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Abstract

We introduce Scallop, an accurate reference-based transcript assembler that improves 

reconstruction of multi-exon and lowly expressed transcripts. Scallop preserves long-range 

phasing paths extracted from reads, while producing a parsimonious set of transcripts and 

minimizing coverage deviation. On 10 human RNA-seq samples, Scallop produces 34.5% and 

36.3% more correct multi-exon transcripts than StringTie and TransComb, and respectively 

identifies 67.5% and 52.3% more lowly expressed transcripts. Scallop achieves higher sensitivity 

and precision than previous approaches over a wide range of coverage thresholds.

RNA sequencing (RNA-seq) is an established technology that enables identification of novel 

genes and splice variants as well as accurate measurement of expression abundances [1, 2, 

3]. RNA-seq produces sequencing reads sampled from the expressed transcripts. A major 

computational challenge is to correctly assemble these reads so that the full-length expressed 

transcripts can be accurately reconstructed. This step is crucial for transcript quantification 

and differential expression analysis and has a central role in revealing tissue-specific splicing 

patterns and understanding the regulation of gene expressions [4].

The most prevailing and accurate transcript assembly methods are reference-based methods, 

which require aligning the reads to a reference genome. Reference-based methods such as 

Cufflinks [5], Scripture [6], IsoLasso [7], CLIIQ [8], CLASS [9], Traph [10], Bayesembler 

[11], CIDANE [12], StringTie [13], and TransComb [14], use the read alignments to build a 

splice graph for each gene locus, in which vertices correspond to (partial) exons, edges 

correspond to junctions, and the coverage of exons and junctions are encoded as weights of 

vertices or edges. The expressed transcripts, represented as a set of paths in the splice graph, 

are inferred to fit the topology and the weights of this graph. See additional related work in 

Supplementary Note 1.
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Transcript assembly remains an open and challenging problem, due to the ubiquity of 

paralogs, unevenness of read coverage, and diversity of splice variants. The accuracies of 

existing methods are still very low, especially for lowly expressed transcripts and those 

genes with multiple spliced isoforms [15].

We introduce Scallop, a reference-based transcript assembler that enables accurate 

identification of multi-exon transcripts and lowly expressed transcripts. Scallop 

simultaneously minimizes the read coverage deviation and minimizes the number of 

expressed transcripts by iteratively decomposing vertices of the splice graph. Scallop takes 

advantage of the reads that span more than two exons by encoding them as phasing paths in 

the splice graph, which the algorithm attempts to preserve in the decomposition. For each 

vertex fully covered by phasing paths, Scallop decomposes it by formulating and solving 

two linear programming instances to minimize the coverage deviation. Scallop decomposes 

each vertex not fully covered by phasing paths by formulating and solving a subset-sum 

instance to either reduce the number of transcripts or to remove a false positive edge.

We compare Scallop with two recent state of the art reference-based transcript assemblers, 

StringTie and TransComb, and evaluate them using 10 human RNA-seq samples 

(Supplementary Table 1; Supplementary Table 2). We tune the parameters of Scallop on the 

first 5 samples (training samples) and then test it on other 5 samples (testing samples). We 

use three RNA-seq aligners, TopHat2 [16], STAR [17], and HISAT2 [18], to generate read 

alignments, and run these methods with different minimum coverage thresholds to evaluate 

their capability to balance sensitivity and precision (Supplementary Note 2).

The accuracy of these three assemblers using different aligners and different minimum 

coverage thresholds is shown in Figure 1 (for testing samples) and Supplementary Figure 2 

(for training samples). The sensitivity-precision curves (Figure 1A and Supplementary 

Figure 2A) for Scallop are generally the highest for all 10 samples and for all three aligners, 

indicating that, for most sensitivity-precision trade-offs, Scallop outperforms the other 

assemblers in reconstructing multi-exon transcripts. Accuracy is further summarized as the 

area under the precision-sensitivity curve (AUC), shown in Figure 1B and Supplementary 

Figure 2B. With TopHat2 alignments, the average AUC of Scallop over the testing samples 

is 22.6% and 22.3% higher than that of StringTie and TransComb, respectively. With STAR 

alignments, this improvement is 30.6% and 100.6%. With HISAT2 alignments, Scallop’s 

AUC is 26.2% higher than StringTie.

The default values of the minimum coverage threshold used by StringTie, TransComb and 

Scallop are 2.5, 0, and 1.0 respectively (circled in Figure 1A and Supplementary Figure 2A). 

At default parameters, Scallop achieves much higher sensitivity than StringTie and 

TransComb at detecting multi-exon transcripts (Figure 1C and Supplementary Figure 2C): 

averaged over the 5 testing samples, Scallop produces 35.7%–46.3% and 14.1%–25.4% 

more correct multi-exon transcripts than StringTie and TransComb, depending on the 

aligner. StringTie’s higher precision can be explained by its higher default coverage 

threshold. When evaluated at equivalent sensitivity (Figure 1A and Supplementary Figure 

2A), Scallop obtains the highest precision. In particular, Scallop consistently outperforms 

other methods in terms of both sensitivity and precision when the minimum coverage 
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threshold is set to 0 (i.e., sensitivity is maximized; Figure 1D and Supplementary Figure 

2D). Averaged over the testing samples, Scallop predicts 27.2%–30.4% and 16.5%–28.1% 

more correct multi-exon transcripts than StringTie and TransComb, while also obtaining 

higher precision, especially with STAR and HISAT2 alignments. Comparison of the sets of 

correct multi-exon transcripts and a breakdown of the results with different numbers of 

exons are shown in Supplementary Figures 3 and 4. A comparison between Scallop and 

Cufflinks is illustrated in Supplementary Figure 5. The correlation between the accuracy and 

the number of aligned reads is given in Supplementary Figure 6.

StringTie and TransComb obtain higher sensitivity but lower precision than Scallop on 

single-exon transcripts at default parameters (Figure 1E and Supplementary Figure 2E). 

However, the overall number of correct single-exon transcripts is relatively small compared 

with multi-exon transcripts (compare scale of Figure 1E with Figure 1C). Because predicted 

single-exon transcripts usually suffer from very low precision, Scallop uses a stricter 

criterion (Online Methods) to aggressively filter lowly expressed single-exon transcripts to 

increase its precision by sacrificing sensitivity.

We use Salmon [19] to quantify the 10 RNA-seq samples to classify transcripts into low, 

middle and high expression levels, and then evaluate the assemblers for each level 

(Supplementary Note 2). Scallop achieves higher accuracy on all three levels, but the 

advantage is much more notable for low and middle levels (Figure 1F and Supplementary 

Figure 2F). With STAR alignments (averaged over the testing samples), Scallop obtains 

64.5%, 55.3%, and 22.5% more correct multi-exon transcripts than StringTie for low, 

middle, and high levels, respectively.

Scallop has a comparable running time with StringTie, while TransComb takes much longer 

than both (Supplementary Figure 7).

We further compare these methods on an additional 65 ENCODE RNA-seq samples 

(Supplementary Note 3; Supplementary Figures 8, 9, 10, 11) and on 8 spike-in RNA-seq 

samples with known ground truth (Supplementary Note 4; Supplementary Table 3; 

Supplementary Figure 12). On all these datasets, Scallop generally outperforms StringTie 

and TransComb by a large margin in terms of sensitivity, at comparable or better precision.

Scallop can be combined with existing RNA-seq quantification tools (e.g., Salmon [19] or 

kallisto [20]). A detailed description of such a pipeline and quantification results on 10 

RNA-seq samples are given in Supplementary Note 5 and Supplementary Figure 13.

Scallop (Supplementary Code) presents a new technique for transcript assembly from RNA-

seq data. While building upon the standard paradigm of the splice graph, it uses a novel 

algorithm to decompose the graph through optimizing several competing objectives. This 

leads it to achieve both higher sensitivity and higher precision over a wide range of 

minimum coverage thresholds. Scallop theoretically guarantees to fully use the phasing 

information to resolve complicated alternative splicing variants, causing significant 

improvement in the assembly of multi-exon transcripts and lowly expressed transcripts.
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Online Methods

Problem Statement

Given the alignments of RNA-seq reads to a reference genome, we first cluster reads into 

gene loci, and then assemble the expressed transcripts within each gene locus independently 

(see Figure 2 for the method overview). For each gene locus, we construct the splice graph G 
= (V, E), edge weights w, and phasing paths H (see Supplementary Note 6 for the procedure 

to build G, w and H). Based on G, w and H, we compute a set P of s-t paths of G and 

associate a real-value f(p) for every path p ∈ P. Each path p ∈ P implies an expressed 

transcript, and f(p) estimates the expression abundance of the corresponding transcript. We 

now design three objectives to guide reconstructing P and f. First, since each phasing path is 

constructed from a single read or paired-end reads, which must be sampled from a single 

transcript, we expect that each phasing path appears as a whole in some reconstructed 

transcript. Formally, we say a phasing path h ∈ H is covered by P, if there exists an s-t path p 
∈ P such that h is a consecutive subset of edges of p. We do not enforce that all phasing 

paths in H must be covered by P because of the existence of false positive phasing paths 

introduced by alignment errors or sequencing errors. Our algorithm tries to identify and 

remove false positive phasing paths both in building the splice graph and in reconstructing 

paths from the splice graph. Except these predicted false positive phasing paths, we do 

require that all other phasing paths in H are covered by P. Second, for each edge e ∈ E, we 

expect that the total of the abundances of the inferred s-t paths passing through e, i.e., 

Σp∈P: e∈p f(p), is as close to its observed read coverage w(e) as possible. Therefore, the 

second objective is to minimize the deviation between these two quantities, defined as

Third, following the principle of parsimony, we expect to use a smaller set of s-t paths to 

explain G, w and H. That is, the third objective is to minimize |P|.

Combining all the three objectives, we informally describe the task of transcript assembly as 

follows.

Problem 1 (Transcript Assembly)—Given G, w and H, compute a set of s-t paths P of 
G and abundance f(p) for each p ∈ P, such that P covers all phasing paths in H (except 
predicted false positive ones), and that both d(P, f, w) and |P| are as small as possible.

We do not explicitly combine d(P, f, w) and |P| into a single objective function. The trade-off 

between these two items is implicitly determined by the phasing paths in H and 

automatically detected by our algorithm. Specifically, when we have sufficient phasing paths 

around certain vertices, our algorithm will follow them to locally decompose the splice 

graph to reconstruct the s-t paths, and in this case our algorithm only minimizes d(P, f, w). 

On the other hand, when the phasing information is missing for some vertices, then our 

algorithm emphasizes minimizing |P| to produce a more parsimonious solution.
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Algorithm

Our algorithm employs an iteratively strategy to gradually decompose the splice graph into 

s-t paths while achieving the three objectives above (Figure 2). Specifically, we divide all 

vertices into three types based on the influence of the phasing paths on each vertex, and 

design different subroutines to decompose each type of vertices. In each iteration, our 

algorithm decomposes a single vertex so as to either locally minimize the deviation d(P, f, w) 

or minimize the number of reconstructed paths |P|, while preserving all phasing paths in H. 

Our algorithm can guarantee that all phasing paths (except predicted false positive ones) can 

be covered by the final set of s-t paths. This property is achieved by enforcing that all three 

subroutines keep the invariant that, after each iteration, every phasing path can be covered by 

some s-t path in the current splice graph.

We say a vertex v ∈ V \ {s, t} is trivial, if its in-degree is 1, or its out-degree is 1; otherwise 

we say v is nontrivial. Intuitively, there is a unique way to decompose a trivial vertex, while 

there might be multiple ways to decompose a nontrivial vertex. For those nontrivial vertices, 

we introduce a data structure to further classify them into two types based on the influence 

of phasing paths on them. For any nontrivial vertex v, we build a bipartite graph Gv = (Sv ∪ 
Tv, Ev), in which its vertices (Sv ∪ Tv) correspond to edges in G, while its edges (Ev) 

describe whether the corresponding two edges in G are connected by some phasing path in 

H. Formally, let Sv be the set of edges that point to v, and let Tv be the set of edges that leave 

v, i.e., Sv: = {e ∈ E | e = (u, v)} and Tv: = {e ∈ E | e = (v, w)}. For each pair of edges e ∈ Sv 

and e′ ∈ Tv, we add an edge (e, e′) to Ev if there exists a phasing path h ∈ H such that (e, e
′) is a consecutive pair in h. We say a nontrivial vertex v is unsplittable if all elements of Sv, 

or all elements of Tv, are in the same connected component of Gv (Supplementary Figure 

14(a,b)); otherwise we say v is splittable. In the following, we design different subroutines to 

decompose unsplittable vertices, splittable vertices, and trivial vertices.

Decomposing Unsplittable Vertices—We now describe the subroutine to decompose 

an unsplittable vertex v (Supplementary Figure 14). The aim of this subroutine is to replace 

v with a set of trivial vertices so as to locally minimize d(P, f, w) and also preserve all 

phasing paths.

The first step is to balance v by computing new weights w̄(·) for adjacent edges of v (i.e., (Sv 

∪ Tv)). Specifically, for any subset E1 ⊂ E we define w(E1): = Σe∈E1 w(e). Let 

. Then we set w̄(e): = w(e)/rv for any edge e ∈ Sv, and set w̄(e): = w(e) 

· rv for any edge e ∈ Tv. Similarly, we define w̄(E1): = Σe∈E1 w̄ (e) for any subset E1 ⊂ E. 

Clearly, we have that w̄ (Sv) = w̄ (Tv), i.e., after balancing the sum of weights of all in-edges 

of v equals that of all out-edges of v.

The second step of the subroutine is to build the extended bipartite graph . 

The goal of this extension is to connect edges with no phasing paths to the most likely 

preceding or succeeding edge. Specifically, let  and  be 

the edges that have the largest balanced weights in Sv and Tv, respectively. Let  and 

 be the set of edges that have total degree of 0 in Gv. We then set 
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. See Supplementary Figure 14(b) for an 

example.

The third step of the subroutine is to assign weights for all edges ( ) in the extended 

bipartite graph  so as to locally minimize the deviation w.r.t. w̄(·), i.e., d(P, f, w̄). We 

formulate this as a linear programming problem. For each edge  (recall that each 

edge in  corresponds to a pair of edges in the splice graph G), we have a variable xe, e′ to 

indicate the desired weight of edge (e, e′). For each vertex e ∈ Sv ∪ Tv (recall that each 

vertex in  corresponds to an edge in G) we add a variable ye to indicate the deviation 

between its balanced weight w̄(e) and the sum of the weights of all edges that are adjacent to 

vertex e in . Formally, we have the following constraints:

The objective of the linear programming instance is taken to be:

Solving the above linear programming instance gives us the optimal deviation w.r.t. w̄(·), and 

one optimal solution for all variables. However, when  contains a cycle there might be 

multiple optimal solutions that achieve the same optimal deviation (Supplementary Figure 

15). We use the abundance of the phasing paths stored in g(·) to reassign weights while 

keeping the optimal deviation. For each edge , we denote by g(e, e′) the number 

of reads or paired-end reads that continuously go through e and e′, which can be computed 

as g(e, e′) = Σh∈H:h contains (e, e′) g(h). Our goal is then to reassign the weights for edges in 

 so as to keep the above minimal deviation w.r.t. w̄(·) but to minimize the deviation w.r.t. 
g(·, ·).

We formulate this problem as another linear programming instance. Specifically, let  and 

, e ∈ Sv and e′ ∈ Tv, be the optimal solution obtained by solving the first linear 

programming instance (thus  and , are constants rather than variables in the second 

linear programming problem). We use variables xe, e′ to indicate the weight of edge (e, e′) in 

. We use the following constraints to guarantee that the optimal weights achieve the same 

optimal deviation w.r.t. w̄(·) as in the first linear programming instance:
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The objective of this linear programming instance is then taken to minimize the sum of the 

deviation of weights w.r.t. g(·, ·):

We assign the weights for edges in  to be the optimal value of xe,e′ in the second linear 

programming instance. Note that if the first linear programming instance has the unique 

optimal solution, then both instances will have the same optimal solution. Since linear 

programming can be solved very efficiently (in polynomial-time), using two such instances 

for each unsplittable vertex has little influence on the speed of the entire algorithm.

Finally, we update splice graph G by replacing v with  (see Supplementary Figure 14(c)); 

we denote by G′ the updated splice graph. For the edges in  that are added to G′, we 

maintain the information that they are artificially added edges and thus do not correspond to 

any edge in G. This information will be used after decomposing all vertices to backtrace the 

paths with respect to the original splice graph (see line 6 of Algorithm 1). For example, if 

, then the path (⋯, e1, (e1, e2), e2, ⋯ ) in G′ corresponds to the path (⋯, e1, e2, 

⋯ ) in G. We then update H; we denote by H′ the updated set of phasing paths. For any 

phasing path h ∈ H, if h contains a pair of continuous edges e and e′ in G such that 

, i.e., h = (⋯, e, e′, ⋯ ), then h will become h′ = (⋯, e, (e, e′), e′, ⋯ ) ∈ H′.

This subroutine to decompose unsplittable vertex preserves all phasing paths in H, i.e., every 

phasing path h ∈ H is still covered by some s-t path p′ of G′ (if we transform p′ of G′ into 

the corresponding path p of G through removing the artificially added edges in p′ (if any), 

then p covers h). This is true because according to our construction of G′ and H′ there is a 

one-to-one correspondence between H and H′ and every phasing path in H′ is covered by 

some path in G′.

To choose which unsplittable vertex v to apply the above subroutine to, we define

and select a vertex v that minimizes z(v) to decompose (see line 3 of Algorithm 1).
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Decomposing Splittable Vertices—We now describe the subroutine to decompose a 

splittable vertex v (Supplementary Figure 16). The aim of this subroutine is to reduce |P| 

while preserving all phasing paths. Since P is not explicitly available until we have 

decomposed all vertices, we use U := |E | − |V | + 2 to approximate |P|. It has been proved 

that U is an upper bound of |P| in the flow decomposition scenario: for a given flow at most 

U paths are required to decompose this flow [21, 22]. Following this approximation, in order 

to reduce |P|, our subroutine will increase the number of vertices or decrease the number of 

edges, while at the same time preserving all phasing paths. Typically, a splittable vertex will 

be replaced by two new vertices.

The first step of this subroutine is also to balance v by computing w̄(·) for edges in Sv ∪ Tv 

following the same procedure as decomposing unsplittable vertices. The second step is to 

split v into two vertices so as to keep all phasing paths and to minimize the balanced weight 

discrepancy (i.e., to make each of the two new vertices as balanced as possible). Formally, 

we seek  and  and , such that for each (e, e′) 

∈ Ev, either  and , or  and , and that | | is minimized. 

Intuitively, this formulation forces that two edges in some phasing path must be adjacent 

after splitting, and thus all phasing paths can be preserved; meanwhile, under such 

constraints we aim to minimize the discrepancy of each new vertex (the discrepancies of the 

two new vertices are identical).

The above problem can be equivalently transformed into the subset-sum problem. Let  be 

the set of all connected components of Gv. We define r(C) := Σe∈Sv:e∈C w̄(e) − Σe′∈Tv:e′∈C 

w̄(e′) for any C ∈ . Then the above problem is equivalent to computing a nonempty and 

strict subset of {r(C) | C ∈ } such that the sum of all elements of this subset is closest to 0. 

In our implementation, we use the existing pseudo-polynomial time dynamic programming 

algorithm to solve it.

Let  and  be the optimal subsets returned by the above algorithm. We then update 

splice graph G through performing the following procedure to decompose v (Supplementary 

Figure 16). We denote the updated splice graph as G′. Vertex v will be split into two vertices 

by adding another vertex v′ to G′. Edges in  will be detached from v and attached 

to v′. Notice that the weights for edges in Sv ∪ Tv are kept unchanged as w(·), i.e., the 

balanced weight w̄ (·) is only used to compute  and .

It could be the case that  (or symmetrically, ), i.e., the 

new vertex v′ will have either in-degree of 0 and out-degree of 1, or out-degree of 0 and in-

degree of 1. In this case, the above procedure of decomposing v will degenerate into 

removing this edge from G, instead of splitting v into two vertices. If this is the case, it 

indicates that this particular edge is more likely to be a false positive edge. (An edge in the 

current splice graph might correspond to a path in the original splice graph, as we proceed 

decomposing vertices, an edge might become the concatenation of two adjacent edges.) For 

this case, we also remove the appearance of this false positive edge for all phasing paths in 
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H. In other words, this procedure can be used to naturally remove false positive edges and 

false positive phasing paths.

In either the general case of splitting v into two vertices, or in the degenerate case of 

removing one edge from G, after decomposing splittable vertex v, we have that U will be 

reduced by 1.

For the degenerate case of removing one edge from G, these phasing paths that contain this 

edge will be not covered by G′. For the usual case of splitting vertex this subroutine keeps 

all phasing paths H unchanged.

Finally, we define

as the measurement to decide which splittable vertex to decompose (see line 4 of Algorithm 

1).

We identify false positive edges and false positive phasing paths when decomposing 

splittable vertices while we do not do so for unsplittable vertices. This is because edges that 

are adjacent to an unsplittable vertex v are supported by phasing paths that span v, i.e., such 

edges can be extended by following phasing paths. Our subroutine to decompose v thus 

realizes all such extensions. The extended edges could be identified as false positive edges in 

the following iterations if they happen to be adjacent to splittable vertices and reported as 

false positive edges by the algorithm. In other words, once edges can be elongated through 

phasing paths, then they are temporarily exempted from being removed as false positive 

edges.

Decomposing Trivial Vertices—Although there is a unique way to decompose a trivial 

vertex, decomposing them is necessary to simplify the splice graph so as to explicitly raise 

up nontrivial vertices for further decomposition using the previous two subroutines 

(Supplementary Figure 17). Let v ∈ V be a trivial vertex. Again, let Sv be the set of edges 

that point to v, and let Tv be the set of edges that leave v. Without loss of generality, we 

assume that the in-degree of v is 1; let e = (u, v) be the only in-edge of v, i.e., Sv = {e = (u, 

v)}. We denote by G′ the updated splice graph after decomposing v. The construction of G′ 
from G is to remove edge e from G, and merge u and v as a single vertex v (Supplementary 

Figure 17). For each edge in e′ ∈ Tv, we maintain the information that e′ is preceded by an 

extra edge e, i.e., for e′ in G we label it as ee′ in G′. When we retrieve the paths w.r.t. the 

original splice graph (line 6 of Algorithm 1), ee′ in G′ will be expanded as a pair of edges 

(e, e′) in G. We then update the phasing paths H; we denote by H′ the updated set of 

phasing paths. Consider two cases of a phasing path h ∈ H that contains e. If e is the last 

edge of h, i.e., h = (⋯, e1, e), then we simply remove e from h, i.e., it becomes h = (⋯, e1) ∈ 
H′. Otherwise, if e is not the last element of h, i.e., h = (⋯, e, e1, ⋯ ), we replace e and e1 

with the edge ee1 in G′, i.e., it becomes h′ = (⋯, ee1, ⋯ ) ∈ H′.
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In Algorithm 1, we first decompose all nontrivial vertices before decomposing any trivial 

vertex, i.e., when we decompose a trivial vertex, all vertices in the current splice graph are 

trivial vertices. We now prove that, when the splice graph contains only trivial vertices, this 

subroutine to decompose trivial vertex preserves all phasing paths. Again, consider the two 

cases of a phasing path h ∈ H that contains e. If h = (⋯, e, e1, ⋯ ) ∈ H, then we have h′ = 

(⋯, ee1, ⋯ ) ∈ H′, and h′ is covered by G′. Since ee1 is essentially the concatenation of e 
and e1, we have that G′ covers h. For the other case that h = (⋯, e1, e) ∈ H, we have that h = 

(⋯, e1) ∈ H′. (Although G′ covers h′, this alone does not necessarily imply that G′ covers h 
any more.) Let e1 = (w, u) and e = (u, v) in G. Since we assume all vertices in G are trivial 

vertices, in particular u is a trivial vertex, we have that in G′ all the succeeding edges of e1 

are in the type of ee′, where e′ ∈ Tv (Supplementary Figure 17). In other words, for any 

path in G′ that contains h′, the next edge of e1 in this path must be a concatenated edge with 

preceding edge of e. Hence, we have that G′ covers h.

We emphasize that if the splice graph contains a nontrivial vertex, then decomposing a trivial 

vertex might not preserve all phasing paths. Supplementary Figure 18 gives such an 

example. Thus, it is essential to decompose all nontrivial vertices before decomposing any 

trivial vertex.

Complete Algorithm—Our complete algorithm (Algorithm 1; Figure 2) for Problem 1 is 

to iteratively decompose vertices by applying the above three subroutines (lines 1–5), and 

then recover the transcripts (line 6). In Supplementary Note 7, we prove that Algorithm 1 

can always reach line 6, i.e., our algorithm always terminates. Among nontrivial vertices, we 

give priority to unsplittable ones, since their decomposition is fully determined by phasing 

paths (line 3 and line 4). When the Algorithm 1 reaches line 5, all vertices must be trivial 

vertices. When Algorithm 1 reaches line 6, s and t are the only two vertices in the splice 

graph (since all other vertices, either trivial or nontrivial, have been decomposed), thus every 

edge must point from s to t (called s-t edges). Each s-t edge in the final splice graph 

corresponds to an s-t path in the original splice graph, and we can reconstruct such s-t path 

through tracing back the information we maintained in each individual decomposition step. 

The weight of each s-t edge in the final splice graph will become the abundance f(p) of the 

corresponding s-t path p of the original splice graph.

Algorithm 1

Heuristic for Problem 1

Input: G, w, H and g

Output: P and f

1. Let V1 ⊂ V \ {s, t} be the set of unsplittable vertices.

2. Let V2 ⊂ V \ {s, t} be the set of splittable vertices.

3. If V1 ≠ ∅, compute , decompose v by updating G, w and H, and goto step1.

4. If V2 ≠ ∅, compute , decompose v by updating G, and goto step1.
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5. Arbitrarily choose a (trivial) vertex v ∈ V \ {s, t}, decompose v by updating G and H, and goto step1.

6. For all the s-t edges of G, recover the original s-t paths as P; set f as the corresponding weights of the edges.

After collecting transcripts from all gene loci, we further filter very short and extremely 

lowly expressed ones, since they are more likely false positive transcripts. Specifically, we 

filter a transcript if its length is less than L0 + Ne · L1, where Ne is the number of exons in 

this transcript, and L0 and L1 are two parameters (by default they are 150 and 50, 

respectively). A transcript is also removed if its predicted abundance f(p) is less than a small 

value (by default this value is 1.0 and 20 for multi-exon transcripts and single-exon 

transcripts, respectively).

Statistics

All error bars represent the standard deviation. See Life Sciences Reporting Summary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of the three methods (StringTie, TransComb, and Scallop) over the 5 testing 

samples. (A) The precision-sensitivity curves for multi-exon transcripts. Each curve 

connects 10 points, corresponding to minimum coverage thresholds {0, 1, 2.5, 5, 7.5, 10, 25, 

50, 75, 100}; the default value is circled. (B) The average AUC (area under the precision-

sensitivity curve) over the 5 samples. The error bars show the standard deviation (the same 

for other panels). (C) The average sensitivity and precision of multi-exon transcripts running 

at default parameters. (D) The average sensitivity and precision of multi-exon transcripts 

running with minimum coverage set to 0. (E) The average sensitivity and precision of single-

exon transcripts running at default parameters. (F) The average sensitivity and precision of 

multi-exon transcripts corresponding to low, middle, and high expression levels running with 

minimum coverage set to 0.
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Figure 2. 
Overview of Scallop. The part within the dashed rectangle illustrates Algorithm 1.
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