR21 and 

miR196b as Gfi1−/− mice display deregulated miRNAs and granulocytopoiesis [18]. 

Increased expression of another miRNA, miR27, has been reported during granulocytic 

differentiation and is required to down-modulate the granulocyte inhibitory protein acute 

myeloid leukemia 1 (AML1) expression [33].

In monocyte differentiation, AML1 protein levels are upregulated, partly through the 

suppression of the AML1-inhibiting miRNAs miR17-5a, miR20a and miR106a [34]. The 

master regulator of monocyte differentiation, Monocyte-colony stimulating factor receptor 

(M-CSFR) is partially regulated by miR424. The transcription factor, PU.1 upregulates 

miR-424, which targets NFI-A to inhibit its translation and subsequently the stimulation of 

monocyte differentiation. In turn, the decrease of NFI-A levels is important for the activation 

of differentiation-specific genes such as M-CSFR [35].

Some miRNAs in granulo-monocytic cells are regulated by pathogenic factors. MiR155 is 

induced during the monocyte inflammatory response [36] and modulates the interleukin-1 

signaling pathway [37] while miR146 and miR125b are regulated in response to 

lipoplysaccharide (LPS) stimulation of monocytes/macrophages [38]. In granulocytes and 

monocytes, miR9 is induced by LPS and contributes to an inhibitory feedback loop with the 

transcriptional regulator of the inflammatory response nuclear factor kappa-light-chain-

enhancer of activated B cells (NFκB) [39].
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miRNA in Lymphoid Differentiation

MiR181a and other miR181 members are very abundant at the CD4+/CD8+ double positive 

(DP) stage of Thymic cell (T cell) development, comprising as much as half the miRNA 

molecules expressed [40, 41]. Overexpression of miR-181a results in increased DP 

thymocyte numbers [42] and deficiency results in a mild decrease [43]. Downstream targets 

of miR181a in thymocyte development include phosphatase and tensin homologue (Pten) 

[43] and the T cell receptor (TCR) signaling molecules Dual specificity phosphatases Dusp5 

and Dusp6 and SH2-containing phosphatase 2 (Shp2) [42]. A role for miR181a is not 

limited to T cell development as a severe loss of Natural killer T (NKT) cells also occurs in 

miR181a-deficient mice [43].

The Notch signaling pathway is important for T cell development and is a target of miR150 

in T cells [44], however the exact functional role is not clear. In mice, transgenic expression 

of miR185 targets the protein Marginal zone b1 (Mzb1) and restricts differentiation towards 

the DP stage, however, whether endogenous miR185 is important for T cell development 

remains to be determined [45].

Although the specific miRNAs responsible have not been elucidated, mice deficient in the 

miRNA processing proteins Drosha and Dicer, exhibited dramatic alterations in the NKT 

lineage. Other cell lineages were also affected to a varying extent with T regulatory (Treg) 

numbers reduced significantly [41, 46]. While the miRNA signatures of the different T cell 

lineages differ, Tregs are distinct from other T cells [46, 47]. It remains unclear if specific 

miRNAs are responsible for thymic Treg differentiation or if miRNA TCR regulation 

indirectly impacts differentiation [48].

MiR155 is a Treg-enriched miRNA that appears to contribute to Treg development by 

reducing Forkhead box P3 (Fox3p) expression through suppression of the Janus kinase – 

signal transducer and activator of transcription (JAK-STAT) signaling molecule suppressor 

of cytokine signaling (SOCS1) [49]. However, miR155-deficient mice display only a mild 

reduction in Foxp3+ cells in the thymus [49, 50]. As with other lymphoblasts, miRNAs not 

only play a role in Treg differentiation but are also essential for functional programming. For 

instance, miR146a is enriched in Tregs and is required in the control of T helper 1 (Th1) 

responses through specific targeting of STAT1 [49]. MiR10 is expressed in Tregs associated 

with Th1 responses, whereas miR182 is expressed in Th2-associated Tregs and may cross-

regulate opposing networks of genes to promote the Th1- or Th2-associated phenotype [51].

The regulation of helper T cells are greatly influenced by miRNA, particularly miR17-92a 

cluster, miR155, miR29a and miR21. The miR17–92a cluster is required for efficient Th1 

differentiation, with miR17 and miR19b having the most influence. While miR17 promotes 

Th1 differentiation via inhibition of transforming growth factor beta receptor 2 (TGFβRII) 

and cyclic-AMP response element binding protein 1 (CREB1), miR19b regulates Pten [52]. 

To ensure Th1 differentiation doesn’t become excessive, increased expression levels of 

miR155 become inhibitory to Th1 differentiation by inhibiting Interferon c Receptor a 

(IFNcRa) expression [53]. MiR29a inhibits expression of the transcription factors T box 

transcription factor (T-bet) and Eomesodermin as well as the negative regulator of the 

mitogen activated protein (MAP) kinase pathway, Sprouty RTK signaling antagonist 1 
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(Spry1) [54]. Increasing the expression of miR21 enhances gata-binding protein 3 (Gata3), 

and Interleukins IL-4, IL-5 and IL-13 expression by Th2 cells [55].

Numerous miRNAs promote Th17 differentiation. MiR155 is necessary for the development 

of disease in Th17 animal models by repressing the transcription factor Ets1 [56]. MiR17 

and miR19b of the miR17–92a cluster are also required for effective Th17 differentiation 

and evidence suggests the relevant targets are Pten and Ikaros family zink finger 4 (IKZF4) 

for miR19b and miR17 respectively [57].

Understanding of the specific miRNAs involved in B cell differentiation and function is not 

as developed as for T cells, however it is clear that miRNA regulation is extensive. For 

instance, Dicer knocked out of early B cell precursors resulted in blockages in differentiation 

at both proB to pre-B transition [58] and mature B cells to antibody producing memory B 

cells [59].

MiRNAs from the miR17–92a cluster are important for early B cell development by 

regulating B cell survival, in part, by repressing the pro-apoptotic molecule Bim. Mice 

deficient in miR17–92a exhibited a greatly reduced B cell compartment, with a 

developmental block at the pre-B cell stage [60]. On the other hand, overexpression of 

miR34a has been shown to block B cell development at the pro-B to pre-B transition [61] 

and inhibits B lymphopoiesis through repression of the B cell oncogene Foxp1, which is 

required for the pro-B to pre-B transition [62].

Regulation of the latter stages of B cell development requires a number of different 

miRNAs, including miR150. Deficiency of miR150 results in a loss of c-Myb control and an 

expansion of B1 cells [63]. The differentiation of mature B cells into germinal center B cells 

is regulated by miR155 and B cells from miR155-deficient mice fail to express 

Immunoglobulin M (IgM) or class switch, resulting in impaired antibody responses [64, 65].

Piwi-interacting RNAs (piRNAs)

While microRNAs tend to span sizes 21–24 nucleotides, piRNAs are slightly larger at 26–31 

nucleotides, and collectively form the largest class of small ncRNAs in animal cells [66]. 

They form RNA-protein complexes with the piwi class of proteins (see Figure 2 for 

summary). In comparison with miRNAs they lack sequence conservation and possess 

increased complexity. Currently, the most characterized cellular role of piRNAs is in 

epigentic and post-translational silencing of retrotransposons and other genetic elements 

[66].

Piwi proteins and their associated RNA are involved in the maintenance of stem cell 

character and genome integrity, with evidence they are active in hematopoietic tissue [67]. In 

fact, knockdown of the piwi protein MIWI2 leads to abnormal hematopoiesis and erythroid 

precursors take on characteristics of more differentiated erythroid cells [67]. However 

knockout of this gene in mice has negligible observable loss of hematopoietic function [67]. 

The piwi protein PIWIL4 is over-expressed in a large proportion of AML leukemia patients 

and knockdown results in gross changes in histone methylation and slowed leukemic growth 

[66] suggesting a tightly regulated piwi pathway is essential for normal hematopoiesis. The 
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roles of piRNAs in hematopoiesis have only just begun to be explored and it seems likely 

that more will be uncovered in the near future.

Long non-coding RNA (lncRNAs)

Long non-coding RNAs are defined as a large class of RNAs with sequences longer than 200 

nucleotides which differentiates them from classically defined small nuclear RNAs (such as 

miRNAs, snoRNAs, etc). This classification is somewhat ambiguous as some classically 

defined small nuclear RNAs are also greater than 200 nucleotides, thus specific recognition 

of transcripts greater than 200 nucleotides as lncRNA has only been applied rigorously to 

newly recognized transcripts [68].

The number of lncRNA transcripts greatly exceeds protein-coding mRNAs with estimates 

between 10, 000 and 60, 000 human lncRNA genes [69–71]. This number continues to grow 

with deeper RNA sequencing and more sensitive and improved epigenomic technologies and 

computational prediction techniques [72]. These RNAs do not encode for proteins, however 

a number of designated lncRNAs have been determined to include short open reading frames 

(sORFs) that are translated into micropeptides [5, 73]. As these short peptides may have 

cooperative, partially overlapping, or completely separate biological functions to the role of 

the parental lncRNA (if indeed either has a biological role) categorizing these RNA 

sequences is challenging. Indeed, even mRNA includes RNA sequences that can function 

independently of translated protein, and include alternative splicing initiation sites and 

separate ORFs [5].

lncRNA classification

Despite the difficulty, there are numerous schemes currently utilized to classify lncRNAs. 

The most basic of these divisions is compartmentalizing lncRNAs based on their cellular 

roles [72]. Some lncRNAs are non-functional, which is most likely the result of 

transcriptional noise. The extent of these non-functional RNAs in the genome is unknown, 

however, current evidence suggests it is likely to be a very small percentage, while the list of 

functional lncRNA transcripts with authentic biological roles continues to grow 

exponentially [74]. LncRNAs are generally under lower selective pressure than protein 

coding genes but higher selective pressures than ancestral repeat sequences (considered to be 

under neutral selection), supporting the concept that most lncRNAs are functional. 

Furthermore, the promoters of IncRNAs are the region of the IncRNA gene under highest 

selective pressure, displaying levels of selection comparable to the promoters of protein 

coding genes [69, 75–78]. This suggests lncRNA and protein coding transcript regulation is 

equally crucial to homeostasis. Functional lncRNAs can be sub-classified as; 1) lncRNAs in 

which the act of transcription is sufficient for their function but the transcript itself is 

unnecessary and; 2) functional lncRNAs that have functional cellular roles and can act in 

cis- or trans- [72].

Another type of classification based on location of the transcript relative to protein-coding 

mRNA has also been employed [79] and to date comprises of six categories. 1) Long 

intergenic non-coding RNAs (lincRNAs) lies within the genomic interval between two 

coding genes at least 1 kilobase (kb) away from the nearest coding gene [79]. 2) Enhancer 
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RNAs (eRNAs) displays enhancer-like activity and upregulates expression via the Mediator 

complex [74]. 3) Antisense lncRNAs consist of transcript overlapping with sequence within 

one or more exons of another transcript on the same, or opposite strand [79]. 4) Bidirectional 

lncRNA occurs when the sequence is located on the opposite strand from a protein coding 

gene whose transcription is initiated less than 1000 base pairs away [80]. 5) Intronic 

lncRNAs is derived from within an intron of a different coding transcript in either sense or 

antisense orientation. 6) Transcribed pseudogene lncRNAs result from the introduction of a 

premature stop codon in a duplicated copy of a functional gene, usually generated by 

homologous recombination [81]. As our understanding of the functions and genomic 

contributions of lncRNAs increases, these arbitrary definitions will undoubtedly change 

[82].

Regulation of lncRNAs (transcription/translation/processing)

The modes of action of lncRNAs are diverse and complex and well described in a number of 

reviews, including Geisler and Collier, 2013 [74]. As illustrated in Figure 3, they can act as 

regulators of transcription, mRNA processing, or modulators of post-transcriptional control 

through either translational control, regulating mRNA stability, or inhibiting miRNA activity 

through sponge action. At a higher level of control, lncRNAs regulate protein activity 

directly, act as scaffolds to facilitate higher order molecular complex assembly and 

localization, and act as and upon other signaling molecules [74]. Despite extensive 

characterization of the cellular roles of lncRNA, we are likely only in the infancy of our 

understanding. Considering genome-wide association studies concluded only 7% of disease 

or trait-associated single nucleotide polymorphisms (SNPs) occur within protein coding 

exons and 43% are found outside of protein coding genes altogether [83], it is likely lncRNA 

deregulation is an important factor in disease.

lncRNA in Erythroid Development

One of the most compelling studies uncovering lncRNAs in erythropoiesis documented over 

100 non-annotated transcripts with erythroid-restricted expression [84]. Many of these were 

targets of the key erythroid transcription factors GATA, T cell acute lymphocytic leukemia 

protein 1 (TAL1) or Kruppel-like factor 1 (KLF1). Similarly, examination of polyadenylated 

lncRNAs indicated cell type specific lncRNAs between erythroblasts, megakaryocyte-

erythroid precursors (MEPs) and megakaryocytes suggesting the lncRNA landscape evolves 

as differentiation proceeds with different lncRNAs expressed at specific differentiation steps.

The first erythropoiesis lncRNA (lincRNA-EPS) was identified in mice by RNA-sequencing 

as highly induced in erythroid precursors when they start synthesizing hemoglobin and other 

lineage-specific proteins. Knockdown of this lncRNA resulted in inhibition of differentiation 

and apoptosis [85]. Interestingly, in a similar study, although orthologous regions were 

conserved for about 90% of the erythrocyte-specific lncRNAs, only 15% of erythroid 

lncRNA genes expressed in mouse erythroblasts were also expressed in human erythroblasts 

at similar developmental and maturational stages [86]. This suggests a distinct species-

specificity of lncRNAs. Even examining only lncRNA transcripts determined to be required 

for terminal maturation of primary murine erythroid precursors, six of the seven were not 
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even expressed in human erythroblasts, despite orthologous genomic loci being identified 

[86].

lncRNA in Myeloid Development

Eosinophil Granule Ontogeny (EGO) was one of the first lncRNAs identified with a role in 

normal hematopoiesis, where it facilitates eosinophil differentiation of CD34+ 

hematopoietic progenitor through the regulation of mRNA expression of major basic protein 

(MBP) and eosinophil derived neurotoxin (EDN). It is transcribed antisense within an intron 

of the inositol triphosphate receptor type 1 (ITPR1) gene [79]. EGO is highly expressed in 

human bone marrow and in mature eosinophils [87].

The transcription factor PU.1 plays a critical role in monocyte lineage commitment and 

monocyte/macrophage maturation [88] with expression levels precisely regulated and 

perturbation leading to leukemias and lymphomas [89]. Both sense and antisense transcripts 

originate from the same promoter, with the lncRNA PU.1-AS transcribed antisense to the 

transcription factor PU.1. PU.1-AS was demonstrated to negatively regulate PU.1 mRNA 

translation through binding to PU.1 mRNA to form mRNA/AS lncRNA duplex, thus 

antagonizing the expression of PU.1 protein [89].

HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) is specifically expressed in the 

myeloid lineage and is one of the best-studied lncRNAs involved in hematopoiesis. It is most 

highly expressed in the terminal stage of granulocytic differentiation [90], and induced 

during all-trans retinoid acid (ATRA)-driven granulocytic differentiation of the NB4 human 

acute promyelocytic leukemia cell line and normal myeloid lineage cells. Loss of 

HOTAIRM1 attenuates neighboring 3′ HOXA genes, including HOXA1 and HOXA4, and 

selectively impairs the induction of transcripts for the myeloid differentiation markers 

CD11b (integrin alpha M chain), CD18 (integrin beta 2 chain) and CD11c (integrin alpha X 

chain), while retaining the expression of CD49d (integrin alpha 4 chain) [90].

Myeloid differentiation is usually considered to be dominantly controlled by highly 

myeloid-specific factors, however the widespread and abundant lncRNA Nuclear 

Paraspeckle Assembly Transcript 1 (NEAT1) has been reported to be indispensable for 

normal myeloid differentiation [91]. Although not expressed in normal myelopoiesis, in an 

AML patient sample and an AML-derived HL-60 cell line, contain a rearrangement of the 

lncRNA gene Non-Structural Maintenance Of Chromosomes Element 2 Homolog 

(NSMCE2) that gives rise to two novel chimeric genes, PVT1-NSMCE2 and CCDC26-

NSMCE2 [92]. Beyond hypothesizing an oncogenic role of plasmacytoma variant 

translocation 1 (PVT1) and coiled-coil domain-containing protein 26 (CCDC26) [93] a role 

in leukemogenesis has not been determined, however the concept of fusion transcripts of 

lncRNA and coding genes adds yet another layer of complexity to the lncRNA world.

lncRNA in Lymphoid Development

Analysis of human bone marrow and thymic progenitor cells spanning the earliest stages of 

B lymphoid and T lymphoid specification revealed over 3,000 lncRNA genes. Lymphoid 

commitment is characterized by lncRNA expression patterns that are highly stage specific 

and are more lineage specific than those of protein-coding genes [94]. Interestingly, many 
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lncRNAs overlap shorter functional RNAs, suggesting these longer transcripts may be 

processed and exert their effects as smaller functional species [79].

Relative to B cells, a large number of lncRNAs have been implicated in T cell 

differentiation, with more than 1000 lncRNAs characterized in a genome-wide screen of 

mammalian human and mouse CD8+ T-cells with many of them displaying stage- or tissue-

specificity [95].

Thymus-specific non-coding RNA1 (Thy-ncR1) is expressed specifically during early T cell 

differentiation in the thymus and a small number of human T-cell leukemia cell lines, all of 

which originated from immature stage III T-cells [96]. Although a mechanistic link has not 

been determined, and the two genes are separated by 118 kb, expression of Thy-ncR1 and 

the CD1 gene cluster are highly correlated. This may suggest a synergism between CD 

antigens and lncRNAs during T cell selection and maturation.

T cell differentiation requires the precise regulation of a group of Ca2+-regulated 

transcription factors called Nuclear factor of activated T-cells (NFAT) proteins. Along with 

the GTPase-activating protein IQ Motif Containing GTPase Activating Protein 1 (IQGAP1), 

the lincRNA non-coding RNA of the nuclear factor of activated T cells (NRON) forms a 

scaffold that protects the phosphorylated, inactive form of nuclear factor of activated T cells 

1 (NFAT1) and associated inhibitory kinases. Loss of NRON results in decreased NFAT1 

phosphorylation and nuclear accumulation as well as an increase in NFAT-dependent 

cytokines [97].

Musculoaponeurotic Fibrosarcoma Oncogene Homolog (MAF), a Th2-associated 

transcription factor, is required for differentiating helper T-cells toward a Th2 transcription 

profile. Through the exploitation of a chromosome loop, linc-MAF-4 associates closely with 

the MAF promoter and recruits the chromatin modifiers lysine specific demethylase 1A 

(LSD1) and Enhancer of Zeste Homolog 2 (EZH2) to inhibit MAF expression. The absence 

of linc-MAF-4 differentiation skewed differentiating helper T-cells toward a Th2 

transcription profile [98].

Documented roles for lncRNAs in B cell differentiation are fewer than T cells, however the 

B-cell integration cluster (BIC) produces a transcript consisting of three exons spanning 13 

kb and was found to be highly expressed in antigen receptor stimulated B- and T-cells as 

well as in macrophages and dendritic cells upon Toll-like receptor (TLR) stimulation [79]. 

Within this lncRNA are the processed products, miR155-5p and miR155-3p, which regulate 

several biological processes, including hematopoiesis, inflammation and immune responses. 

Biceps brachii (BIC) transcript is highly expressed Hodgkin’s lymphoma, primary 

mediastinal B-cell lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia 

(CLL), AML and some solid tumors, but they are not expressed in healthy samples [99].

Analysis of lncRNA expression during human B-cell development, by array-based 

expression profiling of eleven distinct B-cell subsets, identified several lncRNAs within 

well-defined gene networks involved in specific stages of B-cell development [100], 

suggesting our understanding of the roles of lncRNA in this process remain in its infancy.
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Pseudogenes

Pseudogenes are genes derived from another gene that show various degrees of sequence 

redundancy from the original “parental” gene. Due to redundancy, the pseudogene is not 

required for the survival of the organism and is consequently under little selective pressure, 

which allows multiple mutations to accumulate [101]. These mutations lead to loss of the 

original function, either through loss of gene expression or ability to code protein, however 

many pseudogenes have evolved important cellular functions different from that of the 

parental gene.

Pseudogenes are classified into one of two categories (processed or unprocessed), based on 

the mechanism facilitating duplication from the parental gene. Those pseudogenes copied 

from mRNA before incorporating into the genome are recognized as processed pseudogenes 

and lack promoters and introns [101]. Because the generation of these pseudogenes require 

an RNA intermediate and are retrotransposed, this group of pseudogenes are often called 

retrotransposons [102]. Although they usually contain poly-A tails, due to lack of promoter 

sequence they are considered “dead on arrival” upon insertion into the genome and do not 

require further mutagenesis to lose functionality [103]. Processed pseudogenes are 

continuously being created within a species and distinct processed pseudogene composition 

is evident in different human populations [103].

Non-processed pseudogenes arise from duplication of an entire gene, usually through 

homologous recombination, and may possess many features of coding genes including 

promoters, splice sites and CpG islands however disabling mutations (such as premature or 

frameshift mutations) or an inability to encode RNA distinguish the duplicate from the 

parental gene [81]. Sometimes at least part of a pseudogene is translated and over 140 

human pseudogenes have been shown to be translated, however no function has been 

subscribed to the protein products [104].

Interestingly, a number of pseudogenes identified through DNA sequencing technologies 

possessing premature stop codons have been found to translate biologically important 

functional proteins due to translational read-through of the predicted stop codon [105]. As 

with other aspects of genome biology, computational analysis is predictive, and functional 

studies are crucial for thorough understanding.

Retrotransposons

Over half the human genome is comprised of repetitive sequences derived from pseudogenes 

and retrotransposons [104] (see Table 2). There are two broad categories of transposable 

elements (TEs) based on how they copy themselves from one location to another in the 

genome (summarized in Figure 4) [104]. Class 2 transposable elements are more ancient and 

have been referred to as DNA transposons or “jumping genes”, the discovery of which lead 

to the nobel prize in Physiology or Medicine for Barbara McClintock in 1983. These TEs 

move within the genome by a “cut-and-paste’ mechanism with no RNA intermediate.

The more prevalent and polymorphic Class 1 transposable elements are commonly referred 

to as retrotransposons and copy themselves via an RNA intermediate. The RNA is 
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transcribed by host machinery and then reverse-transcribed and integrated elsewhere into the 

genome by enzymes encoded by the retrotransposon itself (autonomous retrotransposons), or 

encoded by another retrotransposon (parasitic or non-autonomous retrotransposons). 

Autonomous retrotransposons are sub-categorized by the possession or absence of flanking 

long terminal repeats (LTRs). These sequences range from 300bp to 1kb, are identical in 

orientation and sequence on both the 5′ and 3′ ends of the proviral sequence [104], and are 

utilized for integrating into host DNA. LTR retrotransposons are very similar in structure to 

exogenous retroviruses with nonsense mutations and other sequence alterations leading to 

loss-of-function mutations in genes necessary for mobilization from one cell to another. 

Indeed, endogenous retroviruses are a family of LTR retrotransposons sharing such sequence 

similarity with exogenous retroviruses, the only separation being the inability to move from 

cell to cell [104]. In contrast, non-LTR retrotransposons utilize a mechanism referred to as 

target-primed reverse transcription (TPRT) to integrate into the host genome [106]. Like 

most LTR retrotransposons, autonomous non-LTR retrotransposons encode machinery 

required for reverse transcription and integration. While only a subclass of non-LTR 

retrotransposons, the long interspersed elements (LINEs) comprise almost 20% of the 

human genome with a copy number of several hundred thousand. While most have become 

non-functional due to nonsense mutations, around 100 full length LINEs remain functional 

and encodes two proteins including one (called ORF2p) possessing reverse transcriptase and 

enzymatic functions required for TPRT.

The largest class of non-autonomous retrotransposons in the human genome are the short 

interspersed elements (SINEs) of which the 300bp Alu elements comprise close to a million 

copies [107]. Alus hijack open reading frame-2 RNA binding protein (ORF2p) generated by 

LINEs to copy and integrate [108]. Although they have the potential to produce havoc 

through insertional mutagenesis or transcriptional perturbation, retrotransposons tend to 

remain inactive throughout adult life. However, aberrant activation has been associated with 

numerous diseases including cancer and hematological disorders. Retrotransposon activation 

is most active, and indeed required, early in development. Silencing of retrotransposon 

elements is primarily through DNA methylation, and as methylation machinery is not active 

during early development retrotranslocon mobility is most active at this time [109]. In 

appropriately differentiated and non-cancerous tissue most transposon elements are highly 

methylated at CpG islands [110].

Retrotransposons in regulating cell fate potential

As the zygote divides it goes from having totipotent to a pluripotent cell fate potential [111]. 

Cells derived from 4-cell and later blastocysts, as well as embryonic and induced pluripotent 

stem cells (ESCs and iPSCs respectively), have the potential to differentiate into all cell fates 

of the embryo (pluripotent), however they lack the ability to differentiate into extra-

embryonic tissue that gives rise to the placenta and yolk sac [111]. The endogenous 

retrovirus family of human endogenous retrovirus-K (HERV-K), are LTR-containing 

retrotransposon elements silenced by DNA methylation in pluripotent and differentiated 

cells but highly active in totipotency and have been shown to regulate numerous genes in 

early development [111].
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Retrotransposons in Erythropoiesis

The first de novo evidence that retrotransposition could lead to constitutional genetic defects 

causing human disease came from studies in hemophilia [105]. The first of these indicated 2 

of 240 examined hemophilia A patients’ insertions of LINEs positioned within exon 14 of 

the coagulation factor VIII gene [112]. Three later reports documented Alu elements at the 

factor VIII locus causing a similar hemophilia A phenotype [113–115]. Hemophilia B 

results from a deficiency in coagulation factor IX and there have been numerous reports of 

retrotranlocations. Disruption at exon 5 [116] and exon 7 [117] have been attributed to 

LINEs, while Alu insertions disrupt exon 8 [116]and exon 5 [118, 119]. Alu insertions occur 

in some hemophilia C patients through deletion of the entire factor XI due to rearrangement 

between two flanking Alu repeat regions [120].

LINE and Alu-repeat mediated homologous recombination events also occur in thalassemia 

patients, resulting in loss-of-function alleles at hemoglobin loci. Hemoglobin is a major 

protein component of blood and carries blood to tissues as a tetramer composed of 2 α 
protein subunits and 2 β subunits surrounding the iron containing porphyrin ring that 

physically associates with oxygen. Genomic deletions in either of the duplicated α globin 

genes contributes to α-thalassemia while deletions in the single β globin gene is recognized 

as β-thalassemia. While Alu-mediated recombination dominates α-thalassemia events, 

LINE-mediated disruption contributes to β-thalassemias [121].

Retrotransposons in hematopoietic neoplasias

Despite the high incidence of leukemias, lymphomas and myelomas (about 10% cancer 

diagnosed) the role of retrotransposon elements as inherited predisposing factors or somatic 

mutagens is under explored [105]. Loss of DNA methylation and retrotransposon integration 

into clinically sensitive genes has been reported in CLL [122, 123], multiple myeloma (MM) 

[124].

sORFs and micropepetides

A potentially translatable sequence of in-frame sense codons beginning with a start codon 

and ending with a stop codon is known as on open reading frame (ORF). Translatable ORFs 

are the sequences of mRNA that give rise to its principle protein, often referred to as the 

coding DNA sequence (CDS). sORFs are distinguished from all other ORFs by size, and 

like longer ORFs not all are translated or even translatable [5]. The theoretical minimal size 

of sORFs is two codons consisting of a start and stop codon, while the upper limit remains 

ambiguous. Some studies describe sORFs of 200–250 codons, however the general 

consensus suggests an upper limit of approximately 100 [125–127].

Identification of sORFs with coding potential using conventional gene prediction software is 

problematic. These programs are designed to assess the coding potential of ORFs that are 

longer than 100 codons, based on how rich they are in features such as canonical initiation 

codons, termination sites, splice sites, promoter sequences, polyadenylation signals, codon 

usage bias, nucleotide composition and in-frame hexamer frequency [128, 129]. 

Consequently, many gene annotation algorithms will dismiss ORFs of smaller than 100 
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codons as meaningless [130, 131]. Improvements in high-throughput identification of 

translation start sites, sensitivity of proteomic techniques, specialized algorithms for 

identifying putative coding sORFs and better integration of bio-informatics, genomic and 

proteomic outputs have assisted our ability to predict translatable sORFs [5]. Despite 

improvements in identification of sORFs with coding potential, it is believed relatively few 

functional sequences are likely to be present within a large pool of mostly non-functional 

sORFs [130, 131].

Location of functional sORFs

Short and intermediate ncRNAs are considered too small (that is, <200 nucleotides in 

length) to support translation [132], suggesting translatable sORFs will only be found on 

lncRNAs. This assumption may or may not hold as ribosome profiling has detected 

translation initiation sites on smaller transcripts, previously thought to be non-coding [12]. 

Translatable sORFs have been identified within, or overlapping, CDS regions of mRNAs, 

the 5′ and 3′ trailer sequences, and in transcripts previously ascribed as non-coding RNAs, 

including lncRNAs [5]. While no role for micropeptides or other sORF products have been 

determined to date, our understanding of this class of molecule is just emerging and 

discoveries are likely just around the proverbial corner.

Concluding Remarks

Despite seemingly exponential growth in our characterization of new roles for ncRNA in 

hematopoiesis, our understanding is far from complete. However, it is clear these molecules 

are deeply embedded in the regulatory processes of hematopoiesis. From miRNAs to 

lncRNAs virtually all aspects of transcription, translation, localization, stabilization, 

structural integrity, complex formation, differentiation and evolution are intricately balanced 

with cell type and differentiation specific accuracy. As new roles emerge, existing 

classification schemes are challenged to accommodate and categorize the myriad of 

functions performed by these molecules encoded by regions of the genome once thought of 

as “junk” DNA. No doubt, as our understanding of how ncRNA modulates hematopoiesis, 

we will uncover new therapeutic approaches to combat hematologic afflictions.
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Highlights

A paradigm shift in our view of the role of RNA in cellular biology has occurred 

and the volume of new information has been overwhelming. In this review, we aim 

to broadly summarize recent advances and examine the trends and challenges 

arising in this burgeoning research area.

We examine the broad categories of non-coding RNA biology (microRNAs, 

lncRNAs, piRNAs as well as pseudogenes, translocons and micropeptides) with a 

focus on the classification and roles of the classes of non-coding RNAs, with 

pertinent examples relevant to hematopoiesis.
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Figure 1. miRNA Biogenesis
miRNA genes are transcribed by RNA polymerase II into pri-miRNA and then processed 

into pre-miRNA by the microprocessor complex, consisting of DGR8 and Drosha. 

Following exportin 5-mediated nuclear export to the cytoplasm, the Dicer complex generates 

mature miRNA duplexes which can associated with the RNA-induced silencing complex 

(RISC). Once associated with RISC the passenger strand is degraded leaving the guide 

miRNA to interact with the target mRNA.
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Figure 2. piRNA biogenesis (adapted from Ku and Lin 2014 [133])
PIWI proteins and piRNAs regulate the expression of genes and transposons at both 

transcriptional and post-transcriptional levels. 1) Sense and antisense piRNA precursor 

transcripts are transcribed from piRNA clusters in the nucleus. 2) piRNA precursor 

transcripts are exported to the cytoplasm and processed by the primary biogenesis pathway 

to generate mature sense piRNAs. 3) mature piRNAs consisting of the 5′ end of the 

precursor then associate with PIWI proteins to enter the secondary piRNA pathway. 4) The 

PIWI:piRNA complexes then associate with the complementary sequence in unprocessed 

precursor piRNA (or transposons and protein-coding transcripts) and mediate cleavage. The 

resulting cleaved 5′ end of the piRNA precursors is taken up by another PIWI protein and 

the precursor (or transposon or protein-coding transcript) is silenced. This process is known 

as the ping-pong cycle. PIWI:piRNA complexes interact with polysomes, mRNA cap-

binding complex (CBC), P-body components and piRNAs are mapped to the 3′UTR of 

mRNAs. The PIWI-piRNA complexes can enter the nucleus and regulate gene transcription 

through epigenetic mechanisms including heterochromatin formation and DNA methylation.
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Figure 3. The Roles of lncRNA in mRNA Processing and Post-transcriptional Regulation
Within the nucleus, lncRNA modulates mRNA processing in one of two ways. 1) Binding 

mRNA at regions overlapping exon:intron boundaries. Antisense transcript can generate the 

complimentary sequence required. 2) lncRNA can recruit mRNA editing enzymes, such as 

adenosine deaminase (ADAR), to complementary mRNA sequences. In the cytoplasm, 

lncRNA regulates post-transcriptional events through at least four distinct mechanisms. 3) 

Recruitment of post-transcriptional machinery to mRNA due to possession of sequence 

specific domains, such as SIN EB2 repeat elements that have affinity for ribosomes. 4) 

lncRNA that contain Alu repeat elements associate with Alu elements in the 3′UTR of 

mRNA which recruits Staufen to induce a pathway leading to mRNA decay. 5) Linear or 

circular lncRNAs can serve as molecular sponges to sequester miRNAs from their target 

sequences. 6) lncRNAs can mask sequences in mRNA that would serve as targets for 

miRNAs bound to RNA-induced silencing complex (RISC).
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Figure 4. Transposon mechanisms
Class 1 transposons utilize an RNA intermendiate. The RNA is transcribed by host 

machinery and then reverse-transcribed and integrated elsewhere into the genome by 

enzymes encoded by the retrotransposon itself (autonomous retrotransposons), or encoded 

by another retrotransposon (parasitic or non-autonomous retrotransposons). Class II 

transposable elements move within the genome by a “cut-and-paste’ mechanism with no 

RNA intermediate.
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Table 1

Classes of Non-coding RNA

RNA Abbreviation Cellular Role

Messenger RNA mRNA Codes for Protein

Transfer RNA tRNA Translation

Ribosomal RNA rRNA Translation

Small nuclear RNA snRNA Splicing and other roles

Small nucleolar RNA snoRNA RNA Nucleotide modification

Small cajan body-specific RNA scaRNA (Type of snoRNA) RNA nucleotide modifications

Piwi interacting RNA piRNA Transposon Defense

Micro RNA miRNA Gene Regulation

Long, non-coding RNA lncRNA Gene Regulation and other roles
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Table 2

Classification of repetitive elements and Contribution to the Human Genome

Genomic Element Sub categories % of human genome

Protein coding genes N/A Less than 2%

Unprocessed Pseudogenes N/A 2 – 10 %

Transposable Elements Class I(DNA Transposons) 3 %

Retrotransposons LTR-containing 8 %

LINEs 20 %

SINEs 13 %

sORFs N/A Unknown (likely <1 %)
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